KVM: SVM: Cleanup NMI singlestep
[safe/jmp/linux-2.6] / arch / x86 / kvm / svm.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * AMD SVM support
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  *
8  * Authors:
9  *   Yaniv Kamay  <yaniv@qumranet.com>
10  *   Avi Kivity   <avi@qumranet.com>
11  *
12  * This work is licensed under the terms of the GNU GPL, version 2.  See
13  * the COPYING file in the top-level directory.
14  *
15  */
16 #include <linux/kvm_host.h>
17
18 #include "irq.h"
19 #include "mmu.h"
20 #include "kvm_cache_regs.h"
21 #include "x86.h"
22
23 #include <linux/module.h>
24 #include <linux/kernel.h>
25 #include <linux/vmalloc.h>
26 #include <linux/highmem.h>
27 #include <linux/sched.h>
28 #include <linux/ftrace_event.h>
29
30 #include <asm/desc.h>
31
32 #include <asm/virtext.h>
33 #include "trace.h"
34
35 #define __ex(x) __kvm_handle_fault_on_reboot(x)
36
37 MODULE_AUTHOR("Qumranet");
38 MODULE_LICENSE("GPL");
39
40 #define IOPM_ALLOC_ORDER 2
41 #define MSRPM_ALLOC_ORDER 1
42
43 #define SEG_TYPE_LDT 2
44 #define SEG_TYPE_BUSY_TSS16 3
45
46 #define SVM_FEATURE_NPT  (1 << 0)
47 #define SVM_FEATURE_LBRV (1 << 1)
48 #define SVM_FEATURE_SVML (1 << 2)
49 #define SVM_FEATURE_PAUSE_FILTER (1 << 10)
50
51 #define NESTED_EXIT_HOST        0       /* Exit handled on host level */
52 #define NESTED_EXIT_DONE        1       /* Exit caused nested vmexit  */
53 #define NESTED_EXIT_CONTINUE    2       /* Further checks needed      */
54
55 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
56
57 static const u32 host_save_user_msrs[] = {
58 #ifdef CONFIG_X86_64
59         MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE,
60         MSR_FS_BASE,
61 #endif
62         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
63 };
64
65 #define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
66
67 struct kvm_vcpu;
68
69 struct nested_state {
70         struct vmcb *hsave;
71         u64 hsave_msr;
72         u64 vmcb;
73
74         /* These are the merged vectors */
75         u32 *msrpm;
76
77         /* gpa pointers to the real vectors */
78         u64 vmcb_msrpm;
79
80         /* A VMEXIT is required but not yet emulated */
81         bool exit_required;
82
83         /* cache for intercepts of the guest */
84         u16 intercept_cr_read;
85         u16 intercept_cr_write;
86         u16 intercept_dr_read;
87         u16 intercept_dr_write;
88         u32 intercept_exceptions;
89         u64 intercept;
90
91 };
92
93 struct vcpu_svm {
94         struct kvm_vcpu vcpu;
95         struct vmcb *vmcb;
96         unsigned long vmcb_pa;
97         struct svm_cpu_data *svm_data;
98         uint64_t asid_generation;
99         uint64_t sysenter_esp;
100         uint64_t sysenter_eip;
101
102         u64 next_rip;
103
104         u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS];
105         u64 host_gs_base;
106
107         u32 *msrpm;
108
109         struct nested_state nested;
110
111         bool nmi_singlestep;
112 };
113
114 /* enable NPT for AMD64 and X86 with PAE */
115 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
116 static bool npt_enabled = true;
117 #else
118 static bool npt_enabled = false;
119 #endif
120 static int npt = 1;
121
122 module_param(npt, int, S_IRUGO);
123
124 static int nested = 1;
125 module_param(nested, int, S_IRUGO);
126
127 static void svm_flush_tlb(struct kvm_vcpu *vcpu);
128 static void svm_complete_interrupts(struct vcpu_svm *svm);
129
130 static int nested_svm_exit_handled(struct vcpu_svm *svm);
131 static int nested_svm_vmexit(struct vcpu_svm *svm);
132 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
133                                       bool has_error_code, u32 error_code);
134
135 static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
136 {
137         return container_of(vcpu, struct vcpu_svm, vcpu);
138 }
139
140 static inline bool is_nested(struct vcpu_svm *svm)
141 {
142         return svm->nested.vmcb;
143 }
144
145 static inline void enable_gif(struct vcpu_svm *svm)
146 {
147         svm->vcpu.arch.hflags |= HF_GIF_MASK;
148 }
149
150 static inline void disable_gif(struct vcpu_svm *svm)
151 {
152         svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
153 }
154
155 static inline bool gif_set(struct vcpu_svm *svm)
156 {
157         return !!(svm->vcpu.arch.hflags & HF_GIF_MASK);
158 }
159
160 static unsigned long iopm_base;
161
162 struct kvm_ldttss_desc {
163         u16 limit0;
164         u16 base0;
165         unsigned base1 : 8, type : 5, dpl : 2, p : 1;
166         unsigned limit1 : 4, zero0 : 3, g : 1, base2 : 8;
167         u32 base3;
168         u32 zero1;
169 } __attribute__((packed));
170
171 struct svm_cpu_data {
172         int cpu;
173
174         u64 asid_generation;
175         u32 max_asid;
176         u32 next_asid;
177         struct kvm_ldttss_desc *tss_desc;
178
179         struct page *save_area;
180 };
181
182 static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
183 static uint32_t svm_features;
184
185 struct svm_init_data {
186         int cpu;
187         int r;
188 };
189
190 static u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
191
192 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
193 #define MSRS_RANGE_SIZE 2048
194 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
195
196 #define MAX_INST_SIZE 15
197
198 static inline u32 svm_has(u32 feat)
199 {
200         return svm_features & feat;
201 }
202
203 static inline void clgi(void)
204 {
205         asm volatile (__ex(SVM_CLGI));
206 }
207
208 static inline void stgi(void)
209 {
210         asm volatile (__ex(SVM_STGI));
211 }
212
213 static inline void invlpga(unsigned long addr, u32 asid)
214 {
215         asm volatile (__ex(SVM_INVLPGA) :: "a"(addr), "c"(asid));
216 }
217
218 static inline void force_new_asid(struct kvm_vcpu *vcpu)
219 {
220         to_svm(vcpu)->asid_generation--;
221 }
222
223 static inline void flush_guest_tlb(struct kvm_vcpu *vcpu)
224 {
225         force_new_asid(vcpu);
226 }
227
228 static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
229 {
230         if (!npt_enabled && !(efer & EFER_LMA))
231                 efer &= ~EFER_LME;
232
233         to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME;
234         vcpu->arch.shadow_efer = efer;
235 }
236
237 static void svm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
238                                 bool has_error_code, u32 error_code)
239 {
240         struct vcpu_svm *svm = to_svm(vcpu);
241
242         /* If we are within a nested VM we'd better #VMEXIT and let the
243            guest handle the exception */
244         if (nested_svm_check_exception(svm, nr, has_error_code, error_code))
245                 return;
246
247         svm->vmcb->control.event_inj = nr
248                 | SVM_EVTINJ_VALID
249                 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
250                 | SVM_EVTINJ_TYPE_EXEPT;
251         svm->vmcb->control.event_inj_err = error_code;
252 }
253
254 static int is_external_interrupt(u32 info)
255 {
256         info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
257         return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
258 }
259
260 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
261 {
262         struct vcpu_svm *svm = to_svm(vcpu);
263         u32 ret = 0;
264
265         if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
266                 ret |= X86_SHADOW_INT_STI | X86_SHADOW_INT_MOV_SS;
267         return ret & mask;
268 }
269
270 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
271 {
272         struct vcpu_svm *svm = to_svm(vcpu);
273
274         if (mask == 0)
275                 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
276         else
277                 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
278
279 }
280
281 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
282 {
283         struct vcpu_svm *svm = to_svm(vcpu);
284
285         if (!svm->next_rip) {
286                 if (emulate_instruction(vcpu, 0, 0, EMULTYPE_SKIP) !=
287                                 EMULATE_DONE)
288                         printk(KERN_DEBUG "%s: NOP\n", __func__);
289                 return;
290         }
291         if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
292                 printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n",
293                        __func__, kvm_rip_read(vcpu), svm->next_rip);
294
295         kvm_rip_write(vcpu, svm->next_rip);
296         svm_set_interrupt_shadow(vcpu, 0);
297 }
298
299 static int has_svm(void)
300 {
301         const char *msg;
302
303         if (!cpu_has_svm(&msg)) {
304                 printk(KERN_INFO "has_svm: %s\n", msg);
305                 return 0;
306         }
307
308         return 1;
309 }
310
311 static void svm_hardware_disable(void *garbage)
312 {
313         cpu_svm_disable();
314 }
315
316 static int svm_hardware_enable(void *garbage)
317 {
318
319         struct svm_cpu_data *svm_data;
320         uint64_t efer;
321         struct descriptor_table gdt_descr;
322         struct desc_struct *gdt;
323         int me = raw_smp_processor_id();
324
325         rdmsrl(MSR_EFER, efer);
326         if (efer & EFER_SVME)
327                 return -EBUSY;
328
329         if (!has_svm()) {
330                 printk(KERN_ERR "svm_hardware_enable: err EOPNOTSUPP on %d\n",
331                        me);
332                 return -EINVAL;
333         }
334         svm_data = per_cpu(svm_data, me);
335
336         if (!svm_data) {
337                 printk(KERN_ERR "svm_hardware_enable: svm_data is NULL on %d\n",
338                        me);
339                 return -EINVAL;
340         }
341
342         svm_data->asid_generation = 1;
343         svm_data->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
344         svm_data->next_asid = svm_data->max_asid + 1;
345
346         kvm_get_gdt(&gdt_descr);
347         gdt = (struct desc_struct *)gdt_descr.base;
348         svm_data->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
349
350         wrmsrl(MSR_EFER, efer | EFER_SVME);
351
352         wrmsrl(MSR_VM_HSAVE_PA,
353                page_to_pfn(svm_data->save_area) << PAGE_SHIFT);
354
355         return 0;
356 }
357
358 static void svm_cpu_uninit(int cpu)
359 {
360         struct svm_cpu_data *svm_data
361                 = per_cpu(svm_data, raw_smp_processor_id());
362
363         if (!svm_data)
364                 return;
365
366         per_cpu(svm_data, raw_smp_processor_id()) = NULL;
367         __free_page(svm_data->save_area);
368         kfree(svm_data);
369 }
370
371 static int svm_cpu_init(int cpu)
372 {
373         struct svm_cpu_data *svm_data;
374         int r;
375
376         svm_data = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
377         if (!svm_data)
378                 return -ENOMEM;
379         svm_data->cpu = cpu;
380         svm_data->save_area = alloc_page(GFP_KERNEL);
381         r = -ENOMEM;
382         if (!svm_data->save_area)
383                 goto err_1;
384
385         per_cpu(svm_data, cpu) = svm_data;
386
387         return 0;
388
389 err_1:
390         kfree(svm_data);
391         return r;
392
393 }
394
395 static void set_msr_interception(u32 *msrpm, unsigned msr,
396                                  int read, int write)
397 {
398         int i;
399
400         for (i = 0; i < NUM_MSR_MAPS; i++) {
401                 if (msr >= msrpm_ranges[i] &&
402                     msr < msrpm_ranges[i] + MSRS_IN_RANGE) {
403                         u32 msr_offset = (i * MSRS_IN_RANGE + msr -
404                                           msrpm_ranges[i]) * 2;
405
406                         u32 *base = msrpm + (msr_offset / 32);
407                         u32 msr_shift = msr_offset % 32;
408                         u32 mask = ((write) ? 0 : 2) | ((read) ? 0 : 1);
409                         *base = (*base & ~(0x3 << msr_shift)) |
410                                 (mask << msr_shift);
411                         return;
412                 }
413         }
414         BUG();
415 }
416
417 static void svm_vcpu_init_msrpm(u32 *msrpm)
418 {
419         memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
420
421 #ifdef CONFIG_X86_64
422         set_msr_interception(msrpm, MSR_GS_BASE, 1, 1);
423         set_msr_interception(msrpm, MSR_FS_BASE, 1, 1);
424         set_msr_interception(msrpm, MSR_KERNEL_GS_BASE, 1, 1);
425         set_msr_interception(msrpm, MSR_LSTAR, 1, 1);
426         set_msr_interception(msrpm, MSR_CSTAR, 1, 1);
427         set_msr_interception(msrpm, MSR_SYSCALL_MASK, 1, 1);
428 #endif
429         set_msr_interception(msrpm, MSR_K6_STAR, 1, 1);
430         set_msr_interception(msrpm, MSR_IA32_SYSENTER_CS, 1, 1);
431 }
432
433 static void svm_enable_lbrv(struct vcpu_svm *svm)
434 {
435         u32 *msrpm = svm->msrpm;
436
437         svm->vmcb->control.lbr_ctl = 1;
438         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
439         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
440         set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
441         set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
442 }
443
444 static void svm_disable_lbrv(struct vcpu_svm *svm)
445 {
446         u32 *msrpm = svm->msrpm;
447
448         svm->vmcb->control.lbr_ctl = 0;
449         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
450         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
451         set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
452         set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
453 }
454
455 static __init int svm_hardware_setup(void)
456 {
457         int cpu;
458         struct page *iopm_pages;
459         void *iopm_va;
460         int r;
461
462         iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
463
464         if (!iopm_pages)
465                 return -ENOMEM;
466
467         iopm_va = page_address(iopm_pages);
468         memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
469         iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
470
471         if (boot_cpu_has(X86_FEATURE_NX))
472                 kvm_enable_efer_bits(EFER_NX);
473
474         if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
475                 kvm_enable_efer_bits(EFER_FFXSR);
476
477         if (nested) {
478                 printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
479                 kvm_enable_efer_bits(EFER_SVME);
480         }
481
482         for_each_possible_cpu(cpu) {
483                 r = svm_cpu_init(cpu);
484                 if (r)
485                         goto err;
486         }
487
488         svm_features = cpuid_edx(SVM_CPUID_FUNC);
489
490         if (!svm_has(SVM_FEATURE_NPT))
491                 npt_enabled = false;
492
493         if (npt_enabled && !npt) {
494                 printk(KERN_INFO "kvm: Nested Paging disabled\n");
495                 npt_enabled = false;
496         }
497
498         if (npt_enabled) {
499                 printk(KERN_INFO "kvm: Nested Paging enabled\n");
500                 kvm_enable_tdp();
501         } else
502                 kvm_disable_tdp();
503
504         return 0;
505
506 err:
507         __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
508         iopm_base = 0;
509         return r;
510 }
511
512 static __exit void svm_hardware_unsetup(void)
513 {
514         int cpu;
515
516         for_each_possible_cpu(cpu)
517                 svm_cpu_uninit(cpu);
518
519         __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
520         iopm_base = 0;
521 }
522
523 static void init_seg(struct vmcb_seg *seg)
524 {
525         seg->selector = 0;
526         seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
527                 SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
528         seg->limit = 0xffff;
529         seg->base = 0;
530 }
531
532 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
533 {
534         seg->selector = 0;
535         seg->attrib = SVM_SELECTOR_P_MASK | type;
536         seg->limit = 0xffff;
537         seg->base = 0;
538 }
539
540 static void init_vmcb(struct vcpu_svm *svm)
541 {
542         struct vmcb_control_area *control = &svm->vmcb->control;
543         struct vmcb_save_area *save = &svm->vmcb->save;
544
545         control->intercept_cr_read =    INTERCEPT_CR0_MASK |
546                                         INTERCEPT_CR3_MASK |
547                                         INTERCEPT_CR4_MASK;
548
549         control->intercept_cr_write =   INTERCEPT_CR0_MASK |
550                                         INTERCEPT_CR3_MASK |
551                                         INTERCEPT_CR4_MASK |
552                                         INTERCEPT_CR8_MASK;
553
554         control->intercept_dr_read =    INTERCEPT_DR0_MASK |
555                                         INTERCEPT_DR1_MASK |
556                                         INTERCEPT_DR2_MASK |
557                                         INTERCEPT_DR3_MASK;
558
559         control->intercept_dr_write =   INTERCEPT_DR0_MASK |
560                                         INTERCEPT_DR1_MASK |
561                                         INTERCEPT_DR2_MASK |
562                                         INTERCEPT_DR3_MASK |
563                                         INTERCEPT_DR5_MASK |
564                                         INTERCEPT_DR7_MASK;
565
566         control->intercept_exceptions = (1 << PF_VECTOR) |
567                                         (1 << UD_VECTOR) |
568                                         (1 << MC_VECTOR);
569
570
571         control->intercept =    (1ULL << INTERCEPT_INTR) |
572                                 (1ULL << INTERCEPT_NMI) |
573                                 (1ULL << INTERCEPT_SMI) |
574                                 (1ULL << INTERCEPT_CPUID) |
575                                 (1ULL << INTERCEPT_INVD) |
576                                 (1ULL << INTERCEPT_HLT) |
577                                 (1ULL << INTERCEPT_INVLPG) |
578                                 (1ULL << INTERCEPT_INVLPGA) |
579                                 (1ULL << INTERCEPT_IOIO_PROT) |
580                                 (1ULL << INTERCEPT_MSR_PROT) |
581                                 (1ULL << INTERCEPT_TASK_SWITCH) |
582                                 (1ULL << INTERCEPT_SHUTDOWN) |
583                                 (1ULL << INTERCEPT_VMRUN) |
584                                 (1ULL << INTERCEPT_VMMCALL) |
585                                 (1ULL << INTERCEPT_VMLOAD) |
586                                 (1ULL << INTERCEPT_VMSAVE) |
587                                 (1ULL << INTERCEPT_STGI) |
588                                 (1ULL << INTERCEPT_CLGI) |
589                                 (1ULL << INTERCEPT_SKINIT) |
590                                 (1ULL << INTERCEPT_WBINVD) |
591                                 (1ULL << INTERCEPT_MONITOR) |
592                                 (1ULL << INTERCEPT_MWAIT);
593
594         control->iopm_base_pa = iopm_base;
595         control->msrpm_base_pa = __pa(svm->msrpm);
596         control->tsc_offset = 0;
597         control->int_ctl = V_INTR_MASKING_MASK;
598
599         init_seg(&save->es);
600         init_seg(&save->ss);
601         init_seg(&save->ds);
602         init_seg(&save->fs);
603         init_seg(&save->gs);
604
605         save->cs.selector = 0xf000;
606         /* Executable/Readable Code Segment */
607         save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
608                 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
609         save->cs.limit = 0xffff;
610         /*
611          * cs.base should really be 0xffff0000, but vmx can't handle that, so
612          * be consistent with it.
613          *
614          * Replace when we have real mode working for vmx.
615          */
616         save->cs.base = 0xf0000;
617
618         save->gdtr.limit = 0xffff;
619         save->idtr.limit = 0xffff;
620
621         init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
622         init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
623
624         save->efer = EFER_SVME;
625         save->dr6 = 0xffff0ff0;
626         save->dr7 = 0x400;
627         save->rflags = 2;
628         save->rip = 0x0000fff0;
629         svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
630
631         /*
632          * cr0 val on cpu init should be 0x60000010, we enable cpu
633          * cache by default. the orderly way is to enable cache in bios.
634          */
635         save->cr0 = 0x00000010 | X86_CR0_PG | X86_CR0_WP;
636         save->cr4 = X86_CR4_PAE;
637         /* rdx = ?? */
638
639         if (npt_enabled) {
640                 /* Setup VMCB for Nested Paging */
641                 control->nested_ctl = 1;
642                 control->intercept &= ~((1ULL << INTERCEPT_TASK_SWITCH) |
643                                         (1ULL << INTERCEPT_INVLPG));
644                 control->intercept_exceptions &= ~(1 << PF_VECTOR);
645                 control->intercept_cr_read &= ~(INTERCEPT_CR0_MASK|
646                                                 INTERCEPT_CR3_MASK);
647                 control->intercept_cr_write &= ~(INTERCEPT_CR0_MASK|
648                                                  INTERCEPT_CR3_MASK);
649                 save->g_pat = 0x0007040600070406ULL;
650                 /* enable caching because the QEMU Bios doesn't enable it */
651                 save->cr0 = X86_CR0_ET;
652                 save->cr3 = 0;
653                 save->cr4 = 0;
654         }
655         force_new_asid(&svm->vcpu);
656
657         svm->nested.vmcb = 0;
658         svm->vcpu.arch.hflags = 0;
659
660         if (svm_has(SVM_FEATURE_PAUSE_FILTER)) {
661                 control->pause_filter_count = 3000;
662                 control->intercept |= (1ULL << INTERCEPT_PAUSE);
663         }
664
665         enable_gif(svm);
666 }
667
668 static int svm_vcpu_reset(struct kvm_vcpu *vcpu)
669 {
670         struct vcpu_svm *svm = to_svm(vcpu);
671
672         init_vmcb(svm);
673
674         if (!kvm_vcpu_is_bsp(vcpu)) {
675                 kvm_rip_write(vcpu, 0);
676                 svm->vmcb->save.cs.base = svm->vcpu.arch.sipi_vector << 12;
677                 svm->vmcb->save.cs.selector = svm->vcpu.arch.sipi_vector << 8;
678         }
679         vcpu->arch.regs_avail = ~0;
680         vcpu->arch.regs_dirty = ~0;
681
682         return 0;
683 }
684
685 static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
686 {
687         struct vcpu_svm *svm;
688         struct page *page;
689         struct page *msrpm_pages;
690         struct page *hsave_page;
691         struct page *nested_msrpm_pages;
692         int err;
693
694         svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
695         if (!svm) {
696                 err = -ENOMEM;
697                 goto out;
698         }
699
700         err = kvm_vcpu_init(&svm->vcpu, kvm, id);
701         if (err)
702                 goto free_svm;
703
704         page = alloc_page(GFP_KERNEL);
705         if (!page) {
706                 err = -ENOMEM;
707                 goto uninit;
708         }
709
710         err = -ENOMEM;
711         msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
712         if (!msrpm_pages)
713                 goto uninit;
714
715         nested_msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
716         if (!nested_msrpm_pages)
717                 goto uninit;
718
719         svm->msrpm = page_address(msrpm_pages);
720         svm_vcpu_init_msrpm(svm->msrpm);
721
722         hsave_page = alloc_page(GFP_KERNEL);
723         if (!hsave_page)
724                 goto uninit;
725         svm->nested.hsave = page_address(hsave_page);
726
727         svm->nested.msrpm = page_address(nested_msrpm_pages);
728
729         svm->vmcb = page_address(page);
730         clear_page(svm->vmcb);
731         svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
732         svm->asid_generation = 0;
733         init_vmcb(svm);
734
735         fx_init(&svm->vcpu);
736         svm->vcpu.fpu_active = 1;
737         svm->vcpu.arch.apic_base = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
738         if (kvm_vcpu_is_bsp(&svm->vcpu))
739                 svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
740
741         return &svm->vcpu;
742
743 uninit:
744         kvm_vcpu_uninit(&svm->vcpu);
745 free_svm:
746         kmem_cache_free(kvm_vcpu_cache, svm);
747 out:
748         return ERR_PTR(err);
749 }
750
751 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
752 {
753         struct vcpu_svm *svm = to_svm(vcpu);
754
755         __free_page(pfn_to_page(svm->vmcb_pa >> PAGE_SHIFT));
756         __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
757         __free_page(virt_to_page(svm->nested.hsave));
758         __free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
759         kvm_vcpu_uninit(vcpu);
760         kmem_cache_free(kvm_vcpu_cache, svm);
761 }
762
763 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
764 {
765         struct vcpu_svm *svm = to_svm(vcpu);
766         int i;
767
768         if (unlikely(cpu != vcpu->cpu)) {
769                 u64 delta;
770
771                 /*
772                  * Make sure that the guest sees a monotonically
773                  * increasing TSC.
774                  */
775                 delta = vcpu->arch.host_tsc - native_read_tsc();
776                 svm->vmcb->control.tsc_offset += delta;
777                 if (is_nested(svm))
778                         svm->nested.hsave->control.tsc_offset += delta;
779                 vcpu->cpu = cpu;
780                 kvm_migrate_timers(vcpu);
781                 svm->asid_generation = 0;
782         }
783
784         for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
785                 rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
786 }
787
788 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
789 {
790         struct vcpu_svm *svm = to_svm(vcpu);
791         int i;
792
793         ++vcpu->stat.host_state_reload;
794         for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
795                 wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
796
797         vcpu->arch.host_tsc = native_read_tsc();
798 }
799
800 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
801 {
802         return to_svm(vcpu)->vmcb->save.rflags;
803 }
804
805 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
806 {
807         to_svm(vcpu)->vmcb->save.rflags = rflags;
808 }
809
810 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
811 {
812         switch (reg) {
813         case VCPU_EXREG_PDPTR:
814                 BUG_ON(!npt_enabled);
815                 load_pdptrs(vcpu, vcpu->arch.cr3);
816                 break;
817         default:
818                 BUG();
819         }
820 }
821
822 static void svm_set_vintr(struct vcpu_svm *svm)
823 {
824         svm->vmcb->control.intercept |= 1ULL << INTERCEPT_VINTR;
825 }
826
827 static void svm_clear_vintr(struct vcpu_svm *svm)
828 {
829         svm->vmcb->control.intercept &= ~(1ULL << INTERCEPT_VINTR);
830 }
831
832 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
833 {
834         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
835
836         switch (seg) {
837         case VCPU_SREG_CS: return &save->cs;
838         case VCPU_SREG_DS: return &save->ds;
839         case VCPU_SREG_ES: return &save->es;
840         case VCPU_SREG_FS: return &save->fs;
841         case VCPU_SREG_GS: return &save->gs;
842         case VCPU_SREG_SS: return &save->ss;
843         case VCPU_SREG_TR: return &save->tr;
844         case VCPU_SREG_LDTR: return &save->ldtr;
845         }
846         BUG();
847         return NULL;
848 }
849
850 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
851 {
852         struct vmcb_seg *s = svm_seg(vcpu, seg);
853
854         return s->base;
855 }
856
857 static void svm_get_segment(struct kvm_vcpu *vcpu,
858                             struct kvm_segment *var, int seg)
859 {
860         struct vmcb_seg *s = svm_seg(vcpu, seg);
861
862         var->base = s->base;
863         var->limit = s->limit;
864         var->selector = s->selector;
865         var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
866         var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
867         var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
868         var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
869         var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
870         var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
871         var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
872         var->g = (s->attrib >> SVM_SELECTOR_G_SHIFT) & 1;
873
874         /* AMD's VMCB does not have an explicit unusable field, so emulate it
875          * for cross vendor migration purposes by "not present"
876          */
877         var->unusable = !var->present || (var->type == 0);
878
879         switch (seg) {
880         case VCPU_SREG_CS:
881                 /*
882                  * SVM always stores 0 for the 'G' bit in the CS selector in
883                  * the VMCB on a VMEXIT. This hurts cross-vendor migration:
884                  * Intel's VMENTRY has a check on the 'G' bit.
885                  */
886                 var->g = s->limit > 0xfffff;
887                 break;
888         case VCPU_SREG_TR:
889                 /*
890                  * Work around a bug where the busy flag in the tr selector
891                  * isn't exposed
892                  */
893                 var->type |= 0x2;
894                 break;
895         case VCPU_SREG_DS:
896         case VCPU_SREG_ES:
897         case VCPU_SREG_FS:
898         case VCPU_SREG_GS:
899                 /*
900                  * The accessed bit must always be set in the segment
901                  * descriptor cache, although it can be cleared in the
902                  * descriptor, the cached bit always remains at 1. Since
903                  * Intel has a check on this, set it here to support
904                  * cross-vendor migration.
905                  */
906                 if (!var->unusable)
907                         var->type |= 0x1;
908                 break;
909         case VCPU_SREG_SS:
910                 /* On AMD CPUs sometimes the DB bit in the segment
911                  * descriptor is left as 1, although the whole segment has
912                  * been made unusable. Clear it here to pass an Intel VMX
913                  * entry check when cross vendor migrating.
914                  */
915                 if (var->unusable)
916                         var->db = 0;
917                 break;
918         }
919 }
920
921 static int svm_get_cpl(struct kvm_vcpu *vcpu)
922 {
923         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
924
925         return save->cpl;
926 }
927
928 static void svm_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
929 {
930         struct vcpu_svm *svm = to_svm(vcpu);
931
932         dt->limit = svm->vmcb->save.idtr.limit;
933         dt->base = svm->vmcb->save.idtr.base;
934 }
935
936 static void svm_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
937 {
938         struct vcpu_svm *svm = to_svm(vcpu);
939
940         svm->vmcb->save.idtr.limit = dt->limit;
941         svm->vmcb->save.idtr.base = dt->base ;
942 }
943
944 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
945 {
946         struct vcpu_svm *svm = to_svm(vcpu);
947
948         dt->limit = svm->vmcb->save.gdtr.limit;
949         dt->base = svm->vmcb->save.gdtr.base;
950 }
951
952 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
953 {
954         struct vcpu_svm *svm = to_svm(vcpu);
955
956         svm->vmcb->save.gdtr.limit = dt->limit;
957         svm->vmcb->save.gdtr.base = dt->base ;
958 }
959
960 static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
961 {
962 }
963
964 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
965 {
966         struct vcpu_svm *svm = to_svm(vcpu);
967
968 #ifdef CONFIG_X86_64
969         if (vcpu->arch.shadow_efer & EFER_LME) {
970                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
971                         vcpu->arch.shadow_efer |= EFER_LMA;
972                         svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
973                 }
974
975                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
976                         vcpu->arch.shadow_efer &= ~EFER_LMA;
977                         svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
978                 }
979         }
980 #endif
981         if (npt_enabled)
982                 goto set;
983
984         if ((vcpu->arch.cr0 & X86_CR0_TS) && !(cr0 & X86_CR0_TS)) {
985                 svm->vmcb->control.intercept_exceptions &= ~(1 << NM_VECTOR);
986                 vcpu->fpu_active = 1;
987         }
988
989         vcpu->arch.cr0 = cr0;
990         cr0 |= X86_CR0_PG | X86_CR0_WP;
991         if (!vcpu->fpu_active) {
992                 svm->vmcb->control.intercept_exceptions |= (1 << NM_VECTOR);
993                 cr0 |= X86_CR0_TS;
994         }
995 set:
996         /*
997          * re-enable caching here because the QEMU bios
998          * does not do it - this results in some delay at
999          * reboot
1000          */
1001         cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1002         svm->vmcb->save.cr0 = cr0;
1003 }
1004
1005 static void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1006 {
1007         unsigned long host_cr4_mce = read_cr4() & X86_CR4_MCE;
1008         unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
1009
1010         if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
1011                 force_new_asid(vcpu);
1012
1013         vcpu->arch.cr4 = cr4;
1014         if (!npt_enabled)
1015                 cr4 |= X86_CR4_PAE;
1016         cr4 |= host_cr4_mce;
1017         to_svm(vcpu)->vmcb->save.cr4 = cr4;
1018 }
1019
1020 static void svm_set_segment(struct kvm_vcpu *vcpu,
1021                             struct kvm_segment *var, int seg)
1022 {
1023         struct vcpu_svm *svm = to_svm(vcpu);
1024         struct vmcb_seg *s = svm_seg(vcpu, seg);
1025
1026         s->base = var->base;
1027         s->limit = var->limit;
1028         s->selector = var->selector;
1029         if (var->unusable)
1030                 s->attrib = 0;
1031         else {
1032                 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1033                 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1034                 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1035                 s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT;
1036                 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1037                 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1038                 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1039                 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1040         }
1041         if (seg == VCPU_SREG_CS)
1042                 svm->vmcb->save.cpl
1043                         = (svm->vmcb->save.cs.attrib
1044                            >> SVM_SELECTOR_DPL_SHIFT) & 3;
1045
1046 }
1047
1048 static void update_db_intercept(struct kvm_vcpu *vcpu)
1049 {
1050         struct vcpu_svm *svm = to_svm(vcpu);
1051
1052         svm->vmcb->control.intercept_exceptions &=
1053                 ~((1 << DB_VECTOR) | (1 << BP_VECTOR));
1054
1055         if (svm->nmi_singlestep)
1056                 svm->vmcb->control.intercept_exceptions |= (1 << DB_VECTOR);
1057
1058         if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
1059                 if (vcpu->guest_debug &
1060                     (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
1061                         svm->vmcb->control.intercept_exceptions |=
1062                                 1 << DB_VECTOR;
1063                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
1064                         svm->vmcb->control.intercept_exceptions |=
1065                                 1 << BP_VECTOR;
1066         } else
1067                 vcpu->guest_debug = 0;
1068 }
1069
1070 static void svm_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
1071 {
1072         struct vcpu_svm *svm = to_svm(vcpu);
1073
1074         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1075                 svm->vmcb->save.dr7 = dbg->arch.debugreg[7];
1076         else
1077                 svm->vmcb->save.dr7 = vcpu->arch.dr7;
1078
1079         update_db_intercept(vcpu);
1080 }
1081
1082 static void load_host_msrs(struct kvm_vcpu *vcpu)
1083 {
1084 #ifdef CONFIG_X86_64
1085         wrmsrl(MSR_GS_BASE, to_svm(vcpu)->host_gs_base);
1086 #endif
1087 }
1088
1089 static void save_host_msrs(struct kvm_vcpu *vcpu)
1090 {
1091 #ifdef CONFIG_X86_64
1092         rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host_gs_base);
1093 #endif
1094 }
1095
1096 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *svm_data)
1097 {
1098         if (svm_data->next_asid > svm_data->max_asid) {
1099                 ++svm_data->asid_generation;
1100                 svm_data->next_asid = 1;
1101                 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
1102         }
1103
1104         svm->asid_generation = svm_data->asid_generation;
1105         svm->vmcb->control.asid = svm_data->next_asid++;
1106 }
1107
1108 static unsigned long svm_get_dr(struct kvm_vcpu *vcpu, int dr)
1109 {
1110         struct vcpu_svm *svm = to_svm(vcpu);
1111         unsigned long val;
1112
1113         switch (dr) {
1114         case 0 ... 3:
1115                 val = vcpu->arch.db[dr];
1116                 break;
1117         case 6:
1118                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1119                         val = vcpu->arch.dr6;
1120                 else
1121                         val = svm->vmcb->save.dr6;
1122                 break;
1123         case 7:
1124                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1125                         val = vcpu->arch.dr7;
1126                 else
1127                         val = svm->vmcb->save.dr7;
1128                 break;
1129         default:
1130                 val = 0;
1131         }
1132
1133         return val;
1134 }
1135
1136 static void svm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long value,
1137                        int *exception)
1138 {
1139         struct vcpu_svm *svm = to_svm(vcpu);
1140
1141         *exception = 0;
1142
1143         switch (dr) {
1144         case 0 ... 3:
1145                 vcpu->arch.db[dr] = value;
1146                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1147                         vcpu->arch.eff_db[dr] = value;
1148                 return;
1149         case 4 ... 5:
1150                 if (vcpu->arch.cr4 & X86_CR4_DE)
1151                         *exception = UD_VECTOR;
1152                 return;
1153         case 6:
1154                 if (value & 0xffffffff00000000ULL) {
1155                         *exception = GP_VECTOR;
1156                         return;
1157                 }
1158                 vcpu->arch.dr6 = (value & DR6_VOLATILE) | DR6_FIXED_1;
1159                 return;
1160         case 7:
1161                 if (value & 0xffffffff00000000ULL) {
1162                         *exception = GP_VECTOR;
1163                         return;
1164                 }
1165                 vcpu->arch.dr7 = (value & DR7_VOLATILE) | DR7_FIXED_1;
1166                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1167                         svm->vmcb->save.dr7 = vcpu->arch.dr7;
1168                         vcpu->arch.switch_db_regs = (value & DR7_BP_EN_MASK);
1169                 }
1170                 return;
1171         default:
1172                 /* FIXME: Possible case? */
1173                 printk(KERN_DEBUG "%s: unexpected dr %u\n",
1174                        __func__, dr);
1175                 *exception = UD_VECTOR;
1176                 return;
1177         }
1178 }
1179
1180 static int pf_interception(struct vcpu_svm *svm)
1181 {
1182         u64 fault_address;
1183         u32 error_code;
1184
1185         fault_address  = svm->vmcb->control.exit_info_2;
1186         error_code = svm->vmcb->control.exit_info_1;
1187
1188         trace_kvm_page_fault(fault_address, error_code);
1189         if (!npt_enabled && kvm_event_needs_reinjection(&svm->vcpu))
1190                 kvm_mmu_unprotect_page_virt(&svm->vcpu, fault_address);
1191         return kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code);
1192 }
1193
1194 static int db_interception(struct vcpu_svm *svm)
1195 {
1196         struct kvm_run *kvm_run = svm->vcpu.run;
1197
1198         if (!(svm->vcpu.guest_debug &
1199               (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
1200                 !svm->nmi_singlestep) {
1201                 kvm_queue_exception(&svm->vcpu, DB_VECTOR);
1202                 return 1;
1203         }
1204
1205         if (svm->nmi_singlestep) {
1206                 svm->nmi_singlestep = false;
1207                 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP))
1208                         svm->vmcb->save.rflags &=
1209                                 ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
1210                 update_db_intercept(&svm->vcpu);
1211         }
1212
1213         if (svm->vcpu.guest_debug &
1214             (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)){
1215                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1216                 kvm_run->debug.arch.pc =
1217                         svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1218                 kvm_run->debug.arch.exception = DB_VECTOR;
1219                 return 0;
1220         }
1221
1222         return 1;
1223 }
1224
1225 static int bp_interception(struct vcpu_svm *svm)
1226 {
1227         struct kvm_run *kvm_run = svm->vcpu.run;
1228
1229         kvm_run->exit_reason = KVM_EXIT_DEBUG;
1230         kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1231         kvm_run->debug.arch.exception = BP_VECTOR;
1232         return 0;
1233 }
1234
1235 static int ud_interception(struct vcpu_svm *svm)
1236 {
1237         int er;
1238
1239         er = emulate_instruction(&svm->vcpu, 0, 0, EMULTYPE_TRAP_UD);
1240         if (er != EMULATE_DONE)
1241                 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1242         return 1;
1243 }
1244
1245 static int nm_interception(struct vcpu_svm *svm)
1246 {
1247         svm->vmcb->control.intercept_exceptions &= ~(1 << NM_VECTOR);
1248         if (!(svm->vcpu.arch.cr0 & X86_CR0_TS))
1249                 svm->vmcb->save.cr0 &= ~X86_CR0_TS;
1250         svm->vcpu.fpu_active = 1;
1251
1252         return 1;
1253 }
1254
1255 static int mc_interception(struct vcpu_svm *svm)
1256 {
1257         /*
1258          * On an #MC intercept the MCE handler is not called automatically in
1259          * the host. So do it by hand here.
1260          */
1261         asm volatile (
1262                 "int $0x12\n");
1263         /* not sure if we ever come back to this point */
1264
1265         return 1;
1266 }
1267
1268 static int shutdown_interception(struct vcpu_svm *svm)
1269 {
1270         struct kvm_run *kvm_run = svm->vcpu.run;
1271
1272         /*
1273          * VMCB is undefined after a SHUTDOWN intercept
1274          * so reinitialize it.
1275          */
1276         clear_page(svm->vmcb);
1277         init_vmcb(svm);
1278
1279         kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
1280         return 0;
1281 }
1282
1283 static int io_interception(struct vcpu_svm *svm)
1284 {
1285         u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
1286         int size, in, string;
1287         unsigned port;
1288
1289         ++svm->vcpu.stat.io_exits;
1290
1291         svm->next_rip = svm->vmcb->control.exit_info_2;
1292
1293         string = (io_info & SVM_IOIO_STR_MASK) != 0;
1294
1295         if (string) {
1296                 if (emulate_instruction(&svm->vcpu,
1297                                         0, 0, 0) == EMULATE_DO_MMIO)
1298                         return 0;
1299                 return 1;
1300         }
1301
1302         in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
1303         port = io_info >> 16;
1304         size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
1305
1306         skip_emulated_instruction(&svm->vcpu);
1307         return kvm_emulate_pio(&svm->vcpu, in, size, port);
1308 }
1309
1310 static int nmi_interception(struct vcpu_svm *svm)
1311 {
1312         return 1;
1313 }
1314
1315 static int intr_interception(struct vcpu_svm *svm)
1316 {
1317         ++svm->vcpu.stat.irq_exits;
1318         return 1;
1319 }
1320
1321 static int nop_on_interception(struct vcpu_svm *svm)
1322 {
1323         return 1;
1324 }
1325
1326 static int halt_interception(struct vcpu_svm *svm)
1327 {
1328         svm->next_rip = kvm_rip_read(&svm->vcpu) + 1;
1329         skip_emulated_instruction(&svm->vcpu);
1330         return kvm_emulate_halt(&svm->vcpu);
1331 }
1332
1333 static int vmmcall_interception(struct vcpu_svm *svm)
1334 {
1335         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1336         skip_emulated_instruction(&svm->vcpu);
1337         kvm_emulate_hypercall(&svm->vcpu);
1338         return 1;
1339 }
1340
1341 static int nested_svm_check_permissions(struct vcpu_svm *svm)
1342 {
1343         if (!(svm->vcpu.arch.shadow_efer & EFER_SVME)
1344             || !is_paging(&svm->vcpu)) {
1345                 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1346                 return 1;
1347         }
1348
1349         if (svm->vmcb->save.cpl) {
1350                 kvm_inject_gp(&svm->vcpu, 0);
1351                 return 1;
1352         }
1353
1354        return 0;
1355 }
1356
1357 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
1358                                       bool has_error_code, u32 error_code)
1359 {
1360         if (!is_nested(svm))
1361                 return 0;
1362
1363         svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
1364         svm->vmcb->control.exit_code_hi = 0;
1365         svm->vmcb->control.exit_info_1 = error_code;
1366         svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
1367
1368         return nested_svm_exit_handled(svm);
1369 }
1370
1371 static inline int nested_svm_intr(struct vcpu_svm *svm)
1372 {
1373         if (!is_nested(svm))
1374                 return 0;
1375
1376         if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
1377                 return 0;
1378
1379         if (!(svm->vcpu.arch.hflags & HF_HIF_MASK))
1380                 return 0;
1381
1382         svm->vmcb->control.exit_code = SVM_EXIT_INTR;
1383
1384         if (svm->nested.intercept & 1ULL) {
1385                 /*
1386                  * The #vmexit can't be emulated here directly because this
1387                  * code path runs with irqs and preemtion disabled. A
1388                  * #vmexit emulation might sleep. Only signal request for
1389                  * the #vmexit here.
1390                  */
1391                 svm->nested.exit_required = true;
1392                 trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip);
1393                 return 1;
1394         }
1395
1396         return 0;
1397 }
1398
1399 static void *nested_svm_map(struct vcpu_svm *svm, u64 gpa, enum km_type idx)
1400 {
1401         struct page *page;
1402
1403         page = gfn_to_page(svm->vcpu.kvm, gpa >> PAGE_SHIFT);
1404         if (is_error_page(page))
1405                 goto error;
1406
1407         return kmap_atomic(page, idx);
1408
1409 error:
1410         kvm_release_page_clean(page);
1411         kvm_inject_gp(&svm->vcpu, 0);
1412
1413         return NULL;
1414 }
1415
1416 static void nested_svm_unmap(void *addr, enum km_type idx)
1417 {
1418         struct page *page;
1419
1420         if (!addr)
1421                 return;
1422
1423         page = kmap_atomic_to_page(addr);
1424
1425         kunmap_atomic(addr, idx);
1426         kvm_release_page_dirty(page);
1427 }
1428
1429 static bool nested_svm_exit_handled_msr(struct vcpu_svm *svm)
1430 {
1431         u32 param = svm->vmcb->control.exit_info_1 & 1;
1432         u32 msr = svm->vcpu.arch.regs[VCPU_REGS_RCX];
1433         bool ret = false;
1434         u32 t0, t1;
1435         u8 *msrpm;
1436
1437         if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
1438                 return false;
1439
1440         msrpm = nested_svm_map(svm, svm->nested.vmcb_msrpm, KM_USER0);
1441
1442         if (!msrpm)
1443                 goto out;
1444
1445         switch (msr) {
1446         case 0 ... 0x1fff:
1447                 t0 = (msr * 2) % 8;
1448                 t1 = msr / 8;
1449                 break;
1450         case 0xc0000000 ... 0xc0001fff:
1451                 t0 = (8192 + msr - 0xc0000000) * 2;
1452                 t1 = (t0 / 8);
1453                 t0 %= 8;
1454                 break;
1455         case 0xc0010000 ... 0xc0011fff:
1456                 t0 = (16384 + msr - 0xc0010000) * 2;
1457                 t1 = (t0 / 8);
1458                 t0 %= 8;
1459                 break;
1460         default:
1461                 ret = true;
1462                 goto out;
1463         }
1464
1465         ret = msrpm[t1] & ((1 << param) << t0);
1466
1467 out:
1468         nested_svm_unmap(msrpm, KM_USER0);
1469
1470         return ret;
1471 }
1472
1473 static int nested_svm_exit_special(struct vcpu_svm *svm)
1474 {
1475         u32 exit_code = svm->vmcb->control.exit_code;
1476
1477         switch (exit_code) {
1478         case SVM_EXIT_INTR:
1479         case SVM_EXIT_NMI:
1480                 return NESTED_EXIT_HOST;
1481                 /* For now we are always handling NPFs when using them */
1482         case SVM_EXIT_NPF:
1483                 if (npt_enabled)
1484                         return NESTED_EXIT_HOST;
1485                 break;
1486         /* When we're shadowing, trap PFs */
1487         case SVM_EXIT_EXCP_BASE + PF_VECTOR:
1488                 if (!npt_enabled)
1489                         return NESTED_EXIT_HOST;
1490                 break;
1491         default:
1492                 break;
1493         }
1494
1495         return NESTED_EXIT_CONTINUE;
1496 }
1497
1498 /*
1499  * If this function returns true, this #vmexit was already handled
1500  */
1501 static int nested_svm_exit_handled(struct vcpu_svm *svm)
1502 {
1503         u32 exit_code = svm->vmcb->control.exit_code;
1504         int vmexit = NESTED_EXIT_HOST;
1505
1506         switch (exit_code) {
1507         case SVM_EXIT_MSR:
1508                 vmexit = nested_svm_exit_handled_msr(svm);
1509                 break;
1510         case SVM_EXIT_READ_CR0 ... SVM_EXIT_READ_CR8: {
1511                 u32 cr_bits = 1 << (exit_code - SVM_EXIT_READ_CR0);
1512                 if (svm->nested.intercept_cr_read & cr_bits)
1513                         vmexit = NESTED_EXIT_DONE;
1514                 break;
1515         }
1516         case SVM_EXIT_WRITE_CR0 ... SVM_EXIT_WRITE_CR8: {
1517                 u32 cr_bits = 1 << (exit_code - SVM_EXIT_WRITE_CR0);
1518                 if (svm->nested.intercept_cr_write & cr_bits)
1519                         vmexit = NESTED_EXIT_DONE;
1520                 break;
1521         }
1522         case SVM_EXIT_READ_DR0 ... SVM_EXIT_READ_DR7: {
1523                 u32 dr_bits = 1 << (exit_code - SVM_EXIT_READ_DR0);
1524                 if (svm->nested.intercept_dr_read & dr_bits)
1525                         vmexit = NESTED_EXIT_DONE;
1526                 break;
1527         }
1528         case SVM_EXIT_WRITE_DR0 ... SVM_EXIT_WRITE_DR7: {
1529                 u32 dr_bits = 1 << (exit_code - SVM_EXIT_WRITE_DR0);
1530                 if (svm->nested.intercept_dr_write & dr_bits)
1531                         vmexit = NESTED_EXIT_DONE;
1532                 break;
1533         }
1534         case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
1535                 u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
1536                 if (svm->nested.intercept_exceptions & excp_bits)
1537                         vmexit = NESTED_EXIT_DONE;
1538                 break;
1539         }
1540         default: {
1541                 u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR);
1542                 if (svm->nested.intercept & exit_bits)
1543                         vmexit = NESTED_EXIT_DONE;
1544         }
1545         }
1546
1547         if (vmexit == NESTED_EXIT_DONE) {
1548                 nested_svm_vmexit(svm);
1549         }
1550
1551         return vmexit;
1552 }
1553
1554 static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb)
1555 {
1556         struct vmcb_control_area *dst  = &dst_vmcb->control;
1557         struct vmcb_control_area *from = &from_vmcb->control;
1558
1559         dst->intercept_cr_read    = from->intercept_cr_read;
1560         dst->intercept_cr_write   = from->intercept_cr_write;
1561         dst->intercept_dr_read    = from->intercept_dr_read;
1562         dst->intercept_dr_write   = from->intercept_dr_write;
1563         dst->intercept_exceptions = from->intercept_exceptions;
1564         dst->intercept            = from->intercept;
1565         dst->iopm_base_pa         = from->iopm_base_pa;
1566         dst->msrpm_base_pa        = from->msrpm_base_pa;
1567         dst->tsc_offset           = from->tsc_offset;
1568         dst->asid                 = from->asid;
1569         dst->tlb_ctl              = from->tlb_ctl;
1570         dst->int_ctl              = from->int_ctl;
1571         dst->int_vector           = from->int_vector;
1572         dst->int_state            = from->int_state;
1573         dst->exit_code            = from->exit_code;
1574         dst->exit_code_hi         = from->exit_code_hi;
1575         dst->exit_info_1          = from->exit_info_1;
1576         dst->exit_info_2          = from->exit_info_2;
1577         dst->exit_int_info        = from->exit_int_info;
1578         dst->exit_int_info_err    = from->exit_int_info_err;
1579         dst->nested_ctl           = from->nested_ctl;
1580         dst->event_inj            = from->event_inj;
1581         dst->event_inj_err        = from->event_inj_err;
1582         dst->nested_cr3           = from->nested_cr3;
1583         dst->lbr_ctl              = from->lbr_ctl;
1584 }
1585
1586 static int nested_svm_vmexit(struct vcpu_svm *svm)
1587 {
1588         struct vmcb *nested_vmcb;
1589         struct vmcb *hsave = svm->nested.hsave;
1590         struct vmcb *vmcb = svm->vmcb;
1591
1592         trace_kvm_nested_vmexit_inject(vmcb->control.exit_code,
1593                                        vmcb->control.exit_info_1,
1594                                        vmcb->control.exit_info_2,
1595                                        vmcb->control.exit_int_info,
1596                                        vmcb->control.exit_int_info_err);
1597
1598         nested_vmcb = nested_svm_map(svm, svm->nested.vmcb, KM_USER0);
1599         if (!nested_vmcb)
1600                 return 1;
1601
1602         /* Give the current vmcb to the guest */
1603         disable_gif(svm);
1604
1605         nested_vmcb->save.es     = vmcb->save.es;
1606         nested_vmcb->save.cs     = vmcb->save.cs;
1607         nested_vmcb->save.ss     = vmcb->save.ss;
1608         nested_vmcb->save.ds     = vmcb->save.ds;
1609         nested_vmcb->save.gdtr   = vmcb->save.gdtr;
1610         nested_vmcb->save.idtr   = vmcb->save.idtr;
1611         if (npt_enabled)
1612                 nested_vmcb->save.cr3    = vmcb->save.cr3;
1613         nested_vmcb->save.cr2    = vmcb->save.cr2;
1614         nested_vmcb->save.rflags = vmcb->save.rflags;
1615         nested_vmcb->save.rip    = vmcb->save.rip;
1616         nested_vmcb->save.rsp    = vmcb->save.rsp;
1617         nested_vmcb->save.rax    = vmcb->save.rax;
1618         nested_vmcb->save.dr7    = vmcb->save.dr7;
1619         nested_vmcb->save.dr6    = vmcb->save.dr6;
1620         nested_vmcb->save.cpl    = vmcb->save.cpl;
1621
1622         nested_vmcb->control.int_ctl           = vmcb->control.int_ctl;
1623         nested_vmcb->control.int_vector        = vmcb->control.int_vector;
1624         nested_vmcb->control.int_state         = vmcb->control.int_state;
1625         nested_vmcb->control.exit_code         = vmcb->control.exit_code;
1626         nested_vmcb->control.exit_code_hi      = vmcb->control.exit_code_hi;
1627         nested_vmcb->control.exit_info_1       = vmcb->control.exit_info_1;
1628         nested_vmcb->control.exit_info_2       = vmcb->control.exit_info_2;
1629         nested_vmcb->control.exit_int_info     = vmcb->control.exit_int_info;
1630         nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err;
1631
1632         /*
1633          * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
1634          * to make sure that we do not lose injected events. So check event_inj
1635          * here and copy it to exit_int_info if it is valid.
1636          * Exit_int_info and event_inj can't be both valid because the case
1637          * below only happens on a VMRUN instruction intercept which has
1638          * no valid exit_int_info set.
1639          */
1640         if (vmcb->control.event_inj & SVM_EVTINJ_VALID) {
1641                 struct vmcb_control_area *nc = &nested_vmcb->control;
1642
1643                 nc->exit_int_info     = vmcb->control.event_inj;
1644                 nc->exit_int_info_err = vmcb->control.event_inj_err;
1645         }
1646
1647         nested_vmcb->control.tlb_ctl           = 0;
1648         nested_vmcb->control.event_inj         = 0;
1649         nested_vmcb->control.event_inj_err     = 0;
1650
1651         /* We always set V_INTR_MASKING and remember the old value in hflags */
1652         if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
1653                 nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
1654
1655         /* Restore the original control entries */
1656         copy_vmcb_control_area(vmcb, hsave);
1657
1658         kvm_clear_exception_queue(&svm->vcpu);
1659         kvm_clear_interrupt_queue(&svm->vcpu);
1660
1661         /* Restore selected save entries */
1662         svm->vmcb->save.es = hsave->save.es;
1663         svm->vmcb->save.cs = hsave->save.cs;
1664         svm->vmcb->save.ss = hsave->save.ss;
1665         svm->vmcb->save.ds = hsave->save.ds;
1666         svm->vmcb->save.gdtr = hsave->save.gdtr;
1667         svm->vmcb->save.idtr = hsave->save.idtr;
1668         svm->vmcb->save.rflags = hsave->save.rflags;
1669         svm_set_efer(&svm->vcpu, hsave->save.efer);
1670         svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
1671         svm_set_cr4(&svm->vcpu, hsave->save.cr4);
1672         if (npt_enabled) {
1673                 svm->vmcb->save.cr3 = hsave->save.cr3;
1674                 svm->vcpu.arch.cr3 = hsave->save.cr3;
1675         } else {
1676                 kvm_set_cr3(&svm->vcpu, hsave->save.cr3);
1677         }
1678         kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, hsave->save.rax);
1679         kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, hsave->save.rsp);
1680         kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, hsave->save.rip);
1681         svm->vmcb->save.dr7 = 0;
1682         svm->vmcb->save.cpl = 0;
1683         svm->vmcb->control.exit_int_info = 0;
1684
1685         /* Exit nested SVM mode */
1686         svm->nested.vmcb = 0;
1687
1688         nested_svm_unmap(nested_vmcb, KM_USER0);
1689
1690         kvm_mmu_reset_context(&svm->vcpu);
1691         kvm_mmu_load(&svm->vcpu);
1692
1693         return 0;
1694 }
1695
1696 static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
1697 {
1698         u32 *nested_msrpm;
1699         int i;
1700
1701         nested_msrpm = nested_svm_map(svm, svm->nested.vmcb_msrpm, KM_USER0);
1702         if (!nested_msrpm)
1703                 return false;
1704
1705         for (i=0; i< PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER) / 4; i++)
1706                 svm->nested.msrpm[i] = svm->msrpm[i] | nested_msrpm[i];
1707
1708         svm->vmcb->control.msrpm_base_pa = __pa(svm->nested.msrpm);
1709
1710         nested_svm_unmap(nested_msrpm, KM_USER0);
1711
1712         return true;
1713 }
1714
1715 static bool nested_svm_vmrun(struct vcpu_svm *svm)
1716 {
1717         struct vmcb *nested_vmcb;
1718         struct vmcb *hsave = svm->nested.hsave;
1719         struct vmcb *vmcb = svm->vmcb;
1720
1721         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, KM_USER0);
1722         if (!nested_vmcb)
1723                 return false;
1724
1725         /* nested_vmcb is our indicator if nested SVM is activated */
1726         svm->nested.vmcb = svm->vmcb->save.rax;
1727
1728         trace_kvm_nested_vmrun(svm->vmcb->save.rip - 3, svm->nested.vmcb,
1729                                nested_vmcb->save.rip,
1730                                nested_vmcb->control.int_ctl,
1731                                nested_vmcb->control.event_inj,
1732                                nested_vmcb->control.nested_ctl);
1733
1734         /* Clear internal status */
1735         kvm_clear_exception_queue(&svm->vcpu);
1736         kvm_clear_interrupt_queue(&svm->vcpu);
1737
1738         /* Save the old vmcb, so we don't need to pick what we save, but
1739            can restore everything when a VMEXIT occurs */
1740         hsave->save.es     = vmcb->save.es;
1741         hsave->save.cs     = vmcb->save.cs;
1742         hsave->save.ss     = vmcb->save.ss;
1743         hsave->save.ds     = vmcb->save.ds;
1744         hsave->save.gdtr   = vmcb->save.gdtr;
1745         hsave->save.idtr   = vmcb->save.idtr;
1746         hsave->save.efer   = svm->vcpu.arch.shadow_efer;
1747         hsave->save.cr0    = svm->vcpu.arch.cr0;
1748         hsave->save.cr4    = svm->vcpu.arch.cr4;
1749         hsave->save.rflags = vmcb->save.rflags;
1750         hsave->save.rip    = svm->next_rip;
1751         hsave->save.rsp    = vmcb->save.rsp;
1752         hsave->save.rax    = vmcb->save.rax;
1753         if (npt_enabled)
1754                 hsave->save.cr3    = vmcb->save.cr3;
1755         else
1756                 hsave->save.cr3    = svm->vcpu.arch.cr3;
1757
1758         copy_vmcb_control_area(hsave, vmcb);
1759
1760         if (svm->vmcb->save.rflags & X86_EFLAGS_IF)
1761                 svm->vcpu.arch.hflags |= HF_HIF_MASK;
1762         else
1763                 svm->vcpu.arch.hflags &= ~HF_HIF_MASK;
1764
1765         /* Load the nested guest state */
1766         svm->vmcb->save.es = nested_vmcb->save.es;
1767         svm->vmcb->save.cs = nested_vmcb->save.cs;
1768         svm->vmcb->save.ss = nested_vmcb->save.ss;
1769         svm->vmcb->save.ds = nested_vmcb->save.ds;
1770         svm->vmcb->save.gdtr = nested_vmcb->save.gdtr;
1771         svm->vmcb->save.idtr = nested_vmcb->save.idtr;
1772         svm->vmcb->save.rflags = nested_vmcb->save.rflags;
1773         svm_set_efer(&svm->vcpu, nested_vmcb->save.efer);
1774         svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0);
1775         svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4);
1776         if (npt_enabled) {
1777                 svm->vmcb->save.cr3 = nested_vmcb->save.cr3;
1778                 svm->vcpu.arch.cr3 = nested_vmcb->save.cr3;
1779         } else {
1780                 kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3);
1781                 kvm_mmu_reset_context(&svm->vcpu);
1782         }
1783         svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2;
1784         kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, nested_vmcb->save.rax);
1785         kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, nested_vmcb->save.rsp);
1786         kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, nested_vmcb->save.rip);
1787         /* In case we don't even reach vcpu_run, the fields are not updated */
1788         svm->vmcb->save.rax = nested_vmcb->save.rax;
1789         svm->vmcb->save.rsp = nested_vmcb->save.rsp;
1790         svm->vmcb->save.rip = nested_vmcb->save.rip;
1791         svm->vmcb->save.dr7 = nested_vmcb->save.dr7;
1792         svm->vmcb->save.dr6 = nested_vmcb->save.dr6;
1793         svm->vmcb->save.cpl = nested_vmcb->save.cpl;
1794
1795         /* We don't want a nested guest to be more powerful than the guest,
1796            so all intercepts are ORed */
1797         svm->vmcb->control.intercept_cr_read |=
1798                 nested_vmcb->control.intercept_cr_read;
1799         svm->vmcb->control.intercept_cr_write |=
1800                 nested_vmcb->control.intercept_cr_write;
1801         svm->vmcb->control.intercept_dr_read |=
1802                 nested_vmcb->control.intercept_dr_read;
1803         svm->vmcb->control.intercept_dr_write |=
1804                 nested_vmcb->control.intercept_dr_write;
1805         svm->vmcb->control.intercept_exceptions |=
1806                 nested_vmcb->control.intercept_exceptions;
1807
1808         svm->vmcb->control.intercept |= nested_vmcb->control.intercept;
1809
1810         svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa;
1811
1812         /* cache intercepts */
1813         svm->nested.intercept_cr_read    = nested_vmcb->control.intercept_cr_read;
1814         svm->nested.intercept_cr_write   = nested_vmcb->control.intercept_cr_write;
1815         svm->nested.intercept_dr_read    = nested_vmcb->control.intercept_dr_read;
1816         svm->nested.intercept_dr_write   = nested_vmcb->control.intercept_dr_write;
1817         svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions;
1818         svm->nested.intercept            = nested_vmcb->control.intercept;
1819
1820         force_new_asid(&svm->vcpu);
1821         svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK;
1822         if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK)
1823                 svm->vcpu.arch.hflags |= HF_VINTR_MASK;
1824         else
1825                 svm->vcpu.arch.hflags &= ~HF_VINTR_MASK;
1826
1827         svm->vmcb->control.int_vector = nested_vmcb->control.int_vector;
1828         svm->vmcb->control.int_state = nested_vmcb->control.int_state;
1829         svm->vmcb->control.tsc_offset += nested_vmcb->control.tsc_offset;
1830         svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
1831         svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;
1832
1833         nested_svm_unmap(nested_vmcb, KM_USER0);
1834
1835         enable_gif(svm);
1836
1837         return true;
1838 }
1839
1840 static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
1841 {
1842         to_vmcb->save.fs = from_vmcb->save.fs;
1843         to_vmcb->save.gs = from_vmcb->save.gs;
1844         to_vmcb->save.tr = from_vmcb->save.tr;
1845         to_vmcb->save.ldtr = from_vmcb->save.ldtr;
1846         to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
1847         to_vmcb->save.star = from_vmcb->save.star;
1848         to_vmcb->save.lstar = from_vmcb->save.lstar;
1849         to_vmcb->save.cstar = from_vmcb->save.cstar;
1850         to_vmcb->save.sfmask = from_vmcb->save.sfmask;
1851         to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
1852         to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
1853         to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
1854 }
1855
1856 static int vmload_interception(struct vcpu_svm *svm)
1857 {
1858         struct vmcb *nested_vmcb;
1859
1860         if (nested_svm_check_permissions(svm))
1861                 return 1;
1862
1863         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1864         skip_emulated_instruction(&svm->vcpu);
1865
1866         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, KM_USER0);
1867         if (!nested_vmcb)
1868                 return 1;
1869
1870         nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
1871         nested_svm_unmap(nested_vmcb, KM_USER0);
1872
1873         return 1;
1874 }
1875
1876 static int vmsave_interception(struct vcpu_svm *svm)
1877 {
1878         struct vmcb *nested_vmcb;
1879
1880         if (nested_svm_check_permissions(svm))
1881                 return 1;
1882
1883         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1884         skip_emulated_instruction(&svm->vcpu);
1885
1886         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, KM_USER0);
1887         if (!nested_vmcb)
1888                 return 1;
1889
1890         nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
1891         nested_svm_unmap(nested_vmcb, KM_USER0);
1892
1893         return 1;
1894 }
1895
1896 static int vmrun_interception(struct vcpu_svm *svm)
1897 {
1898         if (nested_svm_check_permissions(svm))
1899                 return 1;
1900
1901         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1902         skip_emulated_instruction(&svm->vcpu);
1903
1904         if (!nested_svm_vmrun(svm))
1905                 return 1;
1906
1907         if (!nested_svm_vmrun_msrpm(svm))
1908                 goto failed;
1909
1910         return 1;
1911
1912 failed:
1913
1914         svm->vmcb->control.exit_code    = SVM_EXIT_ERR;
1915         svm->vmcb->control.exit_code_hi = 0;
1916         svm->vmcb->control.exit_info_1  = 0;
1917         svm->vmcb->control.exit_info_2  = 0;
1918
1919         nested_svm_vmexit(svm);
1920
1921         return 1;
1922 }
1923
1924 static int stgi_interception(struct vcpu_svm *svm)
1925 {
1926         if (nested_svm_check_permissions(svm))
1927                 return 1;
1928
1929         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1930         skip_emulated_instruction(&svm->vcpu);
1931
1932         enable_gif(svm);
1933
1934         return 1;
1935 }
1936
1937 static int clgi_interception(struct vcpu_svm *svm)
1938 {
1939         if (nested_svm_check_permissions(svm))
1940                 return 1;
1941
1942         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1943         skip_emulated_instruction(&svm->vcpu);
1944
1945         disable_gif(svm);
1946
1947         /* After a CLGI no interrupts should come */
1948         svm_clear_vintr(svm);
1949         svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
1950
1951         return 1;
1952 }
1953
1954 static int invlpga_interception(struct vcpu_svm *svm)
1955 {
1956         struct kvm_vcpu *vcpu = &svm->vcpu;
1957
1958         trace_kvm_invlpga(svm->vmcb->save.rip, vcpu->arch.regs[VCPU_REGS_RCX],
1959                           vcpu->arch.regs[VCPU_REGS_RAX]);
1960
1961         /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
1962         kvm_mmu_invlpg(vcpu, vcpu->arch.regs[VCPU_REGS_RAX]);
1963
1964         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1965         skip_emulated_instruction(&svm->vcpu);
1966         return 1;
1967 }
1968
1969 static int skinit_interception(struct vcpu_svm *svm)
1970 {
1971         trace_kvm_skinit(svm->vmcb->save.rip, svm->vcpu.arch.regs[VCPU_REGS_RAX]);
1972
1973         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1974         return 1;
1975 }
1976
1977 static int invalid_op_interception(struct vcpu_svm *svm)
1978 {
1979         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1980         return 1;
1981 }
1982
1983 static int task_switch_interception(struct vcpu_svm *svm)
1984 {
1985         u16 tss_selector;
1986         int reason;
1987         int int_type = svm->vmcb->control.exit_int_info &
1988                 SVM_EXITINTINFO_TYPE_MASK;
1989         int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
1990         uint32_t type =
1991                 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
1992         uint32_t idt_v =
1993                 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
1994
1995         tss_selector = (u16)svm->vmcb->control.exit_info_1;
1996
1997         if (svm->vmcb->control.exit_info_2 &
1998             (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
1999                 reason = TASK_SWITCH_IRET;
2000         else if (svm->vmcb->control.exit_info_2 &
2001                  (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
2002                 reason = TASK_SWITCH_JMP;
2003         else if (idt_v)
2004                 reason = TASK_SWITCH_GATE;
2005         else
2006                 reason = TASK_SWITCH_CALL;
2007
2008         if (reason == TASK_SWITCH_GATE) {
2009                 switch (type) {
2010                 case SVM_EXITINTINFO_TYPE_NMI:
2011                         svm->vcpu.arch.nmi_injected = false;
2012                         break;
2013                 case SVM_EXITINTINFO_TYPE_EXEPT:
2014                         kvm_clear_exception_queue(&svm->vcpu);
2015                         break;
2016                 case SVM_EXITINTINFO_TYPE_INTR:
2017                         kvm_clear_interrupt_queue(&svm->vcpu);
2018                         break;
2019                 default:
2020                         break;
2021                 }
2022         }
2023
2024         if (reason != TASK_SWITCH_GATE ||
2025             int_type == SVM_EXITINTINFO_TYPE_SOFT ||
2026             (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
2027              (int_vec == OF_VECTOR || int_vec == BP_VECTOR)))
2028                 skip_emulated_instruction(&svm->vcpu);
2029
2030         return kvm_task_switch(&svm->vcpu, tss_selector, reason);
2031 }
2032
2033 static int cpuid_interception(struct vcpu_svm *svm)
2034 {
2035         svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
2036         kvm_emulate_cpuid(&svm->vcpu);
2037         return 1;
2038 }
2039
2040 static int iret_interception(struct vcpu_svm *svm)
2041 {
2042         ++svm->vcpu.stat.nmi_window_exits;
2043         svm->vmcb->control.intercept &= ~(1UL << INTERCEPT_IRET);
2044         svm->vcpu.arch.hflags |= HF_IRET_MASK;
2045         return 1;
2046 }
2047
2048 static int invlpg_interception(struct vcpu_svm *svm)
2049 {
2050         if (emulate_instruction(&svm->vcpu, 0, 0, 0) != EMULATE_DONE)
2051                 pr_unimpl(&svm->vcpu, "%s: failed\n", __func__);
2052         return 1;
2053 }
2054
2055 static int emulate_on_interception(struct vcpu_svm *svm)
2056 {
2057         if (emulate_instruction(&svm->vcpu, 0, 0, 0) != EMULATE_DONE)
2058                 pr_unimpl(&svm->vcpu, "%s: failed\n", __func__);
2059         return 1;
2060 }
2061
2062 static int cr8_write_interception(struct vcpu_svm *svm)
2063 {
2064         struct kvm_run *kvm_run = svm->vcpu.run;
2065
2066         u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
2067         /* instruction emulation calls kvm_set_cr8() */
2068         emulate_instruction(&svm->vcpu, 0, 0, 0);
2069         if (irqchip_in_kernel(svm->vcpu.kvm)) {
2070                 svm->vmcb->control.intercept_cr_write &= ~INTERCEPT_CR8_MASK;
2071                 return 1;
2072         }
2073         if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
2074                 return 1;
2075         kvm_run->exit_reason = KVM_EXIT_SET_TPR;
2076         return 0;
2077 }
2078
2079 static int svm_get_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 *data)
2080 {
2081         struct vcpu_svm *svm = to_svm(vcpu);
2082
2083         switch (ecx) {
2084         case MSR_IA32_TSC: {
2085                 u64 tsc_offset;
2086
2087                 if (is_nested(svm))
2088                         tsc_offset = svm->nested.hsave->control.tsc_offset;
2089                 else
2090                         tsc_offset = svm->vmcb->control.tsc_offset;
2091
2092                 *data = tsc_offset + native_read_tsc();
2093                 break;
2094         }
2095         case MSR_K6_STAR:
2096                 *data = svm->vmcb->save.star;
2097                 break;
2098 #ifdef CONFIG_X86_64
2099         case MSR_LSTAR:
2100                 *data = svm->vmcb->save.lstar;
2101                 break;
2102         case MSR_CSTAR:
2103                 *data = svm->vmcb->save.cstar;
2104                 break;
2105         case MSR_KERNEL_GS_BASE:
2106                 *data = svm->vmcb->save.kernel_gs_base;
2107                 break;
2108         case MSR_SYSCALL_MASK:
2109                 *data = svm->vmcb->save.sfmask;
2110                 break;
2111 #endif
2112         case MSR_IA32_SYSENTER_CS:
2113                 *data = svm->vmcb->save.sysenter_cs;
2114                 break;
2115         case MSR_IA32_SYSENTER_EIP:
2116                 *data = svm->sysenter_eip;
2117                 break;
2118         case MSR_IA32_SYSENTER_ESP:
2119                 *data = svm->sysenter_esp;
2120                 break;
2121         /* Nobody will change the following 5 values in the VMCB so
2122            we can safely return them on rdmsr. They will always be 0
2123            until LBRV is implemented. */
2124         case MSR_IA32_DEBUGCTLMSR:
2125                 *data = svm->vmcb->save.dbgctl;
2126                 break;
2127         case MSR_IA32_LASTBRANCHFROMIP:
2128                 *data = svm->vmcb->save.br_from;
2129                 break;
2130         case MSR_IA32_LASTBRANCHTOIP:
2131                 *data = svm->vmcb->save.br_to;
2132                 break;
2133         case MSR_IA32_LASTINTFROMIP:
2134                 *data = svm->vmcb->save.last_excp_from;
2135                 break;
2136         case MSR_IA32_LASTINTTOIP:
2137                 *data = svm->vmcb->save.last_excp_to;
2138                 break;
2139         case MSR_VM_HSAVE_PA:
2140                 *data = svm->nested.hsave_msr;
2141                 break;
2142         case MSR_VM_CR:
2143                 *data = 0;
2144                 break;
2145         case MSR_IA32_UCODE_REV:
2146                 *data = 0x01000065;
2147                 break;
2148         default:
2149                 return kvm_get_msr_common(vcpu, ecx, data);
2150         }
2151         return 0;
2152 }
2153
2154 static int rdmsr_interception(struct vcpu_svm *svm)
2155 {
2156         u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
2157         u64 data;
2158
2159         if (svm_get_msr(&svm->vcpu, ecx, &data))
2160                 kvm_inject_gp(&svm->vcpu, 0);
2161         else {
2162                 trace_kvm_msr_read(ecx, data);
2163
2164                 svm->vcpu.arch.regs[VCPU_REGS_RAX] = data & 0xffffffff;
2165                 svm->vcpu.arch.regs[VCPU_REGS_RDX] = data >> 32;
2166                 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
2167                 skip_emulated_instruction(&svm->vcpu);
2168         }
2169         return 1;
2170 }
2171
2172 static int svm_set_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 data)
2173 {
2174         struct vcpu_svm *svm = to_svm(vcpu);
2175
2176         switch (ecx) {
2177         case MSR_IA32_TSC: {
2178                 u64 tsc_offset = data - native_read_tsc();
2179                 u64 g_tsc_offset = 0;
2180
2181                 if (is_nested(svm)) {
2182                         g_tsc_offset = svm->vmcb->control.tsc_offset -
2183                                        svm->nested.hsave->control.tsc_offset;
2184                         svm->nested.hsave->control.tsc_offset = tsc_offset;
2185                 }
2186
2187                 svm->vmcb->control.tsc_offset = tsc_offset + g_tsc_offset;
2188
2189                 break;
2190         }
2191         case MSR_K6_STAR:
2192                 svm->vmcb->save.star = data;
2193                 break;
2194 #ifdef CONFIG_X86_64
2195         case MSR_LSTAR:
2196                 svm->vmcb->save.lstar = data;
2197                 break;
2198         case MSR_CSTAR:
2199                 svm->vmcb->save.cstar = data;
2200                 break;
2201         case MSR_KERNEL_GS_BASE:
2202                 svm->vmcb->save.kernel_gs_base = data;
2203                 break;
2204         case MSR_SYSCALL_MASK:
2205                 svm->vmcb->save.sfmask = data;
2206                 break;
2207 #endif
2208         case MSR_IA32_SYSENTER_CS:
2209                 svm->vmcb->save.sysenter_cs = data;
2210                 break;
2211         case MSR_IA32_SYSENTER_EIP:
2212                 svm->sysenter_eip = data;
2213                 svm->vmcb->save.sysenter_eip = data;
2214                 break;
2215         case MSR_IA32_SYSENTER_ESP:
2216                 svm->sysenter_esp = data;
2217                 svm->vmcb->save.sysenter_esp = data;
2218                 break;
2219         case MSR_IA32_DEBUGCTLMSR:
2220                 if (!svm_has(SVM_FEATURE_LBRV)) {
2221                         pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
2222                                         __func__, data);
2223                         break;
2224                 }
2225                 if (data & DEBUGCTL_RESERVED_BITS)
2226                         return 1;
2227
2228                 svm->vmcb->save.dbgctl = data;
2229                 if (data & (1ULL<<0))
2230                         svm_enable_lbrv(svm);
2231                 else
2232                         svm_disable_lbrv(svm);
2233                 break;
2234         case MSR_VM_HSAVE_PA:
2235                 svm->nested.hsave_msr = data;
2236                 break;
2237         case MSR_VM_CR:
2238         case MSR_VM_IGNNE:
2239                 pr_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
2240                 break;
2241         default:
2242                 return kvm_set_msr_common(vcpu, ecx, data);
2243         }
2244         return 0;
2245 }
2246
2247 static int wrmsr_interception(struct vcpu_svm *svm)
2248 {
2249         u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
2250         u64 data = (svm->vcpu.arch.regs[VCPU_REGS_RAX] & -1u)
2251                 | ((u64)(svm->vcpu.arch.regs[VCPU_REGS_RDX] & -1u) << 32);
2252
2253         trace_kvm_msr_write(ecx, data);
2254
2255         svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
2256         if (svm_set_msr(&svm->vcpu, ecx, data))
2257                 kvm_inject_gp(&svm->vcpu, 0);
2258         else
2259                 skip_emulated_instruction(&svm->vcpu);
2260         return 1;
2261 }
2262
2263 static int msr_interception(struct vcpu_svm *svm)
2264 {
2265         if (svm->vmcb->control.exit_info_1)
2266                 return wrmsr_interception(svm);
2267         else
2268                 return rdmsr_interception(svm);
2269 }
2270
2271 static int interrupt_window_interception(struct vcpu_svm *svm)
2272 {
2273         struct kvm_run *kvm_run = svm->vcpu.run;
2274
2275         svm_clear_vintr(svm);
2276         svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
2277         /*
2278          * If the user space waits to inject interrupts, exit as soon as
2279          * possible
2280          */
2281         if (!irqchip_in_kernel(svm->vcpu.kvm) &&
2282             kvm_run->request_interrupt_window &&
2283             !kvm_cpu_has_interrupt(&svm->vcpu)) {
2284                 ++svm->vcpu.stat.irq_window_exits;
2285                 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
2286                 return 0;
2287         }
2288
2289         return 1;
2290 }
2291
2292 static int pause_interception(struct vcpu_svm *svm)
2293 {
2294         kvm_vcpu_on_spin(&(svm->vcpu));
2295         return 1;
2296 }
2297
2298 static int (*svm_exit_handlers[])(struct vcpu_svm *svm) = {
2299         [SVM_EXIT_READ_CR0]                     = emulate_on_interception,
2300         [SVM_EXIT_READ_CR3]                     = emulate_on_interception,
2301         [SVM_EXIT_READ_CR4]                     = emulate_on_interception,
2302         [SVM_EXIT_READ_CR8]                     = emulate_on_interception,
2303         /* for now: */
2304         [SVM_EXIT_WRITE_CR0]                    = emulate_on_interception,
2305         [SVM_EXIT_WRITE_CR3]                    = emulate_on_interception,
2306         [SVM_EXIT_WRITE_CR4]                    = emulate_on_interception,
2307         [SVM_EXIT_WRITE_CR8]                    = cr8_write_interception,
2308         [SVM_EXIT_READ_DR0]                     = emulate_on_interception,
2309         [SVM_EXIT_READ_DR1]                     = emulate_on_interception,
2310         [SVM_EXIT_READ_DR2]                     = emulate_on_interception,
2311         [SVM_EXIT_READ_DR3]                     = emulate_on_interception,
2312         [SVM_EXIT_WRITE_DR0]                    = emulate_on_interception,
2313         [SVM_EXIT_WRITE_DR1]                    = emulate_on_interception,
2314         [SVM_EXIT_WRITE_DR2]                    = emulate_on_interception,
2315         [SVM_EXIT_WRITE_DR3]                    = emulate_on_interception,
2316         [SVM_EXIT_WRITE_DR5]                    = emulate_on_interception,
2317         [SVM_EXIT_WRITE_DR7]                    = emulate_on_interception,
2318         [SVM_EXIT_EXCP_BASE + DB_VECTOR]        = db_interception,
2319         [SVM_EXIT_EXCP_BASE + BP_VECTOR]        = bp_interception,
2320         [SVM_EXIT_EXCP_BASE + UD_VECTOR]        = ud_interception,
2321         [SVM_EXIT_EXCP_BASE + PF_VECTOR]        = pf_interception,
2322         [SVM_EXIT_EXCP_BASE + NM_VECTOR]        = nm_interception,
2323         [SVM_EXIT_EXCP_BASE + MC_VECTOR]        = mc_interception,
2324         [SVM_EXIT_INTR]                         = intr_interception,
2325         [SVM_EXIT_NMI]                          = nmi_interception,
2326         [SVM_EXIT_SMI]                          = nop_on_interception,
2327         [SVM_EXIT_INIT]                         = nop_on_interception,
2328         [SVM_EXIT_VINTR]                        = interrupt_window_interception,
2329         /* [SVM_EXIT_CR0_SEL_WRITE]             = emulate_on_interception, */
2330         [SVM_EXIT_CPUID]                        = cpuid_interception,
2331         [SVM_EXIT_IRET]                         = iret_interception,
2332         [SVM_EXIT_INVD]                         = emulate_on_interception,
2333         [SVM_EXIT_PAUSE]                        = pause_interception,
2334         [SVM_EXIT_HLT]                          = halt_interception,
2335         [SVM_EXIT_INVLPG]                       = invlpg_interception,
2336         [SVM_EXIT_INVLPGA]                      = invlpga_interception,
2337         [SVM_EXIT_IOIO]                         = io_interception,
2338         [SVM_EXIT_MSR]                          = msr_interception,
2339         [SVM_EXIT_TASK_SWITCH]                  = task_switch_interception,
2340         [SVM_EXIT_SHUTDOWN]                     = shutdown_interception,
2341         [SVM_EXIT_VMRUN]                        = vmrun_interception,
2342         [SVM_EXIT_VMMCALL]                      = vmmcall_interception,
2343         [SVM_EXIT_VMLOAD]                       = vmload_interception,
2344         [SVM_EXIT_VMSAVE]                       = vmsave_interception,
2345         [SVM_EXIT_STGI]                         = stgi_interception,
2346         [SVM_EXIT_CLGI]                         = clgi_interception,
2347         [SVM_EXIT_SKINIT]                       = skinit_interception,
2348         [SVM_EXIT_WBINVD]                       = emulate_on_interception,
2349         [SVM_EXIT_MONITOR]                      = invalid_op_interception,
2350         [SVM_EXIT_MWAIT]                        = invalid_op_interception,
2351         [SVM_EXIT_NPF]                          = pf_interception,
2352 };
2353
2354 static int handle_exit(struct kvm_vcpu *vcpu)
2355 {
2356         struct vcpu_svm *svm = to_svm(vcpu);
2357         struct kvm_run *kvm_run = vcpu->run;
2358         u32 exit_code = svm->vmcb->control.exit_code;
2359
2360         trace_kvm_exit(exit_code, svm->vmcb->save.rip);
2361
2362         if (unlikely(svm->nested.exit_required)) {
2363                 nested_svm_vmexit(svm);
2364                 svm->nested.exit_required = false;
2365
2366                 return 1;
2367         }
2368
2369         if (is_nested(svm)) {
2370                 int vmexit;
2371
2372                 trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code,
2373                                         svm->vmcb->control.exit_info_1,
2374                                         svm->vmcb->control.exit_info_2,
2375                                         svm->vmcb->control.exit_int_info,
2376                                         svm->vmcb->control.exit_int_info_err);
2377
2378                 vmexit = nested_svm_exit_special(svm);
2379
2380                 if (vmexit == NESTED_EXIT_CONTINUE)
2381                         vmexit = nested_svm_exit_handled(svm);
2382
2383                 if (vmexit == NESTED_EXIT_DONE)
2384                         return 1;
2385         }
2386
2387         svm_complete_interrupts(svm);
2388
2389         if (npt_enabled) {
2390                 int mmu_reload = 0;
2391                 if ((vcpu->arch.cr0 ^ svm->vmcb->save.cr0) & X86_CR0_PG) {
2392                         svm_set_cr0(vcpu, svm->vmcb->save.cr0);
2393                         mmu_reload = 1;
2394                 }
2395                 vcpu->arch.cr0 = svm->vmcb->save.cr0;
2396                 vcpu->arch.cr3 = svm->vmcb->save.cr3;
2397                 if (mmu_reload) {
2398                         kvm_mmu_reset_context(vcpu);
2399                         kvm_mmu_load(vcpu);
2400                 }
2401         }
2402
2403
2404         if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
2405                 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
2406                 kvm_run->fail_entry.hardware_entry_failure_reason
2407                         = svm->vmcb->control.exit_code;
2408                 return 0;
2409         }
2410
2411         if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
2412             exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
2413             exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH)
2414                 printk(KERN_ERR "%s: unexpected exit_ini_info 0x%x "
2415                        "exit_code 0x%x\n",
2416                        __func__, svm->vmcb->control.exit_int_info,
2417                        exit_code);
2418
2419         if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
2420             || !svm_exit_handlers[exit_code]) {
2421                 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
2422                 kvm_run->hw.hardware_exit_reason = exit_code;
2423                 return 0;
2424         }
2425
2426         return svm_exit_handlers[exit_code](svm);
2427 }
2428
2429 static void reload_tss(struct kvm_vcpu *vcpu)
2430 {
2431         int cpu = raw_smp_processor_id();
2432
2433         struct svm_cpu_data *svm_data = per_cpu(svm_data, cpu);
2434         svm_data->tss_desc->type = 9; /* available 32/64-bit TSS */
2435         load_TR_desc();
2436 }
2437
2438 static void pre_svm_run(struct vcpu_svm *svm)
2439 {
2440         int cpu = raw_smp_processor_id();
2441
2442         struct svm_cpu_data *svm_data = per_cpu(svm_data, cpu);
2443
2444         svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
2445         /* FIXME: handle wraparound of asid_generation */
2446         if (svm->asid_generation != svm_data->asid_generation)
2447                 new_asid(svm, svm_data);
2448 }
2449
2450 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
2451 {
2452         struct vcpu_svm *svm = to_svm(vcpu);
2453
2454         svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
2455         vcpu->arch.hflags |= HF_NMI_MASK;
2456         svm->vmcb->control.intercept |= (1UL << INTERCEPT_IRET);
2457         ++vcpu->stat.nmi_injections;
2458 }
2459
2460 static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
2461 {
2462         struct vmcb_control_area *control;
2463
2464         trace_kvm_inj_virq(irq);
2465
2466         ++svm->vcpu.stat.irq_injections;
2467         control = &svm->vmcb->control;
2468         control->int_vector = irq;
2469         control->int_ctl &= ~V_INTR_PRIO_MASK;
2470         control->int_ctl |= V_IRQ_MASK |
2471                 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
2472 }
2473
2474 static void svm_set_irq(struct kvm_vcpu *vcpu)
2475 {
2476         struct vcpu_svm *svm = to_svm(vcpu);
2477
2478         BUG_ON(!(gif_set(svm)));
2479
2480         svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
2481                 SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
2482 }
2483
2484 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
2485 {
2486         struct vcpu_svm *svm = to_svm(vcpu);
2487
2488         if (irr == -1)
2489                 return;
2490
2491         if (tpr >= irr)
2492                 svm->vmcb->control.intercept_cr_write |= INTERCEPT_CR8_MASK;
2493 }
2494
2495 static int svm_nmi_allowed(struct kvm_vcpu *vcpu)
2496 {
2497         struct vcpu_svm *svm = to_svm(vcpu);
2498         struct vmcb *vmcb = svm->vmcb;
2499         return !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
2500                 !(svm->vcpu.arch.hflags & HF_NMI_MASK);
2501 }
2502
2503 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu)
2504 {
2505         struct vcpu_svm *svm = to_svm(vcpu);
2506         struct vmcb *vmcb = svm->vmcb;
2507         int ret;
2508
2509         if (!gif_set(svm) ||
2510              (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK))
2511                 return 0;
2512
2513         ret = !!(vmcb->save.rflags & X86_EFLAGS_IF);
2514
2515         if (is_nested(svm))
2516                 return ret && !(svm->vcpu.arch.hflags & HF_VINTR_MASK);
2517
2518         return ret;
2519 }
2520
2521 static void enable_irq_window(struct kvm_vcpu *vcpu)
2522 {
2523         struct vcpu_svm *svm = to_svm(vcpu);
2524
2525         nested_svm_intr(svm);
2526
2527         /* In case GIF=0 we can't rely on the CPU to tell us when
2528          * GIF becomes 1, because that's a separate STGI/VMRUN intercept.
2529          * The next time we get that intercept, this function will be
2530          * called again though and we'll get the vintr intercept. */
2531         if (gif_set(svm)) {
2532                 svm_set_vintr(svm);
2533                 svm_inject_irq(svm, 0x0);
2534         }
2535 }
2536
2537 static void enable_nmi_window(struct kvm_vcpu *vcpu)
2538 {
2539         struct vcpu_svm *svm = to_svm(vcpu);
2540
2541         if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
2542             == HF_NMI_MASK)
2543                 return; /* IRET will cause a vm exit */
2544
2545         /* Something prevents NMI from been injected. Single step over
2546            possible problem (IRET or exception injection or interrupt
2547            shadow) */
2548         svm->nmi_singlestep = true;
2549         svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
2550         update_db_intercept(vcpu);
2551 }
2552
2553 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
2554 {
2555         return 0;
2556 }
2557
2558 static void svm_flush_tlb(struct kvm_vcpu *vcpu)
2559 {
2560         force_new_asid(vcpu);
2561 }
2562
2563 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
2564 {
2565 }
2566
2567 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
2568 {
2569         struct vcpu_svm *svm = to_svm(vcpu);
2570
2571         if (!(svm->vmcb->control.intercept_cr_write & INTERCEPT_CR8_MASK)) {
2572                 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
2573                 kvm_set_cr8(vcpu, cr8);
2574         }
2575 }
2576
2577 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
2578 {
2579         struct vcpu_svm *svm = to_svm(vcpu);
2580         u64 cr8;
2581
2582         cr8 = kvm_get_cr8(vcpu);
2583         svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
2584         svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
2585 }
2586
2587 static void svm_complete_interrupts(struct vcpu_svm *svm)
2588 {
2589         u8 vector;
2590         int type;
2591         u32 exitintinfo = svm->vmcb->control.exit_int_info;
2592
2593         if (svm->vcpu.arch.hflags & HF_IRET_MASK)
2594                 svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
2595
2596         svm->vcpu.arch.nmi_injected = false;
2597         kvm_clear_exception_queue(&svm->vcpu);
2598         kvm_clear_interrupt_queue(&svm->vcpu);
2599
2600         if (!(exitintinfo & SVM_EXITINTINFO_VALID))
2601                 return;
2602
2603         vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
2604         type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
2605
2606         switch (type) {
2607         case SVM_EXITINTINFO_TYPE_NMI:
2608                 svm->vcpu.arch.nmi_injected = true;
2609                 break;
2610         case SVM_EXITINTINFO_TYPE_EXEPT:
2611                 /* In case of software exception do not reinject an exception
2612                    vector, but re-execute and instruction instead */
2613                 if (is_nested(svm))
2614                         break;
2615                 if (kvm_exception_is_soft(vector))
2616                         break;
2617                 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
2618                         u32 err = svm->vmcb->control.exit_int_info_err;
2619                         kvm_queue_exception_e(&svm->vcpu, vector, err);
2620
2621                 } else
2622                         kvm_queue_exception(&svm->vcpu, vector);
2623                 break;
2624         case SVM_EXITINTINFO_TYPE_INTR:
2625                 kvm_queue_interrupt(&svm->vcpu, vector, false);
2626                 break;
2627         default:
2628                 break;
2629         }
2630 }
2631
2632 #ifdef CONFIG_X86_64
2633 #define R "r"
2634 #else
2635 #define R "e"
2636 #endif
2637
2638 static void svm_vcpu_run(struct kvm_vcpu *vcpu)
2639 {
2640         struct vcpu_svm *svm = to_svm(vcpu);
2641         u16 fs_selector;
2642         u16 gs_selector;
2643         u16 ldt_selector;
2644
2645         /*
2646          * A vmexit emulation is required before the vcpu can be executed
2647          * again.
2648          */
2649         if (unlikely(svm->nested.exit_required))
2650                 return;
2651
2652         svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
2653         svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
2654         svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
2655
2656         pre_svm_run(svm);
2657
2658         sync_lapic_to_cr8(vcpu);
2659
2660         save_host_msrs(vcpu);
2661         fs_selector = kvm_read_fs();
2662         gs_selector = kvm_read_gs();
2663         ldt_selector = kvm_read_ldt();
2664         svm->vmcb->save.cr2 = vcpu->arch.cr2;
2665         /* required for live migration with NPT */
2666         if (npt_enabled)
2667                 svm->vmcb->save.cr3 = vcpu->arch.cr3;
2668
2669         clgi();
2670
2671         local_irq_enable();
2672
2673         asm volatile (
2674                 "push %%"R"bp; \n\t"
2675                 "mov %c[rbx](%[svm]), %%"R"bx \n\t"
2676                 "mov %c[rcx](%[svm]), %%"R"cx \n\t"
2677                 "mov %c[rdx](%[svm]), %%"R"dx \n\t"
2678                 "mov %c[rsi](%[svm]), %%"R"si \n\t"
2679                 "mov %c[rdi](%[svm]), %%"R"di \n\t"
2680                 "mov %c[rbp](%[svm]), %%"R"bp \n\t"
2681 #ifdef CONFIG_X86_64
2682                 "mov %c[r8](%[svm]),  %%r8  \n\t"
2683                 "mov %c[r9](%[svm]),  %%r9  \n\t"
2684                 "mov %c[r10](%[svm]), %%r10 \n\t"
2685                 "mov %c[r11](%[svm]), %%r11 \n\t"
2686                 "mov %c[r12](%[svm]), %%r12 \n\t"
2687                 "mov %c[r13](%[svm]), %%r13 \n\t"
2688                 "mov %c[r14](%[svm]), %%r14 \n\t"
2689                 "mov %c[r15](%[svm]), %%r15 \n\t"
2690 #endif
2691
2692                 /* Enter guest mode */
2693                 "push %%"R"ax \n\t"
2694                 "mov %c[vmcb](%[svm]), %%"R"ax \n\t"
2695                 __ex(SVM_VMLOAD) "\n\t"
2696                 __ex(SVM_VMRUN) "\n\t"
2697                 __ex(SVM_VMSAVE) "\n\t"
2698                 "pop %%"R"ax \n\t"
2699
2700                 /* Save guest registers, load host registers */
2701                 "mov %%"R"bx, %c[rbx](%[svm]) \n\t"
2702                 "mov %%"R"cx, %c[rcx](%[svm]) \n\t"
2703                 "mov %%"R"dx, %c[rdx](%[svm]) \n\t"
2704                 "mov %%"R"si, %c[rsi](%[svm]) \n\t"
2705                 "mov %%"R"di, %c[rdi](%[svm]) \n\t"
2706                 "mov %%"R"bp, %c[rbp](%[svm]) \n\t"
2707 #ifdef CONFIG_X86_64
2708                 "mov %%r8,  %c[r8](%[svm]) \n\t"
2709                 "mov %%r9,  %c[r9](%[svm]) \n\t"
2710                 "mov %%r10, %c[r10](%[svm]) \n\t"
2711                 "mov %%r11, %c[r11](%[svm]) \n\t"
2712                 "mov %%r12, %c[r12](%[svm]) \n\t"
2713                 "mov %%r13, %c[r13](%[svm]) \n\t"
2714                 "mov %%r14, %c[r14](%[svm]) \n\t"
2715                 "mov %%r15, %c[r15](%[svm]) \n\t"
2716 #endif
2717                 "pop %%"R"bp"
2718                 :
2719                 : [svm]"a"(svm),
2720                   [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
2721                   [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
2722                   [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
2723                   [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
2724                   [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
2725                   [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
2726                   [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
2727 #ifdef CONFIG_X86_64
2728                   , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
2729                   [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
2730                   [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
2731                   [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
2732                   [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
2733                   [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
2734                   [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
2735                   [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
2736 #endif
2737                 : "cc", "memory"
2738                 , R"bx", R"cx", R"dx", R"si", R"di"
2739 #ifdef CONFIG_X86_64
2740                 , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
2741 #endif
2742                 );
2743
2744         vcpu->arch.cr2 = svm->vmcb->save.cr2;
2745         vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
2746         vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
2747         vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
2748
2749         kvm_load_fs(fs_selector);
2750         kvm_load_gs(gs_selector);
2751         kvm_load_ldt(ldt_selector);
2752         load_host_msrs(vcpu);
2753
2754         reload_tss(vcpu);
2755
2756         local_irq_disable();
2757
2758         stgi();
2759
2760         sync_cr8_to_lapic(vcpu);
2761
2762         svm->next_rip = 0;
2763
2764         if (npt_enabled) {
2765                 vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
2766                 vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
2767         }
2768 }
2769
2770 #undef R
2771
2772 static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
2773 {
2774         struct vcpu_svm *svm = to_svm(vcpu);
2775
2776         if (npt_enabled) {
2777                 svm->vmcb->control.nested_cr3 = root;
2778                 force_new_asid(vcpu);
2779                 return;
2780         }
2781
2782         svm->vmcb->save.cr3 = root;
2783         force_new_asid(vcpu);
2784
2785         if (vcpu->fpu_active) {
2786                 svm->vmcb->control.intercept_exceptions |= (1 << NM_VECTOR);
2787                 svm->vmcb->save.cr0 |= X86_CR0_TS;
2788                 vcpu->fpu_active = 0;
2789         }
2790 }
2791
2792 static int is_disabled(void)
2793 {
2794         u64 vm_cr;
2795
2796         rdmsrl(MSR_VM_CR, vm_cr);
2797         if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
2798                 return 1;
2799
2800         return 0;
2801 }
2802
2803 static void
2804 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
2805 {
2806         /*
2807          * Patch in the VMMCALL instruction:
2808          */
2809         hypercall[0] = 0x0f;
2810         hypercall[1] = 0x01;
2811         hypercall[2] = 0xd9;
2812 }
2813
2814 static void svm_check_processor_compat(void *rtn)
2815 {
2816         *(int *)rtn = 0;
2817 }
2818
2819 static bool svm_cpu_has_accelerated_tpr(void)
2820 {
2821         return false;
2822 }
2823
2824 static int get_npt_level(void)
2825 {
2826 #ifdef CONFIG_X86_64
2827         return PT64_ROOT_LEVEL;
2828 #else
2829         return PT32E_ROOT_LEVEL;
2830 #endif
2831 }
2832
2833 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
2834 {
2835         return 0;
2836 }
2837
2838 static const struct trace_print_flags svm_exit_reasons_str[] = {
2839         { SVM_EXIT_READ_CR0,                    "read_cr0" },
2840         { SVM_EXIT_READ_CR3,                    "read_cr3" },
2841         { SVM_EXIT_READ_CR4,                    "read_cr4" },
2842         { SVM_EXIT_READ_CR8,                    "read_cr8" },
2843         { SVM_EXIT_WRITE_CR0,                   "write_cr0" },
2844         { SVM_EXIT_WRITE_CR3,                   "write_cr3" },
2845         { SVM_EXIT_WRITE_CR4,                   "write_cr4" },
2846         { SVM_EXIT_WRITE_CR8,                   "write_cr8" },
2847         { SVM_EXIT_READ_DR0,                    "read_dr0" },
2848         { SVM_EXIT_READ_DR1,                    "read_dr1" },
2849         { SVM_EXIT_READ_DR2,                    "read_dr2" },
2850         { SVM_EXIT_READ_DR3,                    "read_dr3" },
2851         { SVM_EXIT_WRITE_DR0,                   "write_dr0" },
2852         { SVM_EXIT_WRITE_DR1,                   "write_dr1" },
2853         { SVM_EXIT_WRITE_DR2,                   "write_dr2" },
2854         { SVM_EXIT_WRITE_DR3,                   "write_dr3" },
2855         { SVM_EXIT_WRITE_DR5,                   "write_dr5" },
2856         { SVM_EXIT_WRITE_DR7,                   "write_dr7" },
2857         { SVM_EXIT_EXCP_BASE + DB_VECTOR,       "DB excp" },
2858         { SVM_EXIT_EXCP_BASE + BP_VECTOR,       "BP excp" },
2859         { SVM_EXIT_EXCP_BASE + UD_VECTOR,       "UD excp" },
2860         { SVM_EXIT_EXCP_BASE + PF_VECTOR,       "PF excp" },
2861         { SVM_EXIT_EXCP_BASE + NM_VECTOR,       "NM excp" },
2862         { SVM_EXIT_EXCP_BASE + MC_VECTOR,       "MC excp" },
2863         { SVM_EXIT_INTR,                        "interrupt" },
2864         { SVM_EXIT_NMI,                         "nmi" },
2865         { SVM_EXIT_SMI,                         "smi" },
2866         { SVM_EXIT_INIT,                        "init" },
2867         { SVM_EXIT_VINTR,                       "vintr" },
2868         { SVM_EXIT_CPUID,                       "cpuid" },
2869         { SVM_EXIT_INVD,                        "invd" },
2870         { SVM_EXIT_HLT,                         "hlt" },
2871         { SVM_EXIT_INVLPG,                      "invlpg" },
2872         { SVM_EXIT_INVLPGA,                     "invlpga" },
2873         { SVM_EXIT_IOIO,                        "io" },
2874         { SVM_EXIT_MSR,                         "msr" },
2875         { SVM_EXIT_TASK_SWITCH,                 "task_switch" },
2876         { SVM_EXIT_SHUTDOWN,                    "shutdown" },
2877         { SVM_EXIT_VMRUN,                       "vmrun" },
2878         { SVM_EXIT_VMMCALL,                     "hypercall" },
2879         { SVM_EXIT_VMLOAD,                      "vmload" },
2880         { SVM_EXIT_VMSAVE,                      "vmsave" },
2881         { SVM_EXIT_STGI,                        "stgi" },
2882         { SVM_EXIT_CLGI,                        "clgi" },
2883         { SVM_EXIT_SKINIT,                      "skinit" },
2884         { SVM_EXIT_WBINVD,                      "wbinvd" },
2885         { SVM_EXIT_MONITOR,                     "monitor" },
2886         { SVM_EXIT_MWAIT,                       "mwait" },
2887         { SVM_EXIT_NPF,                         "npf" },
2888         { -1, NULL }
2889 };
2890
2891 static bool svm_gb_page_enable(void)
2892 {
2893         return true;
2894 }
2895
2896 static struct kvm_x86_ops svm_x86_ops = {
2897         .cpu_has_kvm_support = has_svm,
2898         .disabled_by_bios = is_disabled,
2899         .hardware_setup = svm_hardware_setup,
2900         .hardware_unsetup = svm_hardware_unsetup,
2901         .check_processor_compatibility = svm_check_processor_compat,
2902         .hardware_enable = svm_hardware_enable,
2903         .hardware_disable = svm_hardware_disable,
2904         .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
2905
2906         .vcpu_create = svm_create_vcpu,
2907         .vcpu_free = svm_free_vcpu,
2908         .vcpu_reset = svm_vcpu_reset,
2909
2910         .prepare_guest_switch = svm_prepare_guest_switch,
2911         .vcpu_load = svm_vcpu_load,
2912         .vcpu_put = svm_vcpu_put,
2913
2914         .set_guest_debug = svm_guest_debug,
2915         .get_msr = svm_get_msr,
2916         .set_msr = svm_set_msr,
2917         .get_segment_base = svm_get_segment_base,
2918         .get_segment = svm_get_segment,
2919         .set_segment = svm_set_segment,
2920         .get_cpl = svm_get_cpl,
2921         .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
2922         .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
2923         .set_cr0 = svm_set_cr0,
2924         .set_cr3 = svm_set_cr3,
2925         .set_cr4 = svm_set_cr4,
2926         .set_efer = svm_set_efer,
2927         .get_idt = svm_get_idt,
2928         .set_idt = svm_set_idt,
2929         .get_gdt = svm_get_gdt,
2930         .set_gdt = svm_set_gdt,
2931         .get_dr = svm_get_dr,
2932         .set_dr = svm_set_dr,
2933         .cache_reg = svm_cache_reg,
2934         .get_rflags = svm_get_rflags,
2935         .set_rflags = svm_set_rflags,
2936
2937         .tlb_flush = svm_flush_tlb,
2938
2939         .run = svm_vcpu_run,
2940         .handle_exit = handle_exit,
2941         .skip_emulated_instruction = skip_emulated_instruction,
2942         .set_interrupt_shadow = svm_set_interrupt_shadow,
2943         .get_interrupt_shadow = svm_get_interrupt_shadow,
2944         .patch_hypercall = svm_patch_hypercall,
2945         .set_irq = svm_set_irq,
2946         .set_nmi = svm_inject_nmi,
2947         .queue_exception = svm_queue_exception,
2948         .interrupt_allowed = svm_interrupt_allowed,
2949         .nmi_allowed = svm_nmi_allowed,
2950         .enable_nmi_window = enable_nmi_window,
2951         .enable_irq_window = enable_irq_window,
2952         .update_cr8_intercept = update_cr8_intercept,
2953
2954         .set_tss_addr = svm_set_tss_addr,
2955         .get_tdp_level = get_npt_level,
2956         .get_mt_mask = svm_get_mt_mask,
2957
2958         .exit_reasons_str = svm_exit_reasons_str,
2959         .gb_page_enable = svm_gb_page_enable,
2960 };
2961
2962 static int __init svm_init(void)
2963 {
2964         return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
2965                               THIS_MODULE);
2966 }
2967
2968 static void __exit svm_exit(void)
2969 {
2970         kvm_exit();
2971 }
2972
2973 module_init(svm_init)
2974 module_exit(svm_exit)