KVM: Move kvm_exit tracepoint rip reading inside tracepoint
[safe/jmp/linux-2.6] / arch / x86 / kvm / svm.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * AMD SVM support
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  *
8  * Authors:
9  *   Yaniv Kamay  <yaniv@qumranet.com>
10  *   Avi Kivity   <avi@qumranet.com>
11  *
12  * This work is licensed under the terms of the GNU GPL, version 2.  See
13  * the COPYING file in the top-level directory.
14  *
15  */
16 #include <linux/kvm_host.h>
17
18 #include "irq.h"
19 #include "mmu.h"
20 #include "kvm_cache_regs.h"
21 #include "x86.h"
22
23 #include <linux/module.h>
24 #include <linux/kernel.h>
25 #include <linux/vmalloc.h>
26 #include <linux/highmem.h>
27 #include <linux/sched.h>
28 #include <linux/ftrace_event.h>
29 #include <linux/slab.h>
30
31 #include <asm/desc.h>
32
33 #include <asm/virtext.h>
34 #include "trace.h"
35
36 #define __ex(x) __kvm_handle_fault_on_reboot(x)
37
38 MODULE_AUTHOR("Qumranet");
39 MODULE_LICENSE("GPL");
40
41 #define IOPM_ALLOC_ORDER 2
42 #define MSRPM_ALLOC_ORDER 1
43
44 #define SEG_TYPE_LDT 2
45 #define SEG_TYPE_BUSY_TSS16 3
46
47 #define SVM_FEATURE_NPT  (1 << 0)
48 #define SVM_FEATURE_LBRV (1 << 1)
49 #define SVM_FEATURE_SVML (1 << 2)
50 #define SVM_FEATURE_NRIP (1 << 3)
51 #define SVM_FEATURE_PAUSE_FILTER (1 << 10)
52
53 #define NESTED_EXIT_HOST        0       /* Exit handled on host level */
54 #define NESTED_EXIT_DONE        1       /* Exit caused nested vmexit  */
55 #define NESTED_EXIT_CONTINUE    2       /* Further checks needed      */
56
57 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
58
59 static const u32 host_save_user_msrs[] = {
60 #ifdef CONFIG_X86_64
61         MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE,
62         MSR_FS_BASE,
63 #endif
64         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
65 };
66
67 #define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
68
69 struct kvm_vcpu;
70
71 struct nested_state {
72         struct vmcb *hsave;
73         u64 hsave_msr;
74         u64 vm_cr_msr;
75         u64 vmcb;
76
77         /* These are the merged vectors */
78         u32 *msrpm;
79
80         /* gpa pointers to the real vectors */
81         u64 vmcb_msrpm;
82         u64 vmcb_iopm;
83
84         /* A VMEXIT is required but not yet emulated */
85         bool exit_required;
86
87         /* cache for intercepts of the guest */
88         u16 intercept_cr_read;
89         u16 intercept_cr_write;
90         u16 intercept_dr_read;
91         u16 intercept_dr_write;
92         u32 intercept_exceptions;
93         u64 intercept;
94
95 };
96
97 #define MSRPM_OFFSETS   16
98 static u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
99
100 struct vcpu_svm {
101         struct kvm_vcpu vcpu;
102         struct vmcb *vmcb;
103         unsigned long vmcb_pa;
104         struct svm_cpu_data *svm_data;
105         uint64_t asid_generation;
106         uint64_t sysenter_esp;
107         uint64_t sysenter_eip;
108
109         u64 next_rip;
110
111         u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS];
112         u64 host_gs_base;
113
114         u32 *msrpm;
115
116         struct nested_state nested;
117
118         bool nmi_singlestep;
119
120         unsigned int3_injected;
121         unsigned long int3_rip;
122 };
123
124 #define MSR_INVALID                     0xffffffffU
125
126 static struct svm_direct_access_msrs {
127         u32 index;   /* Index of the MSR */
128         bool always; /* True if intercept is always on */
129 } direct_access_msrs[] = {
130         { .index = MSR_K6_STAR,                         .always = true  },
131         { .index = MSR_IA32_SYSENTER_CS,                .always = true  },
132 #ifdef CONFIG_X86_64
133         { .index = MSR_GS_BASE,                         .always = true  },
134         { .index = MSR_FS_BASE,                         .always = true  },
135         { .index = MSR_KERNEL_GS_BASE,                  .always = true  },
136         { .index = MSR_LSTAR,                           .always = true  },
137         { .index = MSR_CSTAR,                           .always = true  },
138         { .index = MSR_SYSCALL_MASK,                    .always = true  },
139 #endif
140         { .index = MSR_IA32_LASTBRANCHFROMIP,           .always = false },
141         { .index = MSR_IA32_LASTBRANCHTOIP,             .always = false },
142         { .index = MSR_IA32_LASTINTFROMIP,              .always = false },
143         { .index = MSR_IA32_LASTINTTOIP,                .always = false },
144         { .index = MSR_INVALID,                         .always = false },
145 };
146
147 /* enable NPT for AMD64 and X86 with PAE */
148 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
149 static bool npt_enabled = true;
150 #else
151 static bool npt_enabled;
152 #endif
153 static int npt = 1;
154
155 module_param(npt, int, S_IRUGO);
156
157 static int nested = 1;
158 module_param(nested, int, S_IRUGO);
159
160 static void svm_flush_tlb(struct kvm_vcpu *vcpu);
161 static void svm_complete_interrupts(struct vcpu_svm *svm);
162
163 static int nested_svm_exit_handled(struct vcpu_svm *svm);
164 static int nested_svm_intercept(struct vcpu_svm *svm);
165 static int nested_svm_vmexit(struct vcpu_svm *svm);
166 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
167                                       bool has_error_code, u32 error_code);
168
169 static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
170 {
171         return container_of(vcpu, struct vcpu_svm, vcpu);
172 }
173
174 static inline bool is_nested(struct vcpu_svm *svm)
175 {
176         return svm->nested.vmcb;
177 }
178
179 static inline void enable_gif(struct vcpu_svm *svm)
180 {
181         svm->vcpu.arch.hflags |= HF_GIF_MASK;
182 }
183
184 static inline void disable_gif(struct vcpu_svm *svm)
185 {
186         svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
187 }
188
189 static inline bool gif_set(struct vcpu_svm *svm)
190 {
191         return !!(svm->vcpu.arch.hflags & HF_GIF_MASK);
192 }
193
194 static unsigned long iopm_base;
195
196 struct kvm_ldttss_desc {
197         u16 limit0;
198         u16 base0;
199         unsigned base1:8, type:5, dpl:2, p:1;
200         unsigned limit1:4, zero0:3, g:1, base2:8;
201         u32 base3;
202         u32 zero1;
203 } __attribute__((packed));
204
205 struct svm_cpu_data {
206         int cpu;
207
208         u64 asid_generation;
209         u32 max_asid;
210         u32 next_asid;
211         struct kvm_ldttss_desc *tss_desc;
212
213         struct page *save_area;
214 };
215
216 static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
217 static uint32_t svm_features;
218
219 struct svm_init_data {
220         int cpu;
221         int r;
222 };
223
224 static u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
225
226 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
227 #define MSRS_RANGE_SIZE 2048
228 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
229
230 static u32 svm_msrpm_offset(u32 msr)
231 {
232         u32 offset;
233         int i;
234
235         for (i = 0; i < NUM_MSR_MAPS; i++) {
236                 if (msr < msrpm_ranges[i] ||
237                     msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
238                         continue;
239
240                 offset  = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
241                 offset += (i * MSRS_RANGE_SIZE);       /* add range offset */
242
243                 /* Now we have the u8 offset - but need the u32 offset */
244                 return offset / 4;
245         }
246
247         /* MSR not in any range */
248         return MSR_INVALID;
249 }
250
251 #define MAX_INST_SIZE 15
252
253 static inline u32 svm_has(u32 feat)
254 {
255         return svm_features & feat;
256 }
257
258 static inline void clgi(void)
259 {
260         asm volatile (__ex(SVM_CLGI));
261 }
262
263 static inline void stgi(void)
264 {
265         asm volatile (__ex(SVM_STGI));
266 }
267
268 static inline void invlpga(unsigned long addr, u32 asid)
269 {
270         asm volatile (__ex(SVM_INVLPGA) : : "a"(addr), "c"(asid));
271 }
272
273 static inline void force_new_asid(struct kvm_vcpu *vcpu)
274 {
275         to_svm(vcpu)->asid_generation--;
276 }
277
278 static inline void flush_guest_tlb(struct kvm_vcpu *vcpu)
279 {
280         force_new_asid(vcpu);
281 }
282
283 static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
284 {
285         if (!npt_enabled && !(efer & EFER_LMA))
286                 efer &= ~EFER_LME;
287
288         to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME;
289         vcpu->arch.efer = efer;
290 }
291
292 static int is_external_interrupt(u32 info)
293 {
294         info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
295         return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
296 }
297
298 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
299 {
300         struct vcpu_svm *svm = to_svm(vcpu);
301         u32 ret = 0;
302
303         if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
304                 ret |= KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
305         return ret & mask;
306 }
307
308 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
309 {
310         struct vcpu_svm *svm = to_svm(vcpu);
311
312         if (mask == 0)
313                 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
314         else
315                 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
316
317 }
318
319 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
320 {
321         struct vcpu_svm *svm = to_svm(vcpu);
322
323         if (!svm->next_rip) {
324                 if (emulate_instruction(vcpu, 0, 0, EMULTYPE_SKIP) !=
325                                 EMULATE_DONE)
326                         printk(KERN_DEBUG "%s: NOP\n", __func__);
327                 return;
328         }
329         if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
330                 printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n",
331                        __func__, kvm_rip_read(vcpu), svm->next_rip);
332
333         kvm_rip_write(vcpu, svm->next_rip);
334         svm_set_interrupt_shadow(vcpu, 0);
335 }
336
337 static void svm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
338                                 bool has_error_code, u32 error_code)
339 {
340         struct vcpu_svm *svm = to_svm(vcpu);
341
342         /*
343          * If we are within a nested VM we'd better #VMEXIT and let the guest
344          * handle the exception
345          */
346         if (nested_svm_check_exception(svm, nr, has_error_code, error_code))
347                 return;
348
349         if (nr == BP_VECTOR && !svm_has(SVM_FEATURE_NRIP)) {
350                 unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);
351
352                 /*
353                  * For guest debugging where we have to reinject #BP if some
354                  * INT3 is guest-owned:
355                  * Emulate nRIP by moving RIP forward. Will fail if injection
356                  * raises a fault that is not intercepted. Still better than
357                  * failing in all cases.
358                  */
359                 skip_emulated_instruction(&svm->vcpu);
360                 rip = kvm_rip_read(&svm->vcpu);
361                 svm->int3_rip = rip + svm->vmcb->save.cs.base;
362                 svm->int3_injected = rip - old_rip;
363         }
364
365         svm->vmcb->control.event_inj = nr
366                 | SVM_EVTINJ_VALID
367                 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
368                 | SVM_EVTINJ_TYPE_EXEPT;
369         svm->vmcb->control.event_inj_err = error_code;
370 }
371
372 static int has_svm(void)
373 {
374         const char *msg;
375
376         if (!cpu_has_svm(&msg)) {
377                 printk(KERN_INFO "has_svm: %s\n", msg);
378                 return 0;
379         }
380
381         return 1;
382 }
383
384 static void svm_hardware_disable(void *garbage)
385 {
386         cpu_svm_disable();
387 }
388
389 static int svm_hardware_enable(void *garbage)
390 {
391
392         struct svm_cpu_data *sd;
393         uint64_t efer;
394         struct desc_ptr gdt_descr;
395         struct desc_struct *gdt;
396         int me = raw_smp_processor_id();
397
398         rdmsrl(MSR_EFER, efer);
399         if (efer & EFER_SVME)
400                 return -EBUSY;
401
402         if (!has_svm()) {
403                 printk(KERN_ERR "svm_hardware_enable: err EOPNOTSUPP on %d\n",
404                        me);
405                 return -EINVAL;
406         }
407         sd = per_cpu(svm_data, me);
408
409         if (!sd) {
410                 printk(KERN_ERR "svm_hardware_enable: svm_data is NULL on %d\n",
411                        me);
412                 return -EINVAL;
413         }
414
415         sd->asid_generation = 1;
416         sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
417         sd->next_asid = sd->max_asid + 1;
418
419         native_store_gdt(&gdt_descr);
420         gdt = (struct desc_struct *)gdt_descr.address;
421         sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
422
423         wrmsrl(MSR_EFER, efer | EFER_SVME);
424
425         wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
426
427         return 0;
428 }
429
430 static void svm_cpu_uninit(int cpu)
431 {
432         struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id());
433
434         if (!sd)
435                 return;
436
437         per_cpu(svm_data, raw_smp_processor_id()) = NULL;
438         __free_page(sd->save_area);
439         kfree(sd);
440 }
441
442 static int svm_cpu_init(int cpu)
443 {
444         struct svm_cpu_data *sd;
445         int r;
446
447         sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
448         if (!sd)
449                 return -ENOMEM;
450         sd->cpu = cpu;
451         sd->save_area = alloc_page(GFP_KERNEL);
452         r = -ENOMEM;
453         if (!sd->save_area)
454                 goto err_1;
455
456         per_cpu(svm_data, cpu) = sd;
457
458         return 0;
459
460 err_1:
461         kfree(sd);
462         return r;
463
464 }
465
466 static bool valid_msr_intercept(u32 index)
467 {
468         int i;
469
470         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
471                 if (direct_access_msrs[i].index == index)
472                         return true;
473
474         return false;
475 }
476
477 static void set_msr_interception(u32 *msrpm, unsigned msr,
478                                  int read, int write)
479 {
480         u8 bit_read, bit_write;
481         unsigned long tmp;
482         u32 offset;
483
484         /*
485          * If this warning triggers extend the direct_access_msrs list at the
486          * beginning of the file
487          */
488         WARN_ON(!valid_msr_intercept(msr));
489
490         offset    = svm_msrpm_offset(msr);
491         bit_read  = 2 * (msr & 0x0f);
492         bit_write = 2 * (msr & 0x0f) + 1;
493         tmp       = msrpm[offset];
494
495         BUG_ON(offset == MSR_INVALID);
496
497         read  ? clear_bit(bit_read,  &tmp) : set_bit(bit_read,  &tmp);
498         write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
499
500         msrpm[offset] = tmp;
501 }
502
503 static void svm_vcpu_init_msrpm(u32 *msrpm)
504 {
505         int i;
506
507         memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
508
509         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
510                 if (!direct_access_msrs[i].always)
511                         continue;
512
513                 set_msr_interception(msrpm, direct_access_msrs[i].index, 1, 1);
514         }
515 }
516
517 static void add_msr_offset(u32 offset)
518 {
519         int i;
520
521         for (i = 0; i < MSRPM_OFFSETS; ++i) {
522
523                 /* Offset already in list? */
524                 if (msrpm_offsets[i] == offset)
525                         return;
526
527                 /* Slot used by another offset? */
528                 if (msrpm_offsets[i] != MSR_INVALID)
529                         continue;
530
531                 /* Add offset to list */
532                 msrpm_offsets[i] = offset;
533
534                 return;
535         }
536
537         /*
538          * If this BUG triggers the msrpm_offsets table has an overflow. Just
539          * increase MSRPM_OFFSETS in this case.
540          */
541         BUG();
542 }
543
544 static void init_msrpm_offsets(void)
545 {
546         int i;
547
548         memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
549
550         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
551                 u32 offset;
552
553                 offset = svm_msrpm_offset(direct_access_msrs[i].index);
554                 BUG_ON(offset == MSR_INVALID);
555
556                 add_msr_offset(offset);
557         }
558 }
559
560 static void svm_enable_lbrv(struct vcpu_svm *svm)
561 {
562         u32 *msrpm = svm->msrpm;
563
564         svm->vmcb->control.lbr_ctl = 1;
565         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
566         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
567         set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
568         set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
569 }
570
571 static void svm_disable_lbrv(struct vcpu_svm *svm)
572 {
573         u32 *msrpm = svm->msrpm;
574
575         svm->vmcb->control.lbr_ctl = 0;
576         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
577         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
578         set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
579         set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
580 }
581
582 static __init int svm_hardware_setup(void)
583 {
584         int cpu;
585         struct page *iopm_pages;
586         void *iopm_va;
587         int r;
588
589         iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
590
591         if (!iopm_pages)
592                 return -ENOMEM;
593
594         iopm_va = page_address(iopm_pages);
595         memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
596         iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
597
598         init_msrpm_offsets();
599
600         if (boot_cpu_has(X86_FEATURE_NX))
601                 kvm_enable_efer_bits(EFER_NX);
602
603         if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
604                 kvm_enable_efer_bits(EFER_FFXSR);
605
606         if (nested) {
607                 printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
608                 kvm_enable_efer_bits(EFER_SVME);
609         }
610
611         for_each_possible_cpu(cpu) {
612                 r = svm_cpu_init(cpu);
613                 if (r)
614                         goto err;
615         }
616
617         svm_features = cpuid_edx(SVM_CPUID_FUNC);
618
619         if (!svm_has(SVM_FEATURE_NPT))
620                 npt_enabled = false;
621
622         if (npt_enabled && !npt) {
623                 printk(KERN_INFO "kvm: Nested Paging disabled\n");
624                 npt_enabled = false;
625         }
626
627         if (npt_enabled) {
628                 printk(KERN_INFO "kvm: Nested Paging enabled\n");
629                 kvm_enable_tdp();
630         } else
631                 kvm_disable_tdp();
632
633         return 0;
634
635 err:
636         __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
637         iopm_base = 0;
638         return r;
639 }
640
641 static __exit void svm_hardware_unsetup(void)
642 {
643         int cpu;
644
645         for_each_possible_cpu(cpu)
646                 svm_cpu_uninit(cpu);
647
648         __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
649         iopm_base = 0;
650 }
651
652 static void init_seg(struct vmcb_seg *seg)
653 {
654         seg->selector = 0;
655         seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
656                       SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
657         seg->limit = 0xffff;
658         seg->base = 0;
659 }
660
661 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
662 {
663         seg->selector = 0;
664         seg->attrib = SVM_SELECTOR_P_MASK | type;
665         seg->limit = 0xffff;
666         seg->base = 0;
667 }
668
669 static void init_vmcb(struct vcpu_svm *svm)
670 {
671         struct vmcb_control_area *control = &svm->vmcb->control;
672         struct vmcb_save_area *save = &svm->vmcb->save;
673
674         svm->vcpu.fpu_active = 1;
675
676         control->intercept_cr_read =    INTERCEPT_CR0_MASK |
677                                         INTERCEPT_CR3_MASK |
678                                         INTERCEPT_CR4_MASK;
679
680         control->intercept_cr_write =   INTERCEPT_CR0_MASK |
681                                         INTERCEPT_CR3_MASK |
682                                         INTERCEPT_CR4_MASK |
683                                         INTERCEPT_CR8_MASK;
684
685         control->intercept_dr_read =    INTERCEPT_DR0_MASK |
686                                         INTERCEPT_DR1_MASK |
687                                         INTERCEPT_DR2_MASK |
688                                         INTERCEPT_DR3_MASK |
689                                         INTERCEPT_DR4_MASK |
690                                         INTERCEPT_DR5_MASK |
691                                         INTERCEPT_DR6_MASK |
692                                         INTERCEPT_DR7_MASK;
693
694         control->intercept_dr_write =   INTERCEPT_DR0_MASK |
695                                         INTERCEPT_DR1_MASK |
696                                         INTERCEPT_DR2_MASK |
697                                         INTERCEPT_DR3_MASK |
698                                         INTERCEPT_DR4_MASK |
699                                         INTERCEPT_DR5_MASK |
700                                         INTERCEPT_DR6_MASK |
701                                         INTERCEPT_DR7_MASK;
702
703         control->intercept_exceptions = (1 << PF_VECTOR) |
704                                         (1 << UD_VECTOR) |
705                                         (1 << MC_VECTOR);
706
707
708         control->intercept =    (1ULL << INTERCEPT_INTR) |
709                                 (1ULL << INTERCEPT_NMI) |
710                                 (1ULL << INTERCEPT_SMI) |
711                                 (1ULL << INTERCEPT_SELECTIVE_CR0) |
712                                 (1ULL << INTERCEPT_CPUID) |
713                                 (1ULL << INTERCEPT_INVD) |
714                                 (1ULL << INTERCEPT_HLT) |
715                                 (1ULL << INTERCEPT_INVLPG) |
716                                 (1ULL << INTERCEPT_INVLPGA) |
717                                 (1ULL << INTERCEPT_IOIO_PROT) |
718                                 (1ULL << INTERCEPT_MSR_PROT) |
719                                 (1ULL << INTERCEPT_TASK_SWITCH) |
720                                 (1ULL << INTERCEPT_SHUTDOWN) |
721                                 (1ULL << INTERCEPT_VMRUN) |
722                                 (1ULL << INTERCEPT_VMMCALL) |
723                                 (1ULL << INTERCEPT_VMLOAD) |
724                                 (1ULL << INTERCEPT_VMSAVE) |
725                                 (1ULL << INTERCEPT_STGI) |
726                                 (1ULL << INTERCEPT_CLGI) |
727                                 (1ULL << INTERCEPT_SKINIT) |
728                                 (1ULL << INTERCEPT_WBINVD) |
729                                 (1ULL << INTERCEPT_MONITOR) |
730                                 (1ULL << INTERCEPT_MWAIT);
731
732         control->iopm_base_pa = iopm_base;
733         control->msrpm_base_pa = __pa(svm->msrpm);
734         control->tsc_offset = 0;
735         control->int_ctl = V_INTR_MASKING_MASK;
736
737         init_seg(&save->es);
738         init_seg(&save->ss);
739         init_seg(&save->ds);
740         init_seg(&save->fs);
741         init_seg(&save->gs);
742
743         save->cs.selector = 0xf000;
744         /* Executable/Readable Code Segment */
745         save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
746                 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
747         save->cs.limit = 0xffff;
748         /*
749          * cs.base should really be 0xffff0000, but vmx can't handle that, so
750          * be consistent with it.
751          *
752          * Replace when we have real mode working for vmx.
753          */
754         save->cs.base = 0xf0000;
755
756         save->gdtr.limit = 0xffff;
757         save->idtr.limit = 0xffff;
758
759         init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
760         init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
761
762         save->efer = EFER_SVME;
763         save->dr6 = 0xffff0ff0;
764         save->dr7 = 0x400;
765         save->rflags = 2;
766         save->rip = 0x0000fff0;
767         svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
768
769         /*
770          * This is the guest-visible cr0 value.
771          * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
772          */
773         svm->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
774         kvm_set_cr0(&svm->vcpu, svm->vcpu.arch.cr0);
775
776         save->cr4 = X86_CR4_PAE;
777         /* rdx = ?? */
778
779         if (npt_enabled) {
780                 /* Setup VMCB for Nested Paging */
781                 control->nested_ctl = 1;
782                 control->intercept &= ~((1ULL << INTERCEPT_TASK_SWITCH) |
783                                         (1ULL << INTERCEPT_INVLPG));
784                 control->intercept_exceptions &= ~(1 << PF_VECTOR);
785                 control->intercept_cr_read &= ~INTERCEPT_CR3_MASK;
786                 control->intercept_cr_write &= ~INTERCEPT_CR3_MASK;
787                 save->g_pat = 0x0007040600070406ULL;
788                 save->cr3 = 0;
789                 save->cr4 = 0;
790         }
791         force_new_asid(&svm->vcpu);
792
793         svm->nested.vmcb = 0;
794         svm->vcpu.arch.hflags = 0;
795
796         if (svm_has(SVM_FEATURE_PAUSE_FILTER)) {
797                 control->pause_filter_count = 3000;
798                 control->intercept |= (1ULL << INTERCEPT_PAUSE);
799         }
800
801         enable_gif(svm);
802 }
803
804 static int svm_vcpu_reset(struct kvm_vcpu *vcpu)
805 {
806         struct vcpu_svm *svm = to_svm(vcpu);
807
808         init_vmcb(svm);
809
810         if (!kvm_vcpu_is_bsp(vcpu)) {
811                 kvm_rip_write(vcpu, 0);
812                 svm->vmcb->save.cs.base = svm->vcpu.arch.sipi_vector << 12;
813                 svm->vmcb->save.cs.selector = svm->vcpu.arch.sipi_vector << 8;
814         }
815         vcpu->arch.regs_avail = ~0;
816         vcpu->arch.regs_dirty = ~0;
817
818         return 0;
819 }
820
821 static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
822 {
823         struct vcpu_svm *svm;
824         struct page *page;
825         struct page *msrpm_pages;
826         struct page *hsave_page;
827         struct page *nested_msrpm_pages;
828         int err;
829
830         svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
831         if (!svm) {
832                 err = -ENOMEM;
833                 goto out;
834         }
835
836         err = kvm_vcpu_init(&svm->vcpu, kvm, id);
837         if (err)
838                 goto free_svm;
839
840         err = -ENOMEM;
841         page = alloc_page(GFP_KERNEL);
842         if (!page)
843                 goto uninit;
844
845         msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
846         if (!msrpm_pages)
847                 goto free_page1;
848
849         nested_msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
850         if (!nested_msrpm_pages)
851                 goto free_page2;
852
853         hsave_page = alloc_page(GFP_KERNEL);
854         if (!hsave_page)
855                 goto free_page3;
856
857         svm->nested.hsave = page_address(hsave_page);
858
859         svm->msrpm = page_address(msrpm_pages);
860         svm_vcpu_init_msrpm(svm->msrpm);
861
862         svm->nested.msrpm = page_address(nested_msrpm_pages);
863         svm_vcpu_init_msrpm(svm->nested.msrpm);
864
865         svm->vmcb = page_address(page);
866         clear_page(svm->vmcb);
867         svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
868         svm->asid_generation = 0;
869         init_vmcb(svm);
870
871         fx_init(&svm->vcpu);
872         svm->vcpu.arch.apic_base = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
873         if (kvm_vcpu_is_bsp(&svm->vcpu))
874                 svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
875
876         return &svm->vcpu;
877
878 free_page3:
879         __free_pages(nested_msrpm_pages, MSRPM_ALLOC_ORDER);
880 free_page2:
881         __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
882 free_page1:
883         __free_page(page);
884 uninit:
885         kvm_vcpu_uninit(&svm->vcpu);
886 free_svm:
887         kmem_cache_free(kvm_vcpu_cache, svm);
888 out:
889         return ERR_PTR(err);
890 }
891
892 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
893 {
894         struct vcpu_svm *svm = to_svm(vcpu);
895
896         __free_page(pfn_to_page(svm->vmcb_pa >> PAGE_SHIFT));
897         __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
898         __free_page(virt_to_page(svm->nested.hsave));
899         __free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
900         kvm_vcpu_uninit(vcpu);
901         kmem_cache_free(kvm_vcpu_cache, svm);
902 }
903
904 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
905 {
906         struct vcpu_svm *svm = to_svm(vcpu);
907         int i;
908
909         if (unlikely(cpu != vcpu->cpu)) {
910                 u64 delta;
911
912                 if (check_tsc_unstable()) {
913                         /*
914                          * Make sure that the guest sees a monotonically
915                          * increasing TSC.
916                          */
917                         delta = vcpu->arch.host_tsc - native_read_tsc();
918                         svm->vmcb->control.tsc_offset += delta;
919                         if (is_nested(svm))
920                                 svm->nested.hsave->control.tsc_offset += delta;
921                 }
922                 vcpu->cpu = cpu;
923                 kvm_migrate_timers(vcpu);
924                 svm->asid_generation = 0;
925         }
926
927         for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
928                 rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
929 }
930
931 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
932 {
933         struct vcpu_svm *svm = to_svm(vcpu);
934         int i;
935
936         ++vcpu->stat.host_state_reload;
937         for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
938                 wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
939
940         vcpu->arch.host_tsc = native_read_tsc();
941 }
942
943 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
944 {
945         return to_svm(vcpu)->vmcb->save.rflags;
946 }
947
948 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
949 {
950         to_svm(vcpu)->vmcb->save.rflags = rflags;
951 }
952
953 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
954 {
955         switch (reg) {
956         case VCPU_EXREG_PDPTR:
957                 BUG_ON(!npt_enabled);
958                 load_pdptrs(vcpu, vcpu->arch.cr3);
959                 break;
960         default:
961                 BUG();
962         }
963 }
964
965 static void svm_set_vintr(struct vcpu_svm *svm)
966 {
967         svm->vmcb->control.intercept |= 1ULL << INTERCEPT_VINTR;
968 }
969
970 static void svm_clear_vintr(struct vcpu_svm *svm)
971 {
972         svm->vmcb->control.intercept &= ~(1ULL << INTERCEPT_VINTR);
973 }
974
975 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
976 {
977         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
978
979         switch (seg) {
980         case VCPU_SREG_CS: return &save->cs;
981         case VCPU_SREG_DS: return &save->ds;
982         case VCPU_SREG_ES: return &save->es;
983         case VCPU_SREG_FS: return &save->fs;
984         case VCPU_SREG_GS: return &save->gs;
985         case VCPU_SREG_SS: return &save->ss;
986         case VCPU_SREG_TR: return &save->tr;
987         case VCPU_SREG_LDTR: return &save->ldtr;
988         }
989         BUG();
990         return NULL;
991 }
992
993 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
994 {
995         struct vmcb_seg *s = svm_seg(vcpu, seg);
996
997         return s->base;
998 }
999
1000 static void svm_get_segment(struct kvm_vcpu *vcpu,
1001                             struct kvm_segment *var, int seg)
1002 {
1003         struct vmcb_seg *s = svm_seg(vcpu, seg);
1004
1005         var->base = s->base;
1006         var->limit = s->limit;
1007         var->selector = s->selector;
1008         var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1009         var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1010         var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1011         var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1012         var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1013         var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1014         var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1015         var->g = (s->attrib >> SVM_SELECTOR_G_SHIFT) & 1;
1016
1017         /*
1018          * AMD's VMCB does not have an explicit unusable field, so emulate it
1019          * for cross vendor migration purposes by "not present"
1020          */
1021         var->unusable = !var->present || (var->type == 0);
1022
1023         switch (seg) {
1024         case VCPU_SREG_CS:
1025                 /*
1026                  * SVM always stores 0 for the 'G' bit in the CS selector in
1027                  * the VMCB on a VMEXIT. This hurts cross-vendor migration:
1028                  * Intel's VMENTRY has a check on the 'G' bit.
1029                  */
1030                 var->g = s->limit > 0xfffff;
1031                 break;
1032         case VCPU_SREG_TR:
1033                 /*
1034                  * Work around a bug where the busy flag in the tr selector
1035                  * isn't exposed
1036                  */
1037                 var->type |= 0x2;
1038                 break;
1039         case VCPU_SREG_DS:
1040         case VCPU_SREG_ES:
1041         case VCPU_SREG_FS:
1042         case VCPU_SREG_GS:
1043                 /*
1044                  * The accessed bit must always be set in the segment
1045                  * descriptor cache, although it can be cleared in the
1046                  * descriptor, the cached bit always remains at 1. Since
1047                  * Intel has a check on this, set it here to support
1048                  * cross-vendor migration.
1049                  */
1050                 if (!var->unusable)
1051                         var->type |= 0x1;
1052                 break;
1053         case VCPU_SREG_SS:
1054                 /*
1055                  * On AMD CPUs sometimes the DB bit in the segment
1056                  * descriptor is left as 1, although the whole segment has
1057                  * been made unusable. Clear it here to pass an Intel VMX
1058                  * entry check when cross vendor migrating.
1059                  */
1060                 if (var->unusable)
1061                         var->db = 0;
1062                 break;
1063         }
1064 }
1065
1066 static int svm_get_cpl(struct kvm_vcpu *vcpu)
1067 {
1068         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1069
1070         return save->cpl;
1071 }
1072
1073 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1074 {
1075         struct vcpu_svm *svm = to_svm(vcpu);
1076
1077         dt->size = svm->vmcb->save.idtr.limit;
1078         dt->address = svm->vmcb->save.idtr.base;
1079 }
1080
1081 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1082 {
1083         struct vcpu_svm *svm = to_svm(vcpu);
1084
1085         svm->vmcb->save.idtr.limit = dt->size;
1086         svm->vmcb->save.idtr.base = dt->address ;
1087 }
1088
1089 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1090 {
1091         struct vcpu_svm *svm = to_svm(vcpu);
1092
1093         dt->size = svm->vmcb->save.gdtr.limit;
1094         dt->address = svm->vmcb->save.gdtr.base;
1095 }
1096
1097 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1098 {
1099         struct vcpu_svm *svm = to_svm(vcpu);
1100
1101         svm->vmcb->save.gdtr.limit = dt->size;
1102         svm->vmcb->save.gdtr.base = dt->address ;
1103 }
1104
1105 static void svm_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
1106 {
1107 }
1108
1109 static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1110 {
1111 }
1112
1113 static void update_cr0_intercept(struct vcpu_svm *svm)
1114 {
1115         struct vmcb *vmcb = svm->vmcb;
1116         ulong gcr0 = svm->vcpu.arch.cr0;
1117         u64 *hcr0 = &svm->vmcb->save.cr0;
1118
1119         if (!svm->vcpu.fpu_active)
1120                 *hcr0 |= SVM_CR0_SELECTIVE_MASK;
1121         else
1122                 *hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
1123                         | (gcr0 & SVM_CR0_SELECTIVE_MASK);
1124
1125
1126         if (gcr0 == *hcr0 && svm->vcpu.fpu_active) {
1127                 vmcb->control.intercept_cr_read &= ~INTERCEPT_CR0_MASK;
1128                 vmcb->control.intercept_cr_write &= ~INTERCEPT_CR0_MASK;
1129                 if (is_nested(svm)) {
1130                         struct vmcb *hsave = svm->nested.hsave;
1131
1132                         hsave->control.intercept_cr_read  &= ~INTERCEPT_CR0_MASK;
1133                         hsave->control.intercept_cr_write &= ~INTERCEPT_CR0_MASK;
1134                         vmcb->control.intercept_cr_read  |= svm->nested.intercept_cr_read;
1135                         vmcb->control.intercept_cr_write |= svm->nested.intercept_cr_write;
1136                 }
1137         } else {
1138                 svm->vmcb->control.intercept_cr_read |= INTERCEPT_CR0_MASK;
1139                 svm->vmcb->control.intercept_cr_write |= INTERCEPT_CR0_MASK;
1140                 if (is_nested(svm)) {
1141                         struct vmcb *hsave = svm->nested.hsave;
1142
1143                         hsave->control.intercept_cr_read |= INTERCEPT_CR0_MASK;
1144                         hsave->control.intercept_cr_write |= INTERCEPT_CR0_MASK;
1145                 }
1146         }
1147 }
1148
1149 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1150 {
1151         struct vcpu_svm *svm = to_svm(vcpu);
1152
1153         if (is_nested(svm)) {
1154                 /*
1155                  * We are here because we run in nested mode, the host kvm
1156                  * intercepts cr0 writes but the l1 hypervisor does not.
1157                  * But the L1 hypervisor may intercept selective cr0 writes.
1158                  * This needs to be checked here.
1159                  */
1160                 unsigned long old, new;
1161
1162                 /* Remove bits that would trigger a real cr0 write intercept */
1163                 old = vcpu->arch.cr0 & SVM_CR0_SELECTIVE_MASK;
1164                 new = cr0 & SVM_CR0_SELECTIVE_MASK;
1165
1166                 if (old == new) {
1167                         /* cr0 write with ts and mp unchanged */
1168                         svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
1169                         if (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE)
1170                                 return;
1171                 }
1172         }
1173
1174 #ifdef CONFIG_X86_64
1175         if (vcpu->arch.efer & EFER_LME) {
1176                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1177                         vcpu->arch.efer |= EFER_LMA;
1178                         svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1179                 }
1180
1181                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1182                         vcpu->arch.efer &= ~EFER_LMA;
1183                         svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1184                 }
1185         }
1186 #endif
1187         vcpu->arch.cr0 = cr0;
1188
1189         if (!npt_enabled)
1190                 cr0 |= X86_CR0_PG | X86_CR0_WP;
1191
1192         if (!vcpu->fpu_active)
1193                 cr0 |= X86_CR0_TS;
1194         /*
1195          * re-enable caching here because the QEMU bios
1196          * does not do it - this results in some delay at
1197          * reboot
1198          */
1199         cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1200         svm->vmcb->save.cr0 = cr0;
1201         update_cr0_intercept(svm);
1202 }
1203
1204 static void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1205 {
1206         unsigned long host_cr4_mce = read_cr4() & X86_CR4_MCE;
1207         unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
1208
1209         if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
1210                 force_new_asid(vcpu);
1211
1212         vcpu->arch.cr4 = cr4;
1213         if (!npt_enabled)
1214                 cr4 |= X86_CR4_PAE;
1215         cr4 |= host_cr4_mce;
1216         to_svm(vcpu)->vmcb->save.cr4 = cr4;
1217 }
1218
1219 static void svm_set_segment(struct kvm_vcpu *vcpu,
1220                             struct kvm_segment *var, int seg)
1221 {
1222         struct vcpu_svm *svm = to_svm(vcpu);
1223         struct vmcb_seg *s = svm_seg(vcpu, seg);
1224
1225         s->base = var->base;
1226         s->limit = var->limit;
1227         s->selector = var->selector;
1228         if (var->unusable)
1229                 s->attrib = 0;
1230         else {
1231                 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1232                 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1233                 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1234                 s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT;
1235                 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1236                 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1237                 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1238                 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1239         }
1240         if (seg == VCPU_SREG_CS)
1241                 svm->vmcb->save.cpl
1242                         = (svm->vmcb->save.cs.attrib
1243                            >> SVM_SELECTOR_DPL_SHIFT) & 3;
1244
1245 }
1246
1247 static void update_db_intercept(struct kvm_vcpu *vcpu)
1248 {
1249         struct vcpu_svm *svm = to_svm(vcpu);
1250
1251         svm->vmcb->control.intercept_exceptions &=
1252                 ~((1 << DB_VECTOR) | (1 << BP_VECTOR));
1253
1254         if (svm->nmi_singlestep)
1255                 svm->vmcb->control.intercept_exceptions |= (1 << DB_VECTOR);
1256
1257         if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
1258                 if (vcpu->guest_debug &
1259                     (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
1260                         svm->vmcb->control.intercept_exceptions |=
1261                                 1 << DB_VECTOR;
1262                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
1263                         svm->vmcb->control.intercept_exceptions |=
1264                                 1 << BP_VECTOR;
1265         } else
1266                 vcpu->guest_debug = 0;
1267 }
1268
1269 static void svm_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
1270 {
1271         struct vcpu_svm *svm = to_svm(vcpu);
1272
1273         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1274                 svm->vmcb->save.dr7 = dbg->arch.debugreg[7];
1275         else
1276                 svm->vmcb->save.dr7 = vcpu->arch.dr7;
1277
1278         update_db_intercept(vcpu);
1279 }
1280
1281 static void load_host_msrs(struct kvm_vcpu *vcpu)
1282 {
1283 #ifdef CONFIG_X86_64
1284         wrmsrl(MSR_GS_BASE, to_svm(vcpu)->host_gs_base);
1285 #endif
1286 }
1287
1288 static void save_host_msrs(struct kvm_vcpu *vcpu)
1289 {
1290 #ifdef CONFIG_X86_64
1291         rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host_gs_base);
1292 #endif
1293 }
1294
1295 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
1296 {
1297         if (sd->next_asid > sd->max_asid) {
1298                 ++sd->asid_generation;
1299                 sd->next_asid = 1;
1300                 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
1301         }
1302
1303         svm->asid_generation = sd->asid_generation;
1304         svm->vmcb->control.asid = sd->next_asid++;
1305 }
1306
1307 static int svm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *dest)
1308 {
1309         struct vcpu_svm *svm = to_svm(vcpu);
1310
1311         switch (dr) {
1312         case 0 ... 3:
1313                 *dest = vcpu->arch.db[dr];
1314                 break;
1315         case 4:
1316                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
1317                         return EMULATE_FAIL; /* will re-inject UD */
1318                 /* fall through */
1319         case 6:
1320                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1321                         *dest = vcpu->arch.dr6;
1322                 else
1323                         *dest = svm->vmcb->save.dr6;
1324                 break;
1325         case 5:
1326                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
1327                         return EMULATE_FAIL; /* will re-inject UD */
1328                 /* fall through */
1329         case 7:
1330                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1331                         *dest = vcpu->arch.dr7;
1332                 else
1333                         *dest = svm->vmcb->save.dr7;
1334                 break;
1335         }
1336
1337         return EMULATE_DONE;
1338 }
1339
1340 static int svm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long value)
1341 {
1342         struct vcpu_svm *svm = to_svm(vcpu);
1343
1344         switch (dr) {
1345         case 0 ... 3:
1346                 vcpu->arch.db[dr] = value;
1347                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1348                         vcpu->arch.eff_db[dr] = value;
1349                 break;
1350         case 4:
1351                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
1352                         return EMULATE_FAIL; /* will re-inject UD */
1353                 /* fall through */
1354         case 6:
1355                 vcpu->arch.dr6 = (value & DR6_VOLATILE) | DR6_FIXED_1;
1356                 break;
1357         case 5:
1358                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
1359                         return EMULATE_FAIL; /* will re-inject UD */
1360                 /* fall through */
1361         case 7:
1362                 vcpu->arch.dr7 = (value & DR7_VOLATILE) | DR7_FIXED_1;
1363                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1364                         svm->vmcb->save.dr7 = vcpu->arch.dr7;
1365                         vcpu->arch.switch_db_regs = (value & DR7_BP_EN_MASK);
1366                 }
1367                 break;
1368         }
1369
1370         return EMULATE_DONE;
1371 }
1372
1373 static int pf_interception(struct vcpu_svm *svm)
1374 {
1375         u64 fault_address;
1376         u32 error_code;
1377
1378         fault_address  = svm->vmcb->control.exit_info_2;
1379         error_code = svm->vmcb->control.exit_info_1;
1380
1381         trace_kvm_page_fault(fault_address, error_code);
1382         if (!npt_enabled && kvm_event_needs_reinjection(&svm->vcpu))
1383                 kvm_mmu_unprotect_page_virt(&svm->vcpu, fault_address);
1384         return kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code);
1385 }
1386
1387 static int db_interception(struct vcpu_svm *svm)
1388 {
1389         struct kvm_run *kvm_run = svm->vcpu.run;
1390
1391         if (!(svm->vcpu.guest_debug &
1392               (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
1393                 !svm->nmi_singlestep) {
1394                 kvm_queue_exception(&svm->vcpu, DB_VECTOR);
1395                 return 1;
1396         }
1397
1398         if (svm->nmi_singlestep) {
1399                 svm->nmi_singlestep = false;
1400                 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP))
1401                         svm->vmcb->save.rflags &=
1402                                 ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
1403                 update_db_intercept(&svm->vcpu);
1404         }
1405
1406         if (svm->vcpu.guest_debug &
1407             (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
1408                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1409                 kvm_run->debug.arch.pc =
1410                         svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1411                 kvm_run->debug.arch.exception = DB_VECTOR;
1412                 return 0;
1413         }
1414
1415         return 1;
1416 }
1417
1418 static int bp_interception(struct vcpu_svm *svm)
1419 {
1420         struct kvm_run *kvm_run = svm->vcpu.run;
1421
1422         kvm_run->exit_reason = KVM_EXIT_DEBUG;
1423         kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1424         kvm_run->debug.arch.exception = BP_VECTOR;
1425         return 0;
1426 }
1427
1428 static int ud_interception(struct vcpu_svm *svm)
1429 {
1430         int er;
1431
1432         er = emulate_instruction(&svm->vcpu, 0, 0, EMULTYPE_TRAP_UD);
1433         if (er != EMULATE_DONE)
1434                 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1435         return 1;
1436 }
1437
1438 static void svm_fpu_activate(struct kvm_vcpu *vcpu)
1439 {
1440         struct vcpu_svm *svm = to_svm(vcpu);
1441         u32 excp;
1442
1443         if (is_nested(svm)) {
1444                 u32 h_excp, n_excp;
1445
1446                 h_excp  = svm->nested.hsave->control.intercept_exceptions;
1447                 n_excp  = svm->nested.intercept_exceptions;
1448                 h_excp &= ~(1 << NM_VECTOR);
1449                 excp    = h_excp | n_excp;
1450         } else {
1451                 excp  = svm->vmcb->control.intercept_exceptions;
1452                 excp &= ~(1 << NM_VECTOR);
1453         }
1454
1455         svm->vmcb->control.intercept_exceptions = excp;
1456
1457         svm->vcpu.fpu_active = 1;
1458         update_cr0_intercept(svm);
1459 }
1460
1461 static int nm_interception(struct vcpu_svm *svm)
1462 {
1463         svm_fpu_activate(&svm->vcpu);
1464         return 1;
1465 }
1466
1467 static int mc_interception(struct vcpu_svm *svm)
1468 {
1469         /*
1470          * On an #MC intercept the MCE handler is not called automatically in
1471          * the host. So do it by hand here.
1472          */
1473         asm volatile (
1474                 "int $0x12\n");
1475         /* not sure if we ever come back to this point */
1476
1477         return 1;
1478 }
1479
1480 static int shutdown_interception(struct vcpu_svm *svm)
1481 {
1482         struct kvm_run *kvm_run = svm->vcpu.run;
1483
1484         /*
1485          * VMCB is undefined after a SHUTDOWN intercept
1486          * so reinitialize it.
1487          */
1488         clear_page(svm->vmcb);
1489         init_vmcb(svm);
1490
1491         kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
1492         return 0;
1493 }
1494
1495 static int io_interception(struct vcpu_svm *svm)
1496 {
1497         u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
1498         int size, in, string;
1499         unsigned port;
1500
1501         ++svm->vcpu.stat.io_exits;
1502
1503         svm->next_rip = svm->vmcb->control.exit_info_2;
1504
1505         string = (io_info & SVM_IOIO_STR_MASK) != 0;
1506
1507         if (string) {
1508                 if (emulate_instruction(&svm->vcpu,
1509                                         0, 0, 0) == EMULATE_DO_MMIO)
1510                         return 0;
1511                 return 1;
1512         }
1513
1514         in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
1515         port = io_info >> 16;
1516         size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
1517
1518         skip_emulated_instruction(&svm->vcpu);
1519         return kvm_emulate_pio(&svm->vcpu, in, size, port);
1520 }
1521
1522 static int nmi_interception(struct vcpu_svm *svm)
1523 {
1524         return 1;
1525 }
1526
1527 static int intr_interception(struct vcpu_svm *svm)
1528 {
1529         ++svm->vcpu.stat.irq_exits;
1530         return 1;
1531 }
1532
1533 static int nop_on_interception(struct vcpu_svm *svm)
1534 {
1535         return 1;
1536 }
1537
1538 static int halt_interception(struct vcpu_svm *svm)
1539 {
1540         svm->next_rip = kvm_rip_read(&svm->vcpu) + 1;
1541         skip_emulated_instruction(&svm->vcpu);
1542         return kvm_emulate_halt(&svm->vcpu);
1543 }
1544
1545 static int vmmcall_interception(struct vcpu_svm *svm)
1546 {
1547         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1548         skip_emulated_instruction(&svm->vcpu);
1549         kvm_emulate_hypercall(&svm->vcpu);
1550         return 1;
1551 }
1552
1553 static int nested_svm_check_permissions(struct vcpu_svm *svm)
1554 {
1555         if (!(svm->vcpu.arch.efer & EFER_SVME)
1556             || !is_paging(&svm->vcpu)) {
1557                 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1558                 return 1;
1559         }
1560
1561         if (svm->vmcb->save.cpl) {
1562                 kvm_inject_gp(&svm->vcpu, 0);
1563                 return 1;
1564         }
1565
1566        return 0;
1567 }
1568
1569 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
1570                                       bool has_error_code, u32 error_code)
1571 {
1572         int vmexit;
1573
1574         if (!is_nested(svm))
1575                 return 0;
1576
1577         svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
1578         svm->vmcb->control.exit_code_hi = 0;
1579         svm->vmcb->control.exit_info_1 = error_code;
1580         svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
1581
1582         vmexit = nested_svm_intercept(svm);
1583         if (vmexit == NESTED_EXIT_DONE)
1584                 svm->nested.exit_required = true;
1585
1586         return vmexit;
1587 }
1588
1589 /* This function returns true if it is save to enable the irq window */
1590 static inline bool nested_svm_intr(struct vcpu_svm *svm)
1591 {
1592         if (!is_nested(svm))
1593                 return true;
1594
1595         if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
1596                 return true;
1597
1598         if (!(svm->vcpu.arch.hflags & HF_HIF_MASK))
1599                 return false;
1600
1601         svm->vmcb->control.exit_code   = SVM_EXIT_INTR;
1602         svm->vmcb->control.exit_info_1 = 0;
1603         svm->vmcb->control.exit_info_2 = 0;
1604
1605         if (svm->nested.intercept & 1ULL) {
1606                 /*
1607                  * The #vmexit can't be emulated here directly because this
1608                  * code path runs with irqs and preemtion disabled. A
1609                  * #vmexit emulation might sleep. Only signal request for
1610                  * the #vmexit here.
1611                  */
1612                 svm->nested.exit_required = true;
1613                 trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip);
1614                 return false;
1615         }
1616
1617         return true;
1618 }
1619
1620 /* This function returns true if it is save to enable the nmi window */
1621 static inline bool nested_svm_nmi(struct vcpu_svm *svm)
1622 {
1623         if (!is_nested(svm))
1624                 return true;
1625
1626         if (!(svm->nested.intercept & (1ULL << INTERCEPT_NMI)))
1627                 return true;
1628
1629         svm->vmcb->control.exit_code = SVM_EXIT_NMI;
1630         svm->nested.exit_required = true;
1631
1632         return false;
1633 }
1634
1635 static void *nested_svm_map(struct vcpu_svm *svm, u64 gpa, struct page **_page)
1636 {
1637         struct page *page;
1638
1639         might_sleep();
1640
1641         page = gfn_to_page(svm->vcpu.kvm, gpa >> PAGE_SHIFT);
1642         if (is_error_page(page))
1643                 goto error;
1644
1645         *_page = page;
1646
1647         return kmap(page);
1648
1649 error:
1650         kvm_release_page_clean(page);
1651         kvm_inject_gp(&svm->vcpu, 0);
1652
1653         return NULL;
1654 }
1655
1656 static void nested_svm_unmap(struct page *page)
1657 {
1658         kunmap(page);
1659         kvm_release_page_dirty(page);
1660 }
1661
1662 static int nested_svm_intercept_ioio(struct vcpu_svm *svm)
1663 {
1664         unsigned port;
1665         u8 val, bit;
1666         u64 gpa;
1667
1668         if (!(svm->nested.intercept & (1ULL << INTERCEPT_IOIO_PROT)))
1669                 return NESTED_EXIT_HOST;
1670
1671         port = svm->vmcb->control.exit_info_1 >> 16;
1672         gpa  = svm->nested.vmcb_iopm + (port / 8);
1673         bit  = port % 8;
1674         val  = 0;
1675
1676         if (kvm_read_guest(svm->vcpu.kvm, gpa, &val, 1))
1677                 val &= (1 << bit);
1678
1679         return val ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
1680 }
1681
1682 static int nested_svm_exit_handled_msr(struct vcpu_svm *svm)
1683 {
1684         u32 offset, msr, value;
1685         int write, mask;
1686
1687         if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
1688                 return NESTED_EXIT_HOST;
1689
1690         msr    = svm->vcpu.arch.regs[VCPU_REGS_RCX];
1691         offset = svm_msrpm_offset(msr);
1692         write  = svm->vmcb->control.exit_info_1 & 1;
1693         mask   = 1 << ((2 * (msr & 0xf)) + write);
1694
1695         if (offset == MSR_INVALID)
1696                 return NESTED_EXIT_DONE;
1697
1698         /* Offset is in 32 bit units but need in 8 bit units */
1699         offset *= 4;
1700
1701         if (kvm_read_guest(svm->vcpu.kvm, svm->nested.vmcb_msrpm + offset, &value, 4))
1702                 return NESTED_EXIT_DONE;
1703
1704         return (value & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
1705 }
1706
1707 static int nested_svm_exit_special(struct vcpu_svm *svm)
1708 {
1709         u32 exit_code = svm->vmcb->control.exit_code;
1710
1711         switch (exit_code) {
1712         case SVM_EXIT_INTR:
1713         case SVM_EXIT_NMI:
1714                 return NESTED_EXIT_HOST;
1715         case SVM_EXIT_NPF:
1716                 /* For now we are always handling NPFs when using them */
1717                 if (npt_enabled)
1718                         return NESTED_EXIT_HOST;
1719                 break;
1720         case SVM_EXIT_EXCP_BASE + PF_VECTOR:
1721                 /* When we're shadowing, trap PFs */
1722                 if (!npt_enabled)
1723                         return NESTED_EXIT_HOST;
1724                 break;
1725         case SVM_EXIT_EXCP_BASE + NM_VECTOR:
1726                 nm_interception(svm);
1727                 break;
1728         default:
1729                 break;
1730         }
1731
1732         return NESTED_EXIT_CONTINUE;
1733 }
1734
1735 /*
1736  * If this function returns true, this #vmexit was already handled
1737  */
1738 static int nested_svm_intercept(struct vcpu_svm *svm)
1739 {
1740         u32 exit_code = svm->vmcb->control.exit_code;
1741         int vmexit = NESTED_EXIT_HOST;
1742
1743         switch (exit_code) {
1744         case SVM_EXIT_MSR:
1745                 vmexit = nested_svm_exit_handled_msr(svm);
1746                 break;
1747         case SVM_EXIT_IOIO:
1748                 vmexit = nested_svm_intercept_ioio(svm);
1749                 break;
1750         case SVM_EXIT_READ_CR0 ... SVM_EXIT_READ_CR8: {
1751                 u32 cr_bits = 1 << (exit_code - SVM_EXIT_READ_CR0);
1752                 if (svm->nested.intercept_cr_read & cr_bits)
1753                         vmexit = NESTED_EXIT_DONE;
1754                 break;
1755         }
1756         case SVM_EXIT_WRITE_CR0 ... SVM_EXIT_WRITE_CR8: {
1757                 u32 cr_bits = 1 << (exit_code - SVM_EXIT_WRITE_CR0);
1758                 if (svm->nested.intercept_cr_write & cr_bits)
1759                         vmexit = NESTED_EXIT_DONE;
1760                 break;
1761         }
1762         case SVM_EXIT_READ_DR0 ... SVM_EXIT_READ_DR7: {
1763                 u32 dr_bits = 1 << (exit_code - SVM_EXIT_READ_DR0);
1764                 if (svm->nested.intercept_dr_read & dr_bits)
1765                         vmexit = NESTED_EXIT_DONE;
1766                 break;
1767         }
1768         case SVM_EXIT_WRITE_DR0 ... SVM_EXIT_WRITE_DR7: {
1769                 u32 dr_bits = 1 << (exit_code - SVM_EXIT_WRITE_DR0);
1770                 if (svm->nested.intercept_dr_write & dr_bits)
1771                         vmexit = NESTED_EXIT_DONE;
1772                 break;
1773         }
1774         case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
1775                 u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
1776                 if (svm->nested.intercept_exceptions & excp_bits)
1777                         vmexit = NESTED_EXIT_DONE;
1778                 break;
1779         }
1780         default: {
1781                 u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR);
1782                 if (svm->nested.intercept & exit_bits)
1783                         vmexit = NESTED_EXIT_DONE;
1784         }
1785         }
1786
1787         return vmexit;
1788 }
1789
1790 static int nested_svm_exit_handled(struct vcpu_svm *svm)
1791 {
1792         int vmexit;
1793
1794         vmexit = nested_svm_intercept(svm);
1795
1796         if (vmexit == NESTED_EXIT_DONE)
1797                 nested_svm_vmexit(svm);
1798
1799         return vmexit;
1800 }
1801
1802 static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb)
1803 {
1804         struct vmcb_control_area *dst  = &dst_vmcb->control;
1805         struct vmcb_control_area *from = &from_vmcb->control;
1806
1807         dst->intercept_cr_read    = from->intercept_cr_read;
1808         dst->intercept_cr_write   = from->intercept_cr_write;
1809         dst->intercept_dr_read    = from->intercept_dr_read;
1810         dst->intercept_dr_write   = from->intercept_dr_write;
1811         dst->intercept_exceptions = from->intercept_exceptions;
1812         dst->intercept            = from->intercept;
1813         dst->iopm_base_pa         = from->iopm_base_pa;
1814         dst->msrpm_base_pa        = from->msrpm_base_pa;
1815         dst->tsc_offset           = from->tsc_offset;
1816         dst->asid                 = from->asid;
1817         dst->tlb_ctl              = from->tlb_ctl;
1818         dst->int_ctl              = from->int_ctl;
1819         dst->int_vector           = from->int_vector;
1820         dst->int_state            = from->int_state;
1821         dst->exit_code            = from->exit_code;
1822         dst->exit_code_hi         = from->exit_code_hi;
1823         dst->exit_info_1          = from->exit_info_1;
1824         dst->exit_info_2          = from->exit_info_2;
1825         dst->exit_int_info        = from->exit_int_info;
1826         dst->exit_int_info_err    = from->exit_int_info_err;
1827         dst->nested_ctl           = from->nested_ctl;
1828         dst->event_inj            = from->event_inj;
1829         dst->event_inj_err        = from->event_inj_err;
1830         dst->nested_cr3           = from->nested_cr3;
1831         dst->lbr_ctl              = from->lbr_ctl;
1832 }
1833
1834 static int nested_svm_vmexit(struct vcpu_svm *svm)
1835 {
1836         struct vmcb *nested_vmcb;
1837         struct vmcb *hsave = svm->nested.hsave;
1838         struct vmcb *vmcb = svm->vmcb;
1839         struct page *page;
1840
1841         trace_kvm_nested_vmexit_inject(vmcb->control.exit_code,
1842                                        vmcb->control.exit_info_1,
1843                                        vmcb->control.exit_info_2,
1844                                        vmcb->control.exit_int_info,
1845                                        vmcb->control.exit_int_info_err);
1846
1847         nested_vmcb = nested_svm_map(svm, svm->nested.vmcb, &page);
1848         if (!nested_vmcb)
1849                 return 1;
1850
1851         /* Exit nested SVM mode */
1852         svm->nested.vmcb = 0;
1853
1854         /* Give the current vmcb to the guest */
1855         disable_gif(svm);
1856
1857         nested_vmcb->save.es     = vmcb->save.es;
1858         nested_vmcb->save.cs     = vmcb->save.cs;
1859         nested_vmcb->save.ss     = vmcb->save.ss;
1860         nested_vmcb->save.ds     = vmcb->save.ds;
1861         nested_vmcb->save.gdtr   = vmcb->save.gdtr;
1862         nested_vmcb->save.idtr   = vmcb->save.idtr;
1863         nested_vmcb->save.cr0    = kvm_read_cr0(&svm->vcpu);
1864         if (npt_enabled)
1865                 nested_vmcb->save.cr3    = vmcb->save.cr3;
1866         else
1867                 nested_vmcb->save.cr3    = svm->vcpu.arch.cr3;
1868         nested_vmcb->save.cr2    = vmcb->save.cr2;
1869         nested_vmcb->save.cr4    = svm->vcpu.arch.cr4;
1870         nested_vmcb->save.rflags = vmcb->save.rflags;
1871         nested_vmcb->save.rip    = vmcb->save.rip;
1872         nested_vmcb->save.rsp    = vmcb->save.rsp;
1873         nested_vmcb->save.rax    = vmcb->save.rax;
1874         nested_vmcb->save.dr7    = vmcb->save.dr7;
1875         nested_vmcb->save.dr6    = vmcb->save.dr6;
1876         nested_vmcb->save.cpl    = vmcb->save.cpl;
1877
1878         nested_vmcb->control.int_ctl           = vmcb->control.int_ctl;
1879         nested_vmcb->control.int_vector        = vmcb->control.int_vector;
1880         nested_vmcb->control.int_state         = vmcb->control.int_state;
1881         nested_vmcb->control.exit_code         = vmcb->control.exit_code;
1882         nested_vmcb->control.exit_code_hi      = vmcb->control.exit_code_hi;
1883         nested_vmcb->control.exit_info_1       = vmcb->control.exit_info_1;
1884         nested_vmcb->control.exit_info_2       = vmcb->control.exit_info_2;
1885         nested_vmcb->control.exit_int_info     = vmcb->control.exit_int_info;
1886         nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err;
1887
1888         /*
1889          * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
1890          * to make sure that we do not lose injected events. So check event_inj
1891          * here and copy it to exit_int_info if it is valid.
1892          * Exit_int_info and event_inj can't be both valid because the case
1893          * below only happens on a VMRUN instruction intercept which has
1894          * no valid exit_int_info set.
1895          */
1896         if (vmcb->control.event_inj & SVM_EVTINJ_VALID) {
1897                 struct vmcb_control_area *nc = &nested_vmcb->control;
1898
1899                 nc->exit_int_info     = vmcb->control.event_inj;
1900                 nc->exit_int_info_err = vmcb->control.event_inj_err;
1901         }
1902
1903         nested_vmcb->control.tlb_ctl           = 0;
1904         nested_vmcb->control.event_inj         = 0;
1905         nested_vmcb->control.event_inj_err     = 0;
1906
1907         /* We always set V_INTR_MASKING and remember the old value in hflags */
1908         if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
1909                 nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
1910
1911         /* Restore the original control entries */
1912         copy_vmcb_control_area(vmcb, hsave);
1913
1914         kvm_clear_exception_queue(&svm->vcpu);
1915         kvm_clear_interrupt_queue(&svm->vcpu);
1916
1917         /* Restore selected save entries */
1918         svm->vmcb->save.es = hsave->save.es;
1919         svm->vmcb->save.cs = hsave->save.cs;
1920         svm->vmcb->save.ss = hsave->save.ss;
1921         svm->vmcb->save.ds = hsave->save.ds;
1922         svm->vmcb->save.gdtr = hsave->save.gdtr;
1923         svm->vmcb->save.idtr = hsave->save.idtr;
1924         svm->vmcb->save.rflags = hsave->save.rflags;
1925         svm_set_efer(&svm->vcpu, hsave->save.efer);
1926         svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
1927         svm_set_cr4(&svm->vcpu, hsave->save.cr4);
1928         if (npt_enabled) {
1929                 svm->vmcb->save.cr3 = hsave->save.cr3;
1930                 svm->vcpu.arch.cr3 = hsave->save.cr3;
1931         } else {
1932                 kvm_set_cr3(&svm->vcpu, hsave->save.cr3);
1933         }
1934         kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, hsave->save.rax);
1935         kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, hsave->save.rsp);
1936         kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, hsave->save.rip);
1937         svm->vmcb->save.dr7 = 0;
1938         svm->vmcb->save.cpl = 0;
1939         svm->vmcb->control.exit_int_info = 0;
1940
1941         nested_svm_unmap(page);
1942
1943         kvm_mmu_reset_context(&svm->vcpu);
1944         kvm_mmu_load(&svm->vcpu);
1945
1946         return 0;
1947 }
1948
1949 static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
1950 {
1951         /*
1952          * This function merges the msr permission bitmaps of kvm and the
1953          * nested vmcb. It is omptimized in that it only merges the parts where
1954          * the kvm msr permission bitmap may contain zero bits
1955          */
1956         int i;
1957
1958         if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
1959                 return true;
1960
1961         for (i = 0; i < MSRPM_OFFSETS; i++) {
1962                 u32 value, p;
1963                 u64 offset;
1964
1965                 if (msrpm_offsets[i] == 0xffffffff)
1966                         break;
1967
1968                 p      = msrpm_offsets[i];
1969                 offset = svm->nested.vmcb_msrpm + (p * 4);
1970
1971                 if (kvm_read_guest(svm->vcpu.kvm, offset, &value, 4))
1972                         return false;
1973
1974                 svm->nested.msrpm[p] = svm->msrpm[p] | value;
1975         }
1976
1977         svm->vmcb->control.msrpm_base_pa = __pa(svm->nested.msrpm);
1978
1979         return true;
1980 }
1981
1982 static bool nested_svm_vmrun(struct vcpu_svm *svm)
1983 {
1984         struct vmcb *nested_vmcb;
1985         struct vmcb *hsave = svm->nested.hsave;
1986         struct vmcb *vmcb = svm->vmcb;
1987         struct page *page;
1988         u64 vmcb_gpa;
1989
1990         vmcb_gpa = svm->vmcb->save.rax;
1991
1992         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
1993         if (!nested_vmcb)
1994                 return false;
1995
1996         trace_kvm_nested_vmrun(svm->vmcb->save.rip - 3, vmcb_gpa,
1997                                nested_vmcb->save.rip,
1998                                nested_vmcb->control.int_ctl,
1999                                nested_vmcb->control.event_inj,
2000                                nested_vmcb->control.nested_ctl);
2001
2002         trace_kvm_nested_intercepts(nested_vmcb->control.intercept_cr_read,
2003                                     nested_vmcb->control.intercept_cr_write,
2004                                     nested_vmcb->control.intercept_exceptions,
2005                                     nested_vmcb->control.intercept);
2006
2007         /* Clear internal status */
2008         kvm_clear_exception_queue(&svm->vcpu);
2009         kvm_clear_interrupt_queue(&svm->vcpu);
2010
2011         /*
2012          * Save the old vmcb, so we don't need to pick what we save, but can
2013          * restore everything when a VMEXIT occurs
2014          */
2015         hsave->save.es     = vmcb->save.es;
2016         hsave->save.cs     = vmcb->save.cs;
2017         hsave->save.ss     = vmcb->save.ss;
2018         hsave->save.ds     = vmcb->save.ds;
2019         hsave->save.gdtr   = vmcb->save.gdtr;
2020         hsave->save.idtr   = vmcb->save.idtr;
2021         hsave->save.efer   = svm->vcpu.arch.efer;
2022         hsave->save.cr0    = kvm_read_cr0(&svm->vcpu);
2023         hsave->save.cr4    = svm->vcpu.arch.cr4;
2024         hsave->save.rflags = vmcb->save.rflags;
2025         hsave->save.rip    = svm->next_rip;
2026         hsave->save.rsp    = vmcb->save.rsp;
2027         hsave->save.rax    = vmcb->save.rax;
2028         if (npt_enabled)
2029                 hsave->save.cr3    = vmcb->save.cr3;
2030         else
2031                 hsave->save.cr3    = svm->vcpu.arch.cr3;
2032
2033         copy_vmcb_control_area(hsave, vmcb);
2034
2035         if (svm->vmcb->save.rflags & X86_EFLAGS_IF)
2036                 svm->vcpu.arch.hflags |= HF_HIF_MASK;
2037         else
2038                 svm->vcpu.arch.hflags &= ~HF_HIF_MASK;
2039
2040         /* Load the nested guest state */
2041         svm->vmcb->save.es = nested_vmcb->save.es;
2042         svm->vmcb->save.cs = nested_vmcb->save.cs;
2043         svm->vmcb->save.ss = nested_vmcb->save.ss;
2044         svm->vmcb->save.ds = nested_vmcb->save.ds;
2045         svm->vmcb->save.gdtr = nested_vmcb->save.gdtr;
2046         svm->vmcb->save.idtr = nested_vmcb->save.idtr;
2047         svm->vmcb->save.rflags = nested_vmcb->save.rflags;
2048         svm_set_efer(&svm->vcpu, nested_vmcb->save.efer);
2049         svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0);
2050         svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4);
2051         if (npt_enabled) {
2052                 svm->vmcb->save.cr3 = nested_vmcb->save.cr3;
2053                 svm->vcpu.arch.cr3 = nested_vmcb->save.cr3;
2054         } else
2055                 kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3);
2056
2057         /* Guest paging mode is active - reset mmu */
2058         kvm_mmu_reset_context(&svm->vcpu);
2059
2060         svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2;
2061         kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, nested_vmcb->save.rax);
2062         kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, nested_vmcb->save.rsp);
2063         kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, nested_vmcb->save.rip);
2064
2065         /* In case we don't even reach vcpu_run, the fields are not updated */
2066         svm->vmcb->save.rax = nested_vmcb->save.rax;
2067         svm->vmcb->save.rsp = nested_vmcb->save.rsp;
2068         svm->vmcb->save.rip = nested_vmcb->save.rip;
2069         svm->vmcb->save.dr7 = nested_vmcb->save.dr7;
2070         svm->vmcb->save.dr6 = nested_vmcb->save.dr6;
2071         svm->vmcb->save.cpl = nested_vmcb->save.cpl;
2072
2073         svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa & ~0x0fffULL;
2074         svm->nested.vmcb_iopm  = nested_vmcb->control.iopm_base_pa  & ~0x0fffULL;
2075
2076         /* cache intercepts */
2077         svm->nested.intercept_cr_read    = nested_vmcb->control.intercept_cr_read;
2078         svm->nested.intercept_cr_write   = nested_vmcb->control.intercept_cr_write;
2079         svm->nested.intercept_dr_read    = nested_vmcb->control.intercept_dr_read;
2080         svm->nested.intercept_dr_write   = nested_vmcb->control.intercept_dr_write;
2081         svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions;
2082         svm->nested.intercept            = nested_vmcb->control.intercept;
2083
2084         force_new_asid(&svm->vcpu);
2085         svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK;
2086         if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK)
2087                 svm->vcpu.arch.hflags |= HF_VINTR_MASK;
2088         else
2089                 svm->vcpu.arch.hflags &= ~HF_VINTR_MASK;
2090
2091         if (svm->vcpu.arch.hflags & HF_VINTR_MASK) {
2092                 /* We only want the cr8 intercept bits of the guest */
2093                 svm->vmcb->control.intercept_cr_read &= ~INTERCEPT_CR8_MASK;
2094                 svm->vmcb->control.intercept_cr_write &= ~INTERCEPT_CR8_MASK;
2095         }
2096
2097         /*
2098          * We don't want a nested guest to be more powerful than the guest, so
2099          * all intercepts are ORed
2100          */
2101         svm->vmcb->control.intercept_cr_read |=
2102                 nested_vmcb->control.intercept_cr_read;
2103         svm->vmcb->control.intercept_cr_write |=
2104                 nested_vmcb->control.intercept_cr_write;
2105         svm->vmcb->control.intercept_dr_read |=
2106                 nested_vmcb->control.intercept_dr_read;
2107         svm->vmcb->control.intercept_dr_write |=
2108                 nested_vmcb->control.intercept_dr_write;
2109         svm->vmcb->control.intercept_exceptions |=
2110                 nested_vmcb->control.intercept_exceptions;
2111
2112         svm->vmcb->control.intercept |= nested_vmcb->control.intercept;
2113
2114         svm->vmcb->control.lbr_ctl = nested_vmcb->control.lbr_ctl;
2115         svm->vmcb->control.int_vector = nested_vmcb->control.int_vector;
2116         svm->vmcb->control.int_state = nested_vmcb->control.int_state;
2117         svm->vmcb->control.tsc_offset += nested_vmcb->control.tsc_offset;
2118         svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
2119         svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;
2120
2121         nested_svm_unmap(page);
2122
2123         /* nested_vmcb is our indicator if nested SVM is activated */
2124         svm->nested.vmcb = vmcb_gpa;
2125
2126         enable_gif(svm);
2127
2128         return true;
2129 }
2130
2131 static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
2132 {
2133         to_vmcb->save.fs = from_vmcb->save.fs;
2134         to_vmcb->save.gs = from_vmcb->save.gs;
2135         to_vmcb->save.tr = from_vmcb->save.tr;
2136         to_vmcb->save.ldtr = from_vmcb->save.ldtr;
2137         to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
2138         to_vmcb->save.star = from_vmcb->save.star;
2139         to_vmcb->save.lstar = from_vmcb->save.lstar;
2140         to_vmcb->save.cstar = from_vmcb->save.cstar;
2141         to_vmcb->save.sfmask = from_vmcb->save.sfmask;
2142         to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
2143         to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
2144         to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
2145 }
2146
2147 static int vmload_interception(struct vcpu_svm *svm)
2148 {
2149         struct vmcb *nested_vmcb;
2150         struct page *page;
2151
2152         if (nested_svm_check_permissions(svm))
2153                 return 1;
2154
2155         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2156         skip_emulated_instruction(&svm->vcpu);
2157
2158         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2159         if (!nested_vmcb)
2160                 return 1;
2161
2162         nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
2163         nested_svm_unmap(page);
2164
2165         return 1;
2166 }
2167
2168 static int vmsave_interception(struct vcpu_svm *svm)
2169 {
2170         struct vmcb *nested_vmcb;
2171         struct page *page;
2172
2173         if (nested_svm_check_permissions(svm))
2174                 return 1;
2175
2176         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2177         skip_emulated_instruction(&svm->vcpu);
2178
2179         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2180         if (!nested_vmcb)
2181                 return 1;
2182
2183         nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
2184         nested_svm_unmap(page);
2185
2186         return 1;
2187 }
2188
2189 static int vmrun_interception(struct vcpu_svm *svm)
2190 {
2191         if (nested_svm_check_permissions(svm))
2192                 return 1;
2193
2194         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2195         skip_emulated_instruction(&svm->vcpu);
2196
2197         if (!nested_svm_vmrun(svm))
2198                 return 1;
2199
2200         if (!nested_svm_vmrun_msrpm(svm))
2201                 goto failed;
2202
2203         return 1;
2204
2205 failed:
2206
2207         svm->vmcb->control.exit_code    = SVM_EXIT_ERR;
2208         svm->vmcb->control.exit_code_hi = 0;
2209         svm->vmcb->control.exit_info_1  = 0;
2210         svm->vmcb->control.exit_info_2  = 0;
2211
2212         nested_svm_vmexit(svm);
2213
2214         return 1;
2215 }
2216
2217 static int stgi_interception(struct vcpu_svm *svm)
2218 {
2219         if (nested_svm_check_permissions(svm))
2220                 return 1;
2221
2222         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2223         skip_emulated_instruction(&svm->vcpu);
2224
2225         enable_gif(svm);
2226
2227         return 1;
2228 }
2229
2230 static int clgi_interception(struct vcpu_svm *svm)
2231 {
2232         if (nested_svm_check_permissions(svm))
2233                 return 1;
2234
2235         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2236         skip_emulated_instruction(&svm->vcpu);
2237
2238         disable_gif(svm);
2239
2240         /* After a CLGI no interrupts should come */
2241         svm_clear_vintr(svm);
2242         svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
2243
2244         return 1;
2245 }
2246
2247 static int invlpga_interception(struct vcpu_svm *svm)
2248 {
2249         struct kvm_vcpu *vcpu = &svm->vcpu;
2250
2251         trace_kvm_invlpga(svm->vmcb->save.rip, vcpu->arch.regs[VCPU_REGS_RCX],
2252                           vcpu->arch.regs[VCPU_REGS_RAX]);
2253
2254         /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
2255         kvm_mmu_invlpg(vcpu, vcpu->arch.regs[VCPU_REGS_RAX]);
2256
2257         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2258         skip_emulated_instruction(&svm->vcpu);
2259         return 1;
2260 }
2261
2262 static int skinit_interception(struct vcpu_svm *svm)
2263 {
2264         trace_kvm_skinit(svm->vmcb->save.rip, svm->vcpu.arch.regs[VCPU_REGS_RAX]);
2265
2266         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2267         return 1;
2268 }
2269
2270 static int invalid_op_interception(struct vcpu_svm *svm)
2271 {
2272         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2273         return 1;
2274 }
2275
2276 static int task_switch_interception(struct vcpu_svm *svm)
2277 {
2278         u16 tss_selector;
2279         int reason;
2280         int int_type = svm->vmcb->control.exit_int_info &
2281                 SVM_EXITINTINFO_TYPE_MASK;
2282         int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
2283         uint32_t type =
2284                 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
2285         uint32_t idt_v =
2286                 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
2287
2288         tss_selector = (u16)svm->vmcb->control.exit_info_1;
2289
2290         if (svm->vmcb->control.exit_info_2 &
2291             (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
2292                 reason = TASK_SWITCH_IRET;
2293         else if (svm->vmcb->control.exit_info_2 &
2294                  (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
2295                 reason = TASK_SWITCH_JMP;
2296         else if (idt_v)
2297                 reason = TASK_SWITCH_GATE;
2298         else
2299                 reason = TASK_SWITCH_CALL;
2300
2301         if (reason == TASK_SWITCH_GATE) {
2302                 switch (type) {
2303                 case SVM_EXITINTINFO_TYPE_NMI:
2304                         svm->vcpu.arch.nmi_injected = false;
2305                         break;
2306                 case SVM_EXITINTINFO_TYPE_EXEPT:
2307                         kvm_clear_exception_queue(&svm->vcpu);
2308                         break;
2309                 case SVM_EXITINTINFO_TYPE_INTR:
2310                         kvm_clear_interrupt_queue(&svm->vcpu);
2311                         break;
2312                 default:
2313                         break;
2314                 }
2315         }
2316
2317         if (reason != TASK_SWITCH_GATE ||
2318             int_type == SVM_EXITINTINFO_TYPE_SOFT ||
2319             (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
2320              (int_vec == OF_VECTOR || int_vec == BP_VECTOR)))
2321                 skip_emulated_instruction(&svm->vcpu);
2322
2323         return kvm_task_switch(&svm->vcpu, tss_selector, reason);
2324 }
2325
2326 static int cpuid_interception(struct vcpu_svm *svm)
2327 {
2328         svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
2329         kvm_emulate_cpuid(&svm->vcpu);
2330         return 1;
2331 }
2332
2333 static int iret_interception(struct vcpu_svm *svm)
2334 {
2335         ++svm->vcpu.stat.nmi_window_exits;
2336         svm->vmcb->control.intercept &= ~(1UL << INTERCEPT_IRET);
2337         svm->vcpu.arch.hflags |= HF_IRET_MASK;
2338         return 1;
2339 }
2340
2341 static int invlpg_interception(struct vcpu_svm *svm)
2342 {
2343         if (emulate_instruction(&svm->vcpu, 0, 0, 0) != EMULATE_DONE)
2344                 pr_unimpl(&svm->vcpu, "%s: failed\n", __func__);
2345         return 1;
2346 }
2347
2348 static int emulate_on_interception(struct vcpu_svm *svm)
2349 {
2350         if (emulate_instruction(&svm->vcpu, 0, 0, 0) != EMULATE_DONE)
2351                 pr_unimpl(&svm->vcpu, "%s: failed\n", __func__);
2352         return 1;
2353 }
2354
2355 static int cr8_write_interception(struct vcpu_svm *svm)
2356 {
2357         struct kvm_run *kvm_run = svm->vcpu.run;
2358
2359         u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
2360         /* instruction emulation calls kvm_set_cr8() */
2361         emulate_instruction(&svm->vcpu, 0, 0, 0);
2362         if (irqchip_in_kernel(svm->vcpu.kvm)) {
2363                 svm->vmcb->control.intercept_cr_write &= ~INTERCEPT_CR8_MASK;
2364                 return 1;
2365         }
2366         if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
2367                 return 1;
2368         kvm_run->exit_reason = KVM_EXIT_SET_TPR;
2369         return 0;
2370 }
2371
2372 static int svm_get_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 *data)
2373 {
2374         struct vcpu_svm *svm = to_svm(vcpu);
2375
2376         switch (ecx) {
2377         case MSR_IA32_TSC: {
2378                 u64 tsc_offset;
2379
2380                 if (is_nested(svm))
2381                         tsc_offset = svm->nested.hsave->control.tsc_offset;
2382                 else
2383                         tsc_offset = svm->vmcb->control.tsc_offset;
2384
2385                 *data = tsc_offset + native_read_tsc();
2386                 break;
2387         }
2388         case MSR_K6_STAR:
2389                 *data = svm->vmcb->save.star;
2390                 break;
2391 #ifdef CONFIG_X86_64
2392         case MSR_LSTAR:
2393                 *data = svm->vmcb->save.lstar;
2394                 break;
2395         case MSR_CSTAR:
2396                 *data = svm->vmcb->save.cstar;
2397                 break;
2398         case MSR_KERNEL_GS_BASE:
2399                 *data = svm->vmcb->save.kernel_gs_base;
2400                 break;
2401         case MSR_SYSCALL_MASK:
2402                 *data = svm->vmcb->save.sfmask;
2403                 break;
2404 #endif
2405         case MSR_IA32_SYSENTER_CS:
2406                 *data = svm->vmcb->save.sysenter_cs;
2407                 break;
2408         case MSR_IA32_SYSENTER_EIP:
2409                 *data = svm->sysenter_eip;
2410                 break;
2411         case MSR_IA32_SYSENTER_ESP:
2412                 *data = svm->sysenter_esp;
2413                 break;
2414         /*
2415          * Nobody will change the following 5 values in the VMCB so we can
2416          * safely return them on rdmsr. They will always be 0 until LBRV is
2417          * implemented.
2418          */
2419         case MSR_IA32_DEBUGCTLMSR:
2420                 *data = svm->vmcb->save.dbgctl;
2421                 break;
2422         case MSR_IA32_LASTBRANCHFROMIP:
2423                 *data = svm->vmcb->save.br_from;
2424                 break;
2425         case MSR_IA32_LASTBRANCHTOIP:
2426                 *data = svm->vmcb->save.br_to;
2427                 break;
2428         case MSR_IA32_LASTINTFROMIP:
2429                 *data = svm->vmcb->save.last_excp_from;
2430                 break;
2431         case MSR_IA32_LASTINTTOIP:
2432                 *data = svm->vmcb->save.last_excp_to;
2433                 break;
2434         case MSR_VM_HSAVE_PA:
2435                 *data = svm->nested.hsave_msr;
2436                 break;
2437         case MSR_VM_CR:
2438                 *data = svm->nested.vm_cr_msr;
2439                 break;
2440         case MSR_IA32_UCODE_REV:
2441                 *data = 0x01000065;
2442                 break;
2443         default:
2444                 return kvm_get_msr_common(vcpu, ecx, data);
2445         }
2446         return 0;
2447 }
2448
2449 static int rdmsr_interception(struct vcpu_svm *svm)
2450 {
2451         u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
2452         u64 data;
2453
2454         if (svm_get_msr(&svm->vcpu, ecx, &data)) {
2455                 trace_kvm_msr_read_ex(ecx);
2456                 kvm_inject_gp(&svm->vcpu, 0);
2457         } else {
2458                 trace_kvm_msr_read(ecx, data);
2459
2460                 svm->vcpu.arch.regs[VCPU_REGS_RAX] = data & 0xffffffff;
2461                 svm->vcpu.arch.regs[VCPU_REGS_RDX] = data >> 32;
2462                 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
2463                 skip_emulated_instruction(&svm->vcpu);
2464         }
2465         return 1;
2466 }
2467
2468 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
2469 {
2470         struct vcpu_svm *svm = to_svm(vcpu);
2471         int svm_dis, chg_mask;
2472
2473         if (data & ~SVM_VM_CR_VALID_MASK)
2474                 return 1;
2475
2476         chg_mask = SVM_VM_CR_VALID_MASK;
2477
2478         if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
2479                 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
2480
2481         svm->nested.vm_cr_msr &= ~chg_mask;
2482         svm->nested.vm_cr_msr |= (data & chg_mask);
2483
2484         svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
2485
2486         /* check for svm_disable while efer.svme is set */
2487         if (svm_dis && (vcpu->arch.efer & EFER_SVME))
2488                 return 1;
2489
2490         return 0;
2491 }
2492
2493 static int svm_set_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 data)
2494 {
2495         struct vcpu_svm *svm = to_svm(vcpu);
2496
2497         switch (ecx) {
2498         case MSR_IA32_TSC: {
2499                 u64 tsc_offset = data - native_read_tsc();
2500                 u64 g_tsc_offset = 0;
2501
2502                 if (is_nested(svm)) {
2503                         g_tsc_offset = svm->vmcb->control.tsc_offset -
2504                                        svm->nested.hsave->control.tsc_offset;
2505                         svm->nested.hsave->control.tsc_offset = tsc_offset;
2506                 }
2507
2508                 svm->vmcb->control.tsc_offset = tsc_offset + g_tsc_offset;
2509
2510                 break;
2511         }
2512         case MSR_K6_STAR:
2513                 svm->vmcb->save.star = data;
2514                 break;
2515 #ifdef CONFIG_X86_64
2516         case MSR_LSTAR:
2517                 svm->vmcb->save.lstar = data;
2518                 break;
2519         case MSR_CSTAR:
2520                 svm->vmcb->save.cstar = data;
2521                 break;
2522         case MSR_KERNEL_GS_BASE:
2523                 svm->vmcb->save.kernel_gs_base = data;
2524                 break;
2525         case MSR_SYSCALL_MASK:
2526                 svm->vmcb->save.sfmask = data;
2527                 break;
2528 #endif
2529         case MSR_IA32_SYSENTER_CS:
2530                 svm->vmcb->save.sysenter_cs = data;
2531                 break;
2532         case MSR_IA32_SYSENTER_EIP:
2533                 svm->sysenter_eip = data;
2534                 svm->vmcb->save.sysenter_eip = data;
2535                 break;
2536         case MSR_IA32_SYSENTER_ESP:
2537                 svm->sysenter_esp = data;
2538                 svm->vmcb->save.sysenter_esp = data;
2539                 break;
2540         case MSR_IA32_DEBUGCTLMSR:
2541                 if (!svm_has(SVM_FEATURE_LBRV)) {
2542                         pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
2543                                         __func__, data);
2544                         break;
2545                 }
2546                 if (data & DEBUGCTL_RESERVED_BITS)
2547                         return 1;
2548
2549                 svm->vmcb->save.dbgctl = data;
2550                 if (data & (1ULL<<0))
2551                         svm_enable_lbrv(svm);
2552                 else
2553                         svm_disable_lbrv(svm);
2554                 break;
2555         case MSR_VM_HSAVE_PA:
2556                 svm->nested.hsave_msr = data;
2557                 break;
2558         case MSR_VM_CR:
2559                 return svm_set_vm_cr(vcpu, data);
2560         case MSR_VM_IGNNE:
2561                 pr_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
2562                 break;
2563         default:
2564                 return kvm_set_msr_common(vcpu, ecx, data);
2565         }
2566         return 0;
2567 }
2568
2569 static int wrmsr_interception(struct vcpu_svm *svm)
2570 {
2571         u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
2572         u64 data = (svm->vcpu.arch.regs[VCPU_REGS_RAX] & -1u)
2573                 | ((u64)(svm->vcpu.arch.regs[VCPU_REGS_RDX] & -1u) << 32);
2574
2575
2576         svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
2577         if (svm_set_msr(&svm->vcpu, ecx, data)) {
2578                 trace_kvm_msr_write_ex(ecx, data);
2579                 kvm_inject_gp(&svm->vcpu, 0);
2580         } else {
2581                 trace_kvm_msr_write(ecx, data);
2582                 skip_emulated_instruction(&svm->vcpu);
2583         }
2584         return 1;
2585 }
2586
2587 static int msr_interception(struct vcpu_svm *svm)
2588 {
2589         if (svm->vmcb->control.exit_info_1)
2590                 return wrmsr_interception(svm);
2591         else
2592                 return rdmsr_interception(svm);
2593 }
2594
2595 static int interrupt_window_interception(struct vcpu_svm *svm)
2596 {
2597         struct kvm_run *kvm_run = svm->vcpu.run;
2598
2599         svm_clear_vintr(svm);
2600         svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
2601         /*
2602          * If the user space waits to inject interrupts, exit as soon as
2603          * possible
2604          */
2605         if (!irqchip_in_kernel(svm->vcpu.kvm) &&
2606             kvm_run->request_interrupt_window &&
2607             !kvm_cpu_has_interrupt(&svm->vcpu)) {
2608                 ++svm->vcpu.stat.irq_window_exits;
2609                 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
2610                 return 0;
2611         }
2612
2613         return 1;
2614 }
2615
2616 static int pause_interception(struct vcpu_svm *svm)
2617 {
2618         kvm_vcpu_on_spin(&(svm->vcpu));
2619         return 1;
2620 }
2621
2622 static int (*svm_exit_handlers[])(struct vcpu_svm *svm) = {
2623         [SVM_EXIT_READ_CR0]                     = emulate_on_interception,
2624         [SVM_EXIT_READ_CR3]                     = emulate_on_interception,
2625         [SVM_EXIT_READ_CR4]                     = emulate_on_interception,
2626         [SVM_EXIT_READ_CR8]                     = emulate_on_interception,
2627         [SVM_EXIT_CR0_SEL_WRITE]                = emulate_on_interception,
2628         [SVM_EXIT_WRITE_CR0]                    = emulate_on_interception,
2629         [SVM_EXIT_WRITE_CR3]                    = emulate_on_interception,
2630         [SVM_EXIT_WRITE_CR4]                    = emulate_on_interception,
2631         [SVM_EXIT_WRITE_CR8]                    = cr8_write_interception,
2632         [SVM_EXIT_READ_DR0]                     = emulate_on_interception,
2633         [SVM_EXIT_READ_DR1]                     = emulate_on_interception,
2634         [SVM_EXIT_READ_DR2]                     = emulate_on_interception,
2635         [SVM_EXIT_READ_DR3]                     = emulate_on_interception,
2636         [SVM_EXIT_READ_DR4]                     = emulate_on_interception,
2637         [SVM_EXIT_READ_DR5]                     = emulate_on_interception,
2638         [SVM_EXIT_READ_DR6]                     = emulate_on_interception,
2639         [SVM_EXIT_READ_DR7]                     = emulate_on_interception,
2640         [SVM_EXIT_WRITE_DR0]                    = emulate_on_interception,
2641         [SVM_EXIT_WRITE_DR1]                    = emulate_on_interception,
2642         [SVM_EXIT_WRITE_DR2]                    = emulate_on_interception,
2643         [SVM_EXIT_WRITE_DR3]                    = emulate_on_interception,
2644         [SVM_EXIT_WRITE_DR4]                    = emulate_on_interception,
2645         [SVM_EXIT_WRITE_DR5]                    = emulate_on_interception,
2646         [SVM_EXIT_WRITE_DR6]                    = emulate_on_interception,
2647         [SVM_EXIT_WRITE_DR7]                    = emulate_on_interception,
2648         [SVM_EXIT_EXCP_BASE + DB_VECTOR]        = db_interception,
2649         [SVM_EXIT_EXCP_BASE + BP_VECTOR]        = bp_interception,
2650         [SVM_EXIT_EXCP_BASE + UD_VECTOR]        = ud_interception,
2651         [SVM_EXIT_EXCP_BASE + PF_VECTOR]        = pf_interception,
2652         [SVM_EXIT_EXCP_BASE + NM_VECTOR]        = nm_interception,
2653         [SVM_EXIT_EXCP_BASE + MC_VECTOR]        = mc_interception,
2654         [SVM_EXIT_INTR]                         = intr_interception,
2655         [SVM_EXIT_NMI]                          = nmi_interception,
2656         [SVM_EXIT_SMI]                          = nop_on_interception,
2657         [SVM_EXIT_INIT]                         = nop_on_interception,
2658         [SVM_EXIT_VINTR]                        = interrupt_window_interception,
2659         [SVM_EXIT_CPUID]                        = cpuid_interception,
2660         [SVM_EXIT_IRET]                         = iret_interception,
2661         [SVM_EXIT_INVD]                         = emulate_on_interception,
2662         [SVM_EXIT_PAUSE]                        = pause_interception,
2663         [SVM_EXIT_HLT]                          = halt_interception,
2664         [SVM_EXIT_INVLPG]                       = invlpg_interception,
2665         [SVM_EXIT_INVLPGA]                      = invlpga_interception,
2666         [SVM_EXIT_IOIO]                         = io_interception,
2667         [SVM_EXIT_MSR]                          = msr_interception,
2668         [SVM_EXIT_TASK_SWITCH]                  = task_switch_interception,
2669         [SVM_EXIT_SHUTDOWN]                     = shutdown_interception,
2670         [SVM_EXIT_VMRUN]                        = vmrun_interception,
2671         [SVM_EXIT_VMMCALL]                      = vmmcall_interception,
2672         [SVM_EXIT_VMLOAD]                       = vmload_interception,
2673         [SVM_EXIT_VMSAVE]                       = vmsave_interception,
2674         [SVM_EXIT_STGI]                         = stgi_interception,
2675         [SVM_EXIT_CLGI]                         = clgi_interception,
2676         [SVM_EXIT_SKINIT]                       = skinit_interception,
2677         [SVM_EXIT_WBINVD]                       = emulate_on_interception,
2678         [SVM_EXIT_MONITOR]                      = invalid_op_interception,
2679         [SVM_EXIT_MWAIT]                        = invalid_op_interception,
2680         [SVM_EXIT_NPF]                          = pf_interception,
2681 };
2682
2683 static int handle_exit(struct kvm_vcpu *vcpu)
2684 {
2685         struct vcpu_svm *svm = to_svm(vcpu);
2686         struct kvm_run *kvm_run = vcpu->run;
2687         u32 exit_code = svm->vmcb->control.exit_code;
2688
2689         trace_kvm_exit(exit_code, vcpu);
2690
2691         if (unlikely(svm->nested.exit_required)) {
2692                 nested_svm_vmexit(svm);
2693                 svm->nested.exit_required = false;
2694
2695                 return 1;
2696         }
2697
2698         if (is_nested(svm)) {
2699                 int vmexit;
2700
2701                 trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code,
2702                                         svm->vmcb->control.exit_info_1,
2703                                         svm->vmcb->control.exit_info_2,
2704                                         svm->vmcb->control.exit_int_info,
2705                                         svm->vmcb->control.exit_int_info_err);
2706
2707                 vmexit = nested_svm_exit_special(svm);
2708
2709                 if (vmexit == NESTED_EXIT_CONTINUE)
2710                         vmexit = nested_svm_exit_handled(svm);
2711
2712                 if (vmexit == NESTED_EXIT_DONE)
2713                         return 1;
2714         }
2715
2716         svm_complete_interrupts(svm);
2717
2718         if (!(svm->vmcb->control.intercept_cr_write & INTERCEPT_CR0_MASK))
2719                 vcpu->arch.cr0 = svm->vmcb->save.cr0;
2720         if (npt_enabled)
2721                 vcpu->arch.cr3 = svm->vmcb->save.cr3;
2722
2723         if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
2724                 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
2725                 kvm_run->fail_entry.hardware_entry_failure_reason
2726                         = svm->vmcb->control.exit_code;
2727                 return 0;
2728         }
2729
2730         if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
2731             exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
2732             exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH)
2733                 printk(KERN_ERR "%s: unexpected exit_ini_info 0x%x "
2734                        "exit_code 0x%x\n",
2735                        __func__, svm->vmcb->control.exit_int_info,
2736                        exit_code);
2737
2738         if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
2739             || !svm_exit_handlers[exit_code]) {
2740                 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
2741                 kvm_run->hw.hardware_exit_reason = exit_code;
2742                 return 0;
2743         }
2744
2745         return svm_exit_handlers[exit_code](svm);
2746 }
2747
2748 static void reload_tss(struct kvm_vcpu *vcpu)
2749 {
2750         int cpu = raw_smp_processor_id();
2751
2752         struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
2753         sd->tss_desc->type = 9; /* available 32/64-bit TSS */
2754         load_TR_desc();
2755 }
2756
2757 static void pre_svm_run(struct vcpu_svm *svm)
2758 {
2759         int cpu = raw_smp_processor_id();
2760
2761         struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
2762
2763         svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
2764         /* FIXME: handle wraparound of asid_generation */
2765         if (svm->asid_generation != sd->asid_generation)
2766                 new_asid(svm, sd);
2767 }
2768
2769 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
2770 {
2771         struct vcpu_svm *svm = to_svm(vcpu);
2772
2773         svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
2774         vcpu->arch.hflags |= HF_NMI_MASK;
2775         svm->vmcb->control.intercept |= (1UL << INTERCEPT_IRET);
2776         ++vcpu->stat.nmi_injections;
2777 }
2778
2779 static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
2780 {
2781         struct vmcb_control_area *control;
2782
2783         trace_kvm_inj_virq(irq);
2784
2785         ++svm->vcpu.stat.irq_injections;
2786         control = &svm->vmcb->control;
2787         control->int_vector = irq;
2788         control->int_ctl &= ~V_INTR_PRIO_MASK;
2789         control->int_ctl |= V_IRQ_MASK |
2790                 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
2791 }
2792
2793 static void svm_set_irq(struct kvm_vcpu *vcpu)
2794 {
2795         struct vcpu_svm *svm = to_svm(vcpu);
2796
2797         BUG_ON(!(gif_set(svm)));
2798
2799         svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
2800                 SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
2801 }
2802
2803 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
2804 {
2805         struct vcpu_svm *svm = to_svm(vcpu);
2806
2807         if (is_nested(svm) && (vcpu->arch.hflags & HF_VINTR_MASK))
2808                 return;
2809
2810         if (irr == -1)
2811                 return;
2812
2813         if (tpr >= irr)
2814                 svm->vmcb->control.intercept_cr_write |= INTERCEPT_CR8_MASK;
2815 }
2816
2817 static int svm_nmi_allowed(struct kvm_vcpu *vcpu)
2818 {
2819         struct vcpu_svm *svm = to_svm(vcpu);
2820         struct vmcb *vmcb = svm->vmcb;
2821         return !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
2822                 !(svm->vcpu.arch.hflags & HF_NMI_MASK);
2823 }
2824
2825 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
2826 {
2827         struct vcpu_svm *svm = to_svm(vcpu);
2828
2829         return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
2830 }
2831
2832 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
2833 {
2834         struct vcpu_svm *svm = to_svm(vcpu);
2835
2836         if (masked) {
2837                 svm->vcpu.arch.hflags |= HF_NMI_MASK;
2838                 svm->vmcb->control.intercept |= (1UL << INTERCEPT_IRET);
2839         } else {
2840                 svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
2841                 svm->vmcb->control.intercept &= ~(1UL << INTERCEPT_IRET);
2842         }
2843 }
2844
2845 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu)
2846 {
2847         struct vcpu_svm *svm = to_svm(vcpu);
2848         struct vmcb *vmcb = svm->vmcb;
2849         int ret;
2850
2851         if (!gif_set(svm) ||
2852              (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK))
2853                 return 0;
2854
2855         ret = !!(vmcb->save.rflags & X86_EFLAGS_IF);
2856
2857         if (is_nested(svm))
2858                 return ret && !(svm->vcpu.arch.hflags & HF_VINTR_MASK);
2859
2860         return ret;
2861 }
2862
2863 static void enable_irq_window(struct kvm_vcpu *vcpu)
2864 {
2865         struct vcpu_svm *svm = to_svm(vcpu);
2866
2867         /*
2868          * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
2869          * 1, because that's a separate STGI/VMRUN intercept.  The next time we
2870          * get that intercept, this function will be called again though and
2871          * we'll get the vintr intercept.
2872          */
2873         if (gif_set(svm) && nested_svm_intr(svm)) {
2874                 svm_set_vintr(svm);
2875                 svm_inject_irq(svm, 0x0);
2876         }
2877 }
2878
2879 static void enable_nmi_window(struct kvm_vcpu *vcpu)
2880 {
2881         struct vcpu_svm *svm = to_svm(vcpu);
2882
2883         if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
2884             == HF_NMI_MASK)
2885                 return; /* IRET will cause a vm exit */
2886
2887         /*
2888          * Something prevents NMI from been injected. Single step over possible
2889          * problem (IRET or exception injection or interrupt shadow)
2890          */
2891         if (gif_set(svm) && nested_svm_nmi(svm)) {
2892                 svm->nmi_singlestep = true;
2893                 svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
2894                 update_db_intercept(vcpu);
2895         }
2896 }
2897
2898 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
2899 {
2900         return 0;
2901 }
2902
2903 static void svm_flush_tlb(struct kvm_vcpu *vcpu)
2904 {
2905         force_new_asid(vcpu);
2906 }
2907
2908 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
2909 {
2910 }
2911
2912 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
2913 {
2914         struct vcpu_svm *svm = to_svm(vcpu);
2915
2916         if (is_nested(svm) && (vcpu->arch.hflags & HF_VINTR_MASK))
2917                 return;
2918
2919         if (!(svm->vmcb->control.intercept_cr_write & INTERCEPT_CR8_MASK)) {
2920                 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
2921                 kvm_set_cr8(vcpu, cr8);
2922         }
2923 }
2924
2925 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
2926 {
2927         struct vcpu_svm *svm = to_svm(vcpu);
2928         u64 cr8;
2929
2930         if (is_nested(svm) && (vcpu->arch.hflags & HF_VINTR_MASK))
2931                 return;
2932
2933         cr8 = kvm_get_cr8(vcpu);
2934         svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
2935         svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
2936 }
2937
2938 static void svm_complete_interrupts(struct vcpu_svm *svm)
2939 {
2940         u8 vector;
2941         int type;
2942         u32 exitintinfo = svm->vmcb->control.exit_int_info;
2943         unsigned int3_injected = svm->int3_injected;
2944
2945         svm->int3_injected = 0;
2946
2947         if (svm->vcpu.arch.hflags & HF_IRET_MASK)
2948                 svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
2949
2950         svm->vcpu.arch.nmi_injected = false;
2951         kvm_clear_exception_queue(&svm->vcpu);
2952         kvm_clear_interrupt_queue(&svm->vcpu);
2953
2954         if (!(exitintinfo & SVM_EXITINTINFO_VALID))
2955                 return;
2956
2957         vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
2958         type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
2959
2960         switch (type) {
2961         case SVM_EXITINTINFO_TYPE_NMI:
2962                 svm->vcpu.arch.nmi_injected = true;
2963                 break;
2964         case SVM_EXITINTINFO_TYPE_EXEPT:
2965                 if (is_nested(svm))
2966                         break;
2967                 /*
2968                  * In case of software exceptions, do not reinject the vector,
2969                  * but re-execute the instruction instead. Rewind RIP first
2970                  * if we emulated INT3 before.
2971                  */
2972                 if (kvm_exception_is_soft(vector)) {
2973                         if (vector == BP_VECTOR && int3_injected &&
2974                             kvm_is_linear_rip(&svm->vcpu, svm->int3_rip))
2975                                 kvm_rip_write(&svm->vcpu,
2976                                               kvm_rip_read(&svm->vcpu) -
2977                                               int3_injected);
2978                         break;
2979                 }
2980                 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
2981                         u32 err = svm->vmcb->control.exit_int_info_err;
2982                         kvm_queue_exception_e(&svm->vcpu, vector, err);
2983
2984                 } else
2985                         kvm_queue_exception(&svm->vcpu, vector);
2986                 break;
2987         case SVM_EXITINTINFO_TYPE_INTR:
2988                 kvm_queue_interrupt(&svm->vcpu, vector, false);
2989                 break;
2990         default:
2991                 break;
2992         }
2993 }
2994
2995 #ifdef CONFIG_X86_64
2996 #define R "r"
2997 #else
2998 #define R "e"
2999 #endif
3000
3001 static void svm_vcpu_run(struct kvm_vcpu *vcpu)
3002 {
3003         struct vcpu_svm *svm = to_svm(vcpu);
3004         u16 fs_selector;
3005         u16 gs_selector;
3006         u16 ldt_selector;
3007
3008         /*
3009          * A vmexit emulation is required before the vcpu can be executed
3010          * again.
3011          */
3012         if (unlikely(svm->nested.exit_required))
3013                 return;
3014
3015         svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
3016         svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
3017         svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
3018
3019         pre_svm_run(svm);
3020
3021         sync_lapic_to_cr8(vcpu);
3022
3023         save_host_msrs(vcpu);
3024         fs_selector = kvm_read_fs();
3025         gs_selector = kvm_read_gs();
3026         ldt_selector = kvm_read_ldt();
3027         svm->vmcb->save.cr2 = vcpu->arch.cr2;
3028         /* required for live migration with NPT */
3029         if (npt_enabled)
3030                 svm->vmcb->save.cr3 = vcpu->arch.cr3;
3031
3032         clgi();
3033
3034         local_irq_enable();
3035
3036         asm volatile (
3037                 "push %%"R"bp; \n\t"
3038                 "mov %c[rbx](%[svm]), %%"R"bx \n\t"
3039                 "mov %c[rcx](%[svm]), %%"R"cx \n\t"
3040                 "mov %c[rdx](%[svm]), %%"R"dx \n\t"
3041                 "mov %c[rsi](%[svm]), %%"R"si \n\t"
3042                 "mov %c[rdi](%[svm]), %%"R"di \n\t"
3043                 "mov %c[rbp](%[svm]), %%"R"bp \n\t"
3044 #ifdef CONFIG_X86_64
3045                 "mov %c[r8](%[svm]),  %%r8  \n\t"
3046                 "mov %c[r9](%[svm]),  %%r9  \n\t"
3047                 "mov %c[r10](%[svm]), %%r10 \n\t"
3048                 "mov %c[r11](%[svm]), %%r11 \n\t"
3049                 "mov %c[r12](%[svm]), %%r12 \n\t"
3050                 "mov %c[r13](%[svm]), %%r13 \n\t"
3051                 "mov %c[r14](%[svm]), %%r14 \n\t"
3052                 "mov %c[r15](%[svm]), %%r15 \n\t"
3053 #endif
3054
3055                 /* Enter guest mode */
3056                 "push %%"R"ax \n\t"
3057                 "mov %c[vmcb](%[svm]), %%"R"ax \n\t"
3058                 __ex(SVM_VMLOAD) "\n\t"
3059                 __ex(SVM_VMRUN) "\n\t"
3060                 __ex(SVM_VMSAVE) "\n\t"
3061                 "pop %%"R"ax \n\t"
3062
3063                 /* Save guest registers, load host registers */
3064                 "mov %%"R"bx, %c[rbx](%[svm]) \n\t"
3065                 "mov %%"R"cx, %c[rcx](%[svm]) \n\t"
3066                 "mov %%"R"dx, %c[rdx](%[svm]) \n\t"
3067                 "mov %%"R"si, %c[rsi](%[svm]) \n\t"
3068                 "mov %%"R"di, %c[rdi](%[svm]) \n\t"
3069                 "mov %%"R"bp, %c[rbp](%[svm]) \n\t"
3070 #ifdef CONFIG_X86_64
3071                 "mov %%r8,  %c[r8](%[svm]) \n\t"
3072                 "mov %%r9,  %c[r9](%[svm]) \n\t"
3073                 "mov %%r10, %c[r10](%[svm]) \n\t"
3074                 "mov %%r11, %c[r11](%[svm]) \n\t"
3075                 "mov %%r12, %c[r12](%[svm]) \n\t"
3076                 "mov %%r13, %c[r13](%[svm]) \n\t"
3077                 "mov %%r14, %c[r14](%[svm]) \n\t"
3078                 "mov %%r15, %c[r15](%[svm]) \n\t"
3079 #endif
3080                 "pop %%"R"bp"
3081                 :
3082                 : [svm]"a"(svm),
3083                   [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
3084                   [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
3085                   [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
3086                   [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
3087                   [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
3088                   [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
3089                   [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
3090 #ifdef CONFIG_X86_64
3091                   , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
3092                   [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
3093                   [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
3094                   [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
3095                   [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
3096                   [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
3097                   [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
3098                   [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
3099 #endif
3100                 : "cc", "memory"
3101                 , R"bx", R"cx", R"dx", R"si", R"di"
3102 #ifdef CONFIG_X86_64
3103                 , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
3104 #endif
3105                 );
3106
3107         vcpu->arch.cr2 = svm->vmcb->save.cr2;
3108         vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
3109         vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
3110         vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
3111
3112         kvm_load_fs(fs_selector);
3113         kvm_load_gs(gs_selector);
3114         kvm_load_ldt(ldt_selector);
3115         load_host_msrs(vcpu);
3116
3117         reload_tss(vcpu);
3118
3119         local_irq_disable();
3120
3121         stgi();
3122
3123         sync_cr8_to_lapic(vcpu);
3124
3125         svm->next_rip = 0;
3126
3127         if (npt_enabled) {
3128                 vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
3129                 vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
3130         }
3131 }
3132
3133 #undef R
3134
3135 static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
3136 {
3137         struct vcpu_svm *svm = to_svm(vcpu);
3138
3139         if (npt_enabled) {
3140                 svm->vmcb->control.nested_cr3 = root;
3141                 force_new_asid(vcpu);
3142                 return;
3143         }
3144
3145         svm->vmcb->save.cr3 = root;
3146         force_new_asid(vcpu);
3147 }
3148
3149 static int is_disabled(void)
3150 {
3151         u64 vm_cr;
3152
3153         rdmsrl(MSR_VM_CR, vm_cr);
3154         if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
3155                 return 1;
3156
3157         return 0;
3158 }
3159
3160 static void
3161 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
3162 {
3163         /*
3164          * Patch in the VMMCALL instruction:
3165          */
3166         hypercall[0] = 0x0f;
3167         hypercall[1] = 0x01;
3168         hypercall[2] = 0xd9;
3169 }
3170
3171 static void svm_check_processor_compat(void *rtn)
3172 {
3173         *(int *)rtn = 0;
3174 }
3175
3176 static bool svm_cpu_has_accelerated_tpr(void)
3177 {
3178         return false;
3179 }
3180
3181 static int get_npt_level(void)
3182 {
3183 #ifdef CONFIG_X86_64
3184         return PT64_ROOT_LEVEL;
3185 #else
3186         return PT32E_ROOT_LEVEL;
3187 #endif
3188 }
3189
3190 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
3191 {
3192         return 0;
3193 }
3194
3195 static void svm_cpuid_update(struct kvm_vcpu *vcpu)
3196 {
3197 }
3198
3199 static const struct trace_print_flags svm_exit_reasons_str[] = {
3200         { SVM_EXIT_READ_CR0,                    "read_cr0" },
3201         { SVM_EXIT_READ_CR3,                    "read_cr3" },
3202         { SVM_EXIT_READ_CR4,                    "read_cr4" },
3203         { SVM_EXIT_READ_CR8,                    "read_cr8" },
3204         { SVM_EXIT_WRITE_CR0,                   "write_cr0" },
3205         { SVM_EXIT_WRITE_CR3,                   "write_cr3" },
3206         { SVM_EXIT_WRITE_CR4,                   "write_cr4" },
3207         { SVM_EXIT_WRITE_CR8,                   "write_cr8" },
3208         { SVM_EXIT_READ_DR0,                    "read_dr0" },
3209         { SVM_EXIT_READ_DR1,                    "read_dr1" },
3210         { SVM_EXIT_READ_DR2,                    "read_dr2" },
3211         { SVM_EXIT_READ_DR3,                    "read_dr3" },
3212         { SVM_EXIT_WRITE_DR0,                   "write_dr0" },
3213         { SVM_EXIT_WRITE_DR1,                   "write_dr1" },
3214         { SVM_EXIT_WRITE_DR2,                   "write_dr2" },
3215         { SVM_EXIT_WRITE_DR3,                   "write_dr3" },
3216         { SVM_EXIT_WRITE_DR5,                   "write_dr5" },
3217         { SVM_EXIT_WRITE_DR7,                   "write_dr7" },
3218         { SVM_EXIT_EXCP_BASE + DB_VECTOR,       "DB excp" },
3219         { SVM_EXIT_EXCP_BASE + BP_VECTOR,       "BP excp" },
3220         { SVM_EXIT_EXCP_BASE + UD_VECTOR,       "UD excp" },
3221         { SVM_EXIT_EXCP_BASE + PF_VECTOR,       "PF excp" },
3222         { SVM_EXIT_EXCP_BASE + NM_VECTOR,       "NM excp" },
3223         { SVM_EXIT_EXCP_BASE + MC_VECTOR,       "MC excp" },
3224         { SVM_EXIT_INTR,                        "interrupt" },
3225         { SVM_EXIT_NMI,                         "nmi" },
3226         { SVM_EXIT_SMI,                         "smi" },
3227         { SVM_EXIT_INIT,                        "init" },
3228         { SVM_EXIT_VINTR,                       "vintr" },
3229         { SVM_EXIT_CPUID,                       "cpuid" },
3230         { SVM_EXIT_INVD,                        "invd" },
3231         { SVM_EXIT_HLT,                         "hlt" },
3232         { SVM_EXIT_INVLPG,                      "invlpg" },
3233         { SVM_EXIT_INVLPGA,                     "invlpga" },
3234         { SVM_EXIT_IOIO,                        "io" },
3235         { SVM_EXIT_MSR,                         "msr" },
3236         { SVM_EXIT_TASK_SWITCH,                 "task_switch" },
3237         { SVM_EXIT_SHUTDOWN,                    "shutdown" },
3238         { SVM_EXIT_VMRUN,                       "vmrun" },
3239         { SVM_EXIT_VMMCALL,                     "hypercall" },
3240         { SVM_EXIT_VMLOAD,                      "vmload" },
3241         { SVM_EXIT_VMSAVE,                      "vmsave" },
3242         { SVM_EXIT_STGI,                        "stgi" },
3243         { SVM_EXIT_CLGI,                        "clgi" },
3244         { SVM_EXIT_SKINIT,                      "skinit" },
3245         { SVM_EXIT_WBINVD,                      "wbinvd" },
3246         { SVM_EXIT_MONITOR,                     "monitor" },
3247         { SVM_EXIT_MWAIT,                       "mwait" },
3248         { SVM_EXIT_NPF,                         "npf" },
3249         { -1, NULL }
3250 };
3251
3252 static int svm_get_lpage_level(void)
3253 {
3254         return PT_PDPE_LEVEL;
3255 }
3256
3257 static bool svm_rdtscp_supported(void)
3258 {
3259         return false;
3260 }
3261
3262 static void svm_fpu_deactivate(struct kvm_vcpu *vcpu)
3263 {
3264         struct vcpu_svm *svm = to_svm(vcpu);
3265
3266         svm->vmcb->control.intercept_exceptions |= 1 << NM_VECTOR;
3267         if (is_nested(svm))
3268                 svm->nested.hsave->control.intercept_exceptions |= 1 << NM_VECTOR;
3269         update_cr0_intercept(svm);
3270 }
3271
3272 static struct kvm_x86_ops svm_x86_ops = {
3273         .cpu_has_kvm_support = has_svm,
3274         .disabled_by_bios = is_disabled,
3275         .hardware_setup = svm_hardware_setup,
3276         .hardware_unsetup = svm_hardware_unsetup,
3277         .check_processor_compatibility = svm_check_processor_compat,
3278         .hardware_enable = svm_hardware_enable,
3279         .hardware_disable = svm_hardware_disable,
3280         .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
3281
3282         .vcpu_create = svm_create_vcpu,
3283         .vcpu_free = svm_free_vcpu,
3284         .vcpu_reset = svm_vcpu_reset,
3285
3286         .prepare_guest_switch = svm_prepare_guest_switch,
3287         .vcpu_load = svm_vcpu_load,
3288         .vcpu_put = svm_vcpu_put,
3289
3290         .set_guest_debug = svm_guest_debug,
3291         .get_msr = svm_get_msr,
3292         .set_msr = svm_set_msr,
3293         .get_segment_base = svm_get_segment_base,
3294         .get_segment = svm_get_segment,
3295         .set_segment = svm_set_segment,
3296         .get_cpl = svm_get_cpl,
3297         .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
3298         .decache_cr0_guest_bits = svm_decache_cr0_guest_bits,
3299         .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
3300         .set_cr0 = svm_set_cr0,
3301         .set_cr3 = svm_set_cr3,
3302         .set_cr4 = svm_set_cr4,
3303         .set_efer = svm_set_efer,
3304         .get_idt = svm_get_idt,
3305         .set_idt = svm_set_idt,
3306         .get_gdt = svm_get_gdt,
3307         .set_gdt = svm_set_gdt,
3308         .get_dr = svm_get_dr,
3309         .set_dr = svm_set_dr,
3310         .cache_reg = svm_cache_reg,
3311         .get_rflags = svm_get_rflags,
3312         .set_rflags = svm_set_rflags,
3313         .fpu_activate = svm_fpu_activate,
3314         .fpu_deactivate = svm_fpu_deactivate,
3315
3316         .tlb_flush = svm_flush_tlb,
3317
3318         .run = svm_vcpu_run,
3319         .handle_exit = handle_exit,
3320         .skip_emulated_instruction = skip_emulated_instruction,
3321         .set_interrupt_shadow = svm_set_interrupt_shadow,
3322         .get_interrupt_shadow = svm_get_interrupt_shadow,
3323         .patch_hypercall = svm_patch_hypercall,
3324         .set_irq = svm_set_irq,
3325         .set_nmi = svm_inject_nmi,
3326         .queue_exception = svm_queue_exception,
3327         .interrupt_allowed = svm_interrupt_allowed,
3328         .nmi_allowed = svm_nmi_allowed,
3329         .get_nmi_mask = svm_get_nmi_mask,
3330         .set_nmi_mask = svm_set_nmi_mask,
3331         .enable_nmi_window = enable_nmi_window,
3332         .enable_irq_window = enable_irq_window,
3333         .update_cr8_intercept = update_cr8_intercept,
3334
3335         .set_tss_addr = svm_set_tss_addr,
3336         .get_tdp_level = get_npt_level,
3337         .get_mt_mask = svm_get_mt_mask,
3338
3339         .exit_reasons_str = svm_exit_reasons_str,
3340         .get_lpage_level = svm_get_lpage_level,
3341
3342         .cpuid_update = svm_cpuid_update,
3343
3344         .rdtscp_supported = svm_rdtscp_supported,
3345 };
3346
3347 static int __init svm_init(void)
3348 {
3349         return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
3350                               THIS_MODULE);
3351 }
3352
3353 static void __exit svm_exit(void)
3354 {
3355         kvm_exit();
3356 }
3357
3358 module_init(svm_init)
3359 module_exit(svm_exit)