KVM: SVM: Add tracepoint for skinit instruction
[safe/jmp/linux-2.6] / arch / x86 / kvm / svm.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * AMD SVM support
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  *
8  * Authors:
9  *   Yaniv Kamay  <yaniv@qumranet.com>
10  *   Avi Kivity   <avi@qumranet.com>
11  *
12  * This work is licensed under the terms of the GNU GPL, version 2.  See
13  * the COPYING file in the top-level directory.
14  *
15  */
16 #include <linux/kvm_host.h>
17
18 #include "irq.h"
19 #include "mmu.h"
20 #include "kvm_cache_regs.h"
21 #include "x86.h"
22
23 #include <linux/module.h>
24 #include <linux/kernel.h>
25 #include <linux/vmalloc.h>
26 #include <linux/highmem.h>
27 #include <linux/sched.h>
28 #include <linux/ftrace_event.h>
29
30 #include <asm/desc.h>
31
32 #include <asm/virtext.h>
33 #include "trace.h"
34
35 #define __ex(x) __kvm_handle_fault_on_reboot(x)
36
37 MODULE_AUTHOR("Qumranet");
38 MODULE_LICENSE("GPL");
39
40 #define IOPM_ALLOC_ORDER 2
41 #define MSRPM_ALLOC_ORDER 1
42
43 #define SEG_TYPE_LDT 2
44 #define SEG_TYPE_BUSY_TSS16 3
45
46 #define SVM_FEATURE_NPT  (1 << 0)
47 #define SVM_FEATURE_LBRV (1 << 1)
48 #define SVM_FEATURE_SVML (1 << 2)
49
50 #define NESTED_EXIT_HOST        0       /* Exit handled on host level */
51 #define NESTED_EXIT_DONE        1       /* Exit caused nested vmexit  */
52 #define NESTED_EXIT_CONTINUE    2       /* Further checks needed      */
53
54 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
55
56 /* Turn on to get debugging output*/
57 /* #define NESTED_DEBUG */
58
59 #ifdef NESTED_DEBUG
60 #define nsvm_printk(fmt, args...) printk(KERN_INFO fmt, ## args)
61 #else
62 #define nsvm_printk(fmt, args...) do {} while(0)
63 #endif
64
65 static const u32 host_save_user_msrs[] = {
66 #ifdef CONFIG_X86_64
67         MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE,
68         MSR_FS_BASE,
69 #endif
70         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
71 };
72
73 #define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
74
75 struct kvm_vcpu;
76
77 struct nested_state {
78         struct vmcb *hsave;
79         u64 hsave_msr;
80         u64 vmcb;
81
82         /* These are the merged vectors */
83         u32 *msrpm;
84
85         /* gpa pointers to the real vectors */
86         u64 vmcb_msrpm;
87
88         /* A VMEXIT is required but not yet emulated */
89         bool exit_required;
90
91         /* cache for intercepts of the guest */
92         u16 intercept_cr_read;
93         u16 intercept_cr_write;
94         u16 intercept_dr_read;
95         u16 intercept_dr_write;
96         u32 intercept_exceptions;
97         u64 intercept;
98
99 };
100
101 struct vcpu_svm {
102         struct kvm_vcpu vcpu;
103         struct vmcb *vmcb;
104         unsigned long vmcb_pa;
105         struct svm_cpu_data *svm_data;
106         uint64_t asid_generation;
107         uint64_t sysenter_esp;
108         uint64_t sysenter_eip;
109
110         u64 next_rip;
111
112         u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS];
113         u64 host_gs_base;
114
115         u32 *msrpm;
116
117         struct nested_state nested;
118 };
119
120 /* enable NPT for AMD64 and X86 with PAE */
121 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
122 static bool npt_enabled = true;
123 #else
124 static bool npt_enabled = false;
125 #endif
126 static int npt = 1;
127
128 module_param(npt, int, S_IRUGO);
129
130 static int nested = 1;
131 module_param(nested, int, S_IRUGO);
132
133 static void svm_flush_tlb(struct kvm_vcpu *vcpu);
134 static void svm_complete_interrupts(struct vcpu_svm *svm);
135
136 static int nested_svm_exit_handled(struct vcpu_svm *svm);
137 static int nested_svm_vmexit(struct vcpu_svm *svm);
138 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
139                                       bool has_error_code, u32 error_code);
140
141 static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
142 {
143         return container_of(vcpu, struct vcpu_svm, vcpu);
144 }
145
146 static inline bool is_nested(struct vcpu_svm *svm)
147 {
148         return svm->nested.vmcb;
149 }
150
151 static inline void enable_gif(struct vcpu_svm *svm)
152 {
153         svm->vcpu.arch.hflags |= HF_GIF_MASK;
154 }
155
156 static inline void disable_gif(struct vcpu_svm *svm)
157 {
158         svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
159 }
160
161 static inline bool gif_set(struct vcpu_svm *svm)
162 {
163         return !!(svm->vcpu.arch.hflags & HF_GIF_MASK);
164 }
165
166 static unsigned long iopm_base;
167
168 struct kvm_ldttss_desc {
169         u16 limit0;
170         u16 base0;
171         unsigned base1 : 8, type : 5, dpl : 2, p : 1;
172         unsigned limit1 : 4, zero0 : 3, g : 1, base2 : 8;
173         u32 base3;
174         u32 zero1;
175 } __attribute__((packed));
176
177 struct svm_cpu_data {
178         int cpu;
179
180         u64 asid_generation;
181         u32 max_asid;
182         u32 next_asid;
183         struct kvm_ldttss_desc *tss_desc;
184
185         struct page *save_area;
186 };
187
188 static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
189 static uint32_t svm_features;
190
191 struct svm_init_data {
192         int cpu;
193         int r;
194 };
195
196 static u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
197
198 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
199 #define MSRS_RANGE_SIZE 2048
200 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
201
202 #define MAX_INST_SIZE 15
203
204 static inline u32 svm_has(u32 feat)
205 {
206         return svm_features & feat;
207 }
208
209 static inline void clgi(void)
210 {
211         asm volatile (__ex(SVM_CLGI));
212 }
213
214 static inline void stgi(void)
215 {
216         asm volatile (__ex(SVM_STGI));
217 }
218
219 static inline void invlpga(unsigned long addr, u32 asid)
220 {
221         asm volatile (__ex(SVM_INVLPGA) :: "a"(addr), "c"(asid));
222 }
223
224 static inline void force_new_asid(struct kvm_vcpu *vcpu)
225 {
226         to_svm(vcpu)->asid_generation--;
227 }
228
229 static inline void flush_guest_tlb(struct kvm_vcpu *vcpu)
230 {
231         force_new_asid(vcpu);
232 }
233
234 static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
235 {
236         if (!npt_enabled && !(efer & EFER_LMA))
237                 efer &= ~EFER_LME;
238
239         to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME;
240         vcpu->arch.shadow_efer = efer;
241 }
242
243 static void svm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
244                                 bool has_error_code, u32 error_code)
245 {
246         struct vcpu_svm *svm = to_svm(vcpu);
247
248         /* If we are within a nested VM we'd better #VMEXIT and let the
249            guest handle the exception */
250         if (nested_svm_check_exception(svm, nr, has_error_code, error_code))
251                 return;
252
253         svm->vmcb->control.event_inj = nr
254                 | SVM_EVTINJ_VALID
255                 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
256                 | SVM_EVTINJ_TYPE_EXEPT;
257         svm->vmcb->control.event_inj_err = error_code;
258 }
259
260 static int is_external_interrupt(u32 info)
261 {
262         info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
263         return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
264 }
265
266 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
267 {
268         struct vcpu_svm *svm = to_svm(vcpu);
269         u32 ret = 0;
270
271         if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
272                 ret |= X86_SHADOW_INT_STI | X86_SHADOW_INT_MOV_SS;
273         return ret & mask;
274 }
275
276 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
277 {
278         struct vcpu_svm *svm = to_svm(vcpu);
279
280         if (mask == 0)
281                 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
282         else
283                 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
284
285 }
286
287 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
288 {
289         struct vcpu_svm *svm = to_svm(vcpu);
290
291         if (!svm->next_rip) {
292                 if (emulate_instruction(vcpu, 0, 0, EMULTYPE_SKIP) !=
293                                 EMULATE_DONE)
294                         printk(KERN_DEBUG "%s: NOP\n", __func__);
295                 return;
296         }
297         if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
298                 printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n",
299                        __func__, kvm_rip_read(vcpu), svm->next_rip);
300
301         kvm_rip_write(vcpu, svm->next_rip);
302         svm_set_interrupt_shadow(vcpu, 0);
303 }
304
305 static int has_svm(void)
306 {
307         const char *msg;
308
309         if (!cpu_has_svm(&msg)) {
310                 printk(KERN_INFO "has_svm: %s\n", msg);
311                 return 0;
312         }
313
314         return 1;
315 }
316
317 static void svm_hardware_disable(void *garbage)
318 {
319         cpu_svm_disable();
320 }
321
322 static int svm_hardware_enable(void *garbage)
323 {
324
325         struct svm_cpu_data *svm_data;
326         uint64_t efer;
327         struct descriptor_table gdt_descr;
328         struct desc_struct *gdt;
329         int me = raw_smp_processor_id();
330
331         rdmsrl(MSR_EFER, efer);
332         if (efer & EFER_SVME)
333                 return -EBUSY;
334
335         if (!has_svm()) {
336                 printk(KERN_ERR "svm_hardware_enable: err EOPNOTSUPP on %d\n",
337                        me);
338                 return -EINVAL;
339         }
340         svm_data = per_cpu(svm_data, me);
341
342         if (!svm_data) {
343                 printk(KERN_ERR "svm_hardware_enable: svm_data is NULL on %d\n",
344                        me);
345                 return -EINVAL;
346         }
347
348         svm_data->asid_generation = 1;
349         svm_data->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
350         svm_data->next_asid = svm_data->max_asid + 1;
351
352         kvm_get_gdt(&gdt_descr);
353         gdt = (struct desc_struct *)gdt_descr.base;
354         svm_data->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
355
356         wrmsrl(MSR_EFER, efer | EFER_SVME);
357
358         wrmsrl(MSR_VM_HSAVE_PA,
359                page_to_pfn(svm_data->save_area) << PAGE_SHIFT);
360
361         return 0;
362 }
363
364 static void svm_cpu_uninit(int cpu)
365 {
366         struct svm_cpu_data *svm_data
367                 = per_cpu(svm_data, raw_smp_processor_id());
368
369         if (!svm_data)
370                 return;
371
372         per_cpu(svm_data, raw_smp_processor_id()) = NULL;
373         __free_page(svm_data->save_area);
374         kfree(svm_data);
375 }
376
377 static int svm_cpu_init(int cpu)
378 {
379         struct svm_cpu_data *svm_data;
380         int r;
381
382         svm_data = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
383         if (!svm_data)
384                 return -ENOMEM;
385         svm_data->cpu = cpu;
386         svm_data->save_area = alloc_page(GFP_KERNEL);
387         r = -ENOMEM;
388         if (!svm_data->save_area)
389                 goto err_1;
390
391         per_cpu(svm_data, cpu) = svm_data;
392
393         return 0;
394
395 err_1:
396         kfree(svm_data);
397         return r;
398
399 }
400
401 static void set_msr_interception(u32 *msrpm, unsigned msr,
402                                  int read, int write)
403 {
404         int i;
405
406         for (i = 0; i < NUM_MSR_MAPS; i++) {
407                 if (msr >= msrpm_ranges[i] &&
408                     msr < msrpm_ranges[i] + MSRS_IN_RANGE) {
409                         u32 msr_offset = (i * MSRS_IN_RANGE + msr -
410                                           msrpm_ranges[i]) * 2;
411
412                         u32 *base = msrpm + (msr_offset / 32);
413                         u32 msr_shift = msr_offset % 32;
414                         u32 mask = ((write) ? 0 : 2) | ((read) ? 0 : 1);
415                         *base = (*base & ~(0x3 << msr_shift)) |
416                                 (mask << msr_shift);
417                         return;
418                 }
419         }
420         BUG();
421 }
422
423 static void svm_vcpu_init_msrpm(u32 *msrpm)
424 {
425         memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
426
427 #ifdef CONFIG_X86_64
428         set_msr_interception(msrpm, MSR_GS_BASE, 1, 1);
429         set_msr_interception(msrpm, MSR_FS_BASE, 1, 1);
430         set_msr_interception(msrpm, MSR_KERNEL_GS_BASE, 1, 1);
431         set_msr_interception(msrpm, MSR_LSTAR, 1, 1);
432         set_msr_interception(msrpm, MSR_CSTAR, 1, 1);
433         set_msr_interception(msrpm, MSR_SYSCALL_MASK, 1, 1);
434 #endif
435         set_msr_interception(msrpm, MSR_K6_STAR, 1, 1);
436         set_msr_interception(msrpm, MSR_IA32_SYSENTER_CS, 1, 1);
437 }
438
439 static void svm_enable_lbrv(struct vcpu_svm *svm)
440 {
441         u32 *msrpm = svm->msrpm;
442
443         svm->vmcb->control.lbr_ctl = 1;
444         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
445         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
446         set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
447         set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
448 }
449
450 static void svm_disable_lbrv(struct vcpu_svm *svm)
451 {
452         u32 *msrpm = svm->msrpm;
453
454         svm->vmcb->control.lbr_ctl = 0;
455         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
456         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
457         set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
458         set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
459 }
460
461 static __init int svm_hardware_setup(void)
462 {
463         int cpu;
464         struct page *iopm_pages;
465         void *iopm_va;
466         int r;
467
468         iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
469
470         if (!iopm_pages)
471                 return -ENOMEM;
472
473         iopm_va = page_address(iopm_pages);
474         memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
475         iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
476
477         if (boot_cpu_has(X86_FEATURE_NX))
478                 kvm_enable_efer_bits(EFER_NX);
479
480         if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
481                 kvm_enable_efer_bits(EFER_FFXSR);
482
483         if (nested) {
484                 printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
485                 kvm_enable_efer_bits(EFER_SVME);
486         }
487
488         for_each_possible_cpu(cpu) {
489                 r = svm_cpu_init(cpu);
490                 if (r)
491                         goto err;
492         }
493
494         svm_features = cpuid_edx(SVM_CPUID_FUNC);
495
496         if (!svm_has(SVM_FEATURE_NPT))
497                 npt_enabled = false;
498
499         if (npt_enabled && !npt) {
500                 printk(KERN_INFO "kvm: Nested Paging disabled\n");
501                 npt_enabled = false;
502         }
503
504         if (npt_enabled) {
505                 printk(KERN_INFO "kvm: Nested Paging enabled\n");
506                 kvm_enable_tdp();
507         } else
508                 kvm_disable_tdp();
509
510         return 0;
511
512 err:
513         __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
514         iopm_base = 0;
515         return r;
516 }
517
518 static __exit void svm_hardware_unsetup(void)
519 {
520         int cpu;
521
522         for_each_possible_cpu(cpu)
523                 svm_cpu_uninit(cpu);
524
525         __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
526         iopm_base = 0;
527 }
528
529 static void init_seg(struct vmcb_seg *seg)
530 {
531         seg->selector = 0;
532         seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
533                 SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
534         seg->limit = 0xffff;
535         seg->base = 0;
536 }
537
538 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
539 {
540         seg->selector = 0;
541         seg->attrib = SVM_SELECTOR_P_MASK | type;
542         seg->limit = 0xffff;
543         seg->base = 0;
544 }
545
546 static void init_vmcb(struct vcpu_svm *svm)
547 {
548         struct vmcb_control_area *control = &svm->vmcb->control;
549         struct vmcb_save_area *save = &svm->vmcb->save;
550
551         control->intercept_cr_read =    INTERCEPT_CR0_MASK |
552                                         INTERCEPT_CR3_MASK |
553                                         INTERCEPT_CR4_MASK;
554
555         control->intercept_cr_write =   INTERCEPT_CR0_MASK |
556                                         INTERCEPT_CR3_MASK |
557                                         INTERCEPT_CR4_MASK |
558                                         INTERCEPT_CR8_MASK;
559
560         control->intercept_dr_read =    INTERCEPT_DR0_MASK |
561                                         INTERCEPT_DR1_MASK |
562                                         INTERCEPT_DR2_MASK |
563                                         INTERCEPT_DR3_MASK;
564
565         control->intercept_dr_write =   INTERCEPT_DR0_MASK |
566                                         INTERCEPT_DR1_MASK |
567                                         INTERCEPT_DR2_MASK |
568                                         INTERCEPT_DR3_MASK |
569                                         INTERCEPT_DR5_MASK |
570                                         INTERCEPT_DR7_MASK;
571
572         control->intercept_exceptions = (1 << PF_VECTOR) |
573                                         (1 << UD_VECTOR) |
574                                         (1 << MC_VECTOR);
575
576
577         control->intercept =    (1ULL << INTERCEPT_INTR) |
578                                 (1ULL << INTERCEPT_NMI) |
579                                 (1ULL << INTERCEPT_SMI) |
580                                 (1ULL << INTERCEPT_CPUID) |
581                                 (1ULL << INTERCEPT_INVD) |
582                                 (1ULL << INTERCEPT_HLT) |
583                                 (1ULL << INTERCEPT_INVLPG) |
584                                 (1ULL << INTERCEPT_INVLPGA) |
585                                 (1ULL << INTERCEPT_IOIO_PROT) |
586                                 (1ULL << INTERCEPT_MSR_PROT) |
587                                 (1ULL << INTERCEPT_TASK_SWITCH) |
588                                 (1ULL << INTERCEPT_SHUTDOWN) |
589                                 (1ULL << INTERCEPT_VMRUN) |
590                                 (1ULL << INTERCEPT_VMMCALL) |
591                                 (1ULL << INTERCEPT_VMLOAD) |
592                                 (1ULL << INTERCEPT_VMSAVE) |
593                                 (1ULL << INTERCEPT_STGI) |
594                                 (1ULL << INTERCEPT_CLGI) |
595                                 (1ULL << INTERCEPT_SKINIT) |
596                                 (1ULL << INTERCEPT_WBINVD) |
597                                 (1ULL << INTERCEPT_MONITOR) |
598                                 (1ULL << INTERCEPT_MWAIT);
599
600         control->iopm_base_pa = iopm_base;
601         control->msrpm_base_pa = __pa(svm->msrpm);
602         control->tsc_offset = 0;
603         control->int_ctl = V_INTR_MASKING_MASK;
604
605         init_seg(&save->es);
606         init_seg(&save->ss);
607         init_seg(&save->ds);
608         init_seg(&save->fs);
609         init_seg(&save->gs);
610
611         save->cs.selector = 0xf000;
612         /* Executable/Readable Code Segment */
613         save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
614                 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
615         save->cs.limit = 0xffff;
616         /*
617          * cs.base should really be 0xffff0000, but vmx can't handle that, so
618          * be consistent with it.
619          *
620          * Replace when we have real mode working for vmx.
621          */
622         save->cs.base = 0xf0000;
623
624         save->gdtr.limit = 0xffff;
625         save->idtr.limit = 0xffff;
626
627         init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
628         init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
629
630         save->efer = EFER_SVME;
631         save->dr6 = 0xffff0ff0;
632         save->dr7 = 0x400;
633         save->rflags = 2;
634         save->rip = 0x0000fff0;
635         svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
636
637         /*
638          * cr0 val on cpu init should be 0x60000010, we enable cpu
639          * cache by default. the orderly way is to enable cache in bios.
640          */
641         save->cr0 = 0x00000010 | X86_CR0_PG | X86_CR0_WP;
642         save->cr4 = X86_CR4_PAE;
643         /* rdx = ?? */
644
645         if (npt_enabled) {
646                 /* Setup VMCB for Nested Paging */
647                 control->nested_ctl = 1;
648                 control->intercept &= ~((1ULL << INTERCEPT_TASK_SWITCH) |
649                                         (1ULL << INTERCEPT_INVLPG));
650                 control->intercept_exceptions &= ~(1 << PF_VECTOR);
651                 control->intercept_cr_read &= ~(INTERCEPT_CR0_MASK|
652                                                 INTERCEPT_CR3_MASK);
653                 control->intercept_cr_write &= ~(INTERCEPT_CR0_MASK|
654                                                  INTERCEPT_CR3_MASK);
655                 save->g_pat = 0x0007040600070406ULL;
656                 /* enable caching because the QEMU Bios doesn't enable it */
657                 save->cr0 = X86_CR0_ET;
658                 save->cr3 = 0;
659                 save->cr4 = 0;
660         }
661         force_new_asid(&svm->vcpu);
662
663         svm->nested.vmcb = 0;
664         svm->vcpu.arch.hflags = 0;
665
666         enable_gif(svm);
667 }
668
669 static int svm_vcpu_reset(struct kvm_vcpu *vcpu)
670 {
671         struct vcpu_svm *svm = to_svm(vcpu);
672
673         init_vmcb(svm);
674
675         if (!kvm_vcpu_is_bsp(vcpu)) {
676                 kvm_rip_write(vcpu, 0);
677                 svm->vmcb->save.cs.base = svm->vcpu.arch.sipi_vector << 12;
678                 svm->vmcb->save.cs.selector = svm->vcpu.arch.sipi_vector << 8;
679         }
680         vcpu->arch.regs_avail = ~0;
681         vcpu->arch.regs_dirty = ~0;
682
683         return 0;
684 }
685
686 static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
687 {
688         struct vcpu_svm *svm;
689         struct page *page;
690         struct page *msrpm_pages;
691         struct page *hsave_page;
692         struct page *nested_msrpm_pages;
693         int err;
694
695         svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
696         if (!svm) {
697                 err = -ENOMEM;
698                 goto out;
699         }
700
701         err = kvm_vcpu_init(&svm->vcpu, kvm, id);
702         if (err)
703                 goto free_svm;
704
705         page = alloc_page(GFP_KERNEL);
706         if (!page) {
707                 err = -ENOMEM;
708                 goto uninit;
709         }
710
711         err = -ENOMEM;
712         msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
713         if (!msrpm_pages)
714                 goto uninit;
715
716         nested_msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
717         if (!nested_msrpm_pages)
718                 goto uninit;
719
720         svm->msrpm = page_address(msrpm_pages);
721         svm_vcpu_init_msrpm(svm->msrpm);
722
723         hsave_page = alloc_page(GFP_KERNEL);
724         if (!hsave_page)
725                 goto uninit;
726         svm->nested.hsave = page_address(hsave_page);
727
728         svm->nested.msrpm = page_address(nested_msrpm_pages);
729
730         svm->vmcb = page_address(page);
731         clear_page(svm->vmcb);
732         svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
733         svm->asid_generation = 0;
734         init_vmcb(svm);
735
736         fx_init(&svm->vcpu);
737         svm->vcpu.fpu_active = 1;
738         svm->vcpu.arch.apic_base = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
739         if (kvm_vcpu_is_bsp(&svm->vcpu))
740                 svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
741
742         return &svm->vcpu;
743
744 uninit:
745         kvm_vcpu_uninit(&svm->vcpu);
746 free_svm:
747         kmem_cache_free(kvm_vcpu_cache, svm);
748 out:
749         return ERR_PTR(err);
750 }
751
752 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
753 {
754         struct vcpu_svm *svm = to_svm(vcpu);
755
756         __free_page(pfn_to_page(svm->vmcb_pa >> PAGE_SHIFT));
757         __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
758         __free_page(virt_to_page(svm->nested.hsave));
759         __free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
760         kvm_vcpu_uninit(vcpu);
761         kmem_cache_free(kvm_vcpu_cache, svm);
762 }
763
764 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
765 {
766         struct vcpu_svm *svm = to_svm(vcpu);
767         int i;
768
769         if (unlikely(cpu != vcpu->cpu)) {
770                 u64 delta;
771
772                 /*
773                  * Make sure that the guest sees a monotonically
774                  * increasing TSC.
775                  */
776                 delta = vcpu->arch.host_tsc - native_read_tsc();
777                 svm->vmcb->control.tsc_offset += delta;
778                 if (is_nested(svm))
779                         svm->nested.hsave->control.tsc_offset += delta;
780                 vcpu->cpu = cpu;
781                 kvm_migrate_timers(vcpu);
782                 svm->asid_generation = 0;
783         }
784
785         for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
786                 rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
787 }
788
789 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
790 {
791         struct vcpu_svm *svm = to_svm(vcpu);
792         int i;
793
794         ++vcpu->stat.host_state_reload;
795         for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
796                 wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
797
798         vcpu->arch.host_tsc = native_read_tsc();
799 }
800
801 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
802 {
803         return to_svm(vcpu)->vmcb->save.rflags;
804 }
805
806 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
807 {
808         to_svm(vcpu)->vmcb->save.rflags = rflags;
809 }
810
811 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
812 {
813         switch (reg) {
814         case VCPU_EXREG_PDPTR:
815                 BUG_ON(!npt_enabled);
816                 load_pdptrs(vcpu, vcpu->arch.cr3);
817                 break;
818         default:
819                 BUG();
820         }
821 }
822
823 static void svm_set_vintr(struct vcpu_svm *svm)
824 {
825         svm->vmcb->control.intercept |= 1ULL << INTERCEPT_VINTR;
826 }
827
828 static void svm_clear_vintr(struct vcpu_svm *svm)
829 {
830         svm->vmcb->control.intercept &= ~(1ULL << INTERCEPT_VINTR);
831 }
832
833 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
834 {
835         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
836
837         switch (seg) {
838         case VCPU_SREG_CS: return &save->cs;
839         case VCPU_SREG_DS: return &save->ds;
840         case VCPU_SREG_ES: return &save->es;
841         case VCPU_SREG_FS: return &save->fs;
842         case VCPU_SREG_GS: return &save->gs;
843         case VCPU_SREG_SS: return &save->ss;
844         case VCPU_SREG_TR: return &save->tr;
845         case VCPU_SREG_LDTR: return &save->ldtr;
846         }
847         BUG();
848         return NULL;
849 }
850
851 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
852 {
853         struct vmcb_seg *s = svm_seg(vcpu, seg);
854
855         return s->base;
856 }
857
858 static void svm_get_segment(struct kvm_vcpu *vcpu,
859                             struct kvm_segment *var, int seg)
860 {
861         struct vmcb_seg *s = svm_seg(vcpu, seg);
862
863         var->base = s->base;
864         var->limit = s->limit;
865         var->selector = s->selector;
866         var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
867         var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
868         var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
869         var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
870         var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
871         var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
872         var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
873         var->g = (s->attrib >> SVM_SELECTOR_G_SHIFT) & 1;
874
875         /* AMD's VMCB does not have an explicit unusable field, so emulate it
876          * for cross vendor migration purposes by "not present"
877          */
878         var->unusable = !var->present || (var->type == 0);
879
880         switch (seg) {
881         case VCPU_SREG_CS:
882                 /*
883                  * SVM always stores 0 for the 'G' bit in the CS selector in
884                  * the VMCB on a VMEXIT. This hurts cross-vendor migration:
885                  * Intel's VMENTRY has a check on the 'G' bit.
886                  */
887                 var->g = s->limit > 0xfffff;
888                 break;
889         case VCPU_SREG_TR:
890                 /*
891                  * Work around a bug where the busy flag in the tr selector
892                  * isn't exposed
893                  */
894                 var->type |= 0x2;
895                 break;
896         case VCPU_SREG_DS:
897         case VCPU_SREG_ES:
898         case VCPU_SREG_FS:
899         case VCPU_SREG_GS:
900                 /*
901                  * The accessed bit must always be set in the segment
902                  * descriptor cache, although it can be cleared in the
903                  * descriptor, the cached bit always remains at 1. Since
904                  * Intel has a check on this, set it here to support
905                  * cross-vendor migration.
906                  */
907                 if (!var->unusable)
908                         var->type |= 0x1;
909                 break;
910         case VCPU_SREG_SS:
911                 /* On AMD CPUs sometimes the DB bit in the segment
912                  * descriptor is left as 1, although the whole segment has
913                  * been made unusable. Clear it here to pass an Intel VMX
914                  * entry check when cross vendor migrating.
915                  */
916                 if (var->unusable)
917                         var->db = 0;
918                 break;
919         }
920 }
921
922 static int svm_get_cpl(struct kvm_vcpu *vcpu)
923 {
924         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
925
926         return save->cpl;
927 }
928
929 static void svm_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
930 {
931         struct vcpu_svm *svm = to_svm(vcpu);
932
933         dt->limit = svm->vmcb->save.idtr.limit;
934         dt->base = svm->vmcb->save.idtr.base;
935 }
936
937 static void svm_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
938 {
939         struct vcpu_svm *svm = to_svm(vcpu);
940
941         svm->vmcb->save.idtr.limit = dt->limit;
942         svm->vmcb->save.idtr.base = dt->base ;
943 }
944
945 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
946 {
947         struct vcpu_svm *svm = to_svm(vcpu);
948
949         dt->limit = svm->vmcb->save.gdtr.limit;
950         dt->base = svm->vmcb->save.gdtr.base;
951 }
952
953 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
954 {
955         struct vcpu_svm *svm = to_svm(vcpu);
956
957         svm->vmcb->save.gdtr.limit = dt->limit;
958         svm->vmcb->save.gdtr.base = dt->base ;
959 }
960
961 static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
962 {
963 }
964
965 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
966 {
967         struct vcpu_svm *svm = to_svm(vcpu);
968
969 #ifdef CONFIG_X86_64
970         if (vcpu->arch.shadow_efer & EFER_LME) {
971                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
972                         vcpu->arch.shadow_efer |= EFER_LMA;
973                         svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
974                 }
975
976                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
977                         vcpu->arch.shadow_efer &= ~EFER_LMA;
978                         svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
979                 }
980         }
981 #endif
982         if (npt_enabled)
983                 goto set;
984
985         if ((vcpu->arch.cr0 & X86_CR0_TS) && !(cr0 & X86_CR0_TS)) {
986                 svm->vmcb->control.intercept_exceptions &= ~(1 << NM_VECTOR);
987                 vcpu->fpu_active = 1;
988         }
989
990         vcpu->arch.cr0 = cr0;
991         cr0 |= X86_CR0_PG | X86_CR0_WP;
992         if (!vcpu->fpu_active) {
993                 svm->vmcb->control.intercept_exceptions |= (1 << NM_VECTOR);
994                 cr0 |= X86_CR0_TS;
995         }
996 set:
997         /*
998          * re-enable caching here because the QEMU bios
999          * does not do it - this results in some delay at
1000          * reboot
1001          */
1002         cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1003         svm->vmcb->save.cr0 = cr0;
1004 }
1005
1006 static void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1007 {
1008         unsigned long host_cr4_mce = read_cr4() & X86_CR4_MCE;
1009         unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
1010
1011         if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
1012                 force_new_asid(vcpu);
1013
1014         vcpu->arch.cr4 = cr4;
1015         if (!npt_enabled)
1016                 cr4 |= X86_CR4_PAE;
1017         cr4 |= host_cr4_mce;
1018         to_svm(vcpu)->vmcb->save.cr4 = cr4;
1019 }
1020
1021 static void svm_set_segment(struct kvm_vcpu *vcpu,
1022                             struct kvm_segment *var, int seg)
1023 {
1024         struct vcpu_svm *svm = to_svm(vcpu);
1025         struct vmcb_seg *s = svm_seg(vcpu, seg);
1026
1027         s->base = var->base;
1028         s->limit = var->limit;
1029         s->selector = var->selector;
1030         if (var->unusable)
1031                 s->attrib = 0;
1032         else {
1033                 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1034                 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1035                 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1036                 s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT;
1037                 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1038                 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1039                 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1040                 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1041         }
1042         if (seg == VCPU_SREG_CS)
1043                 svm->vmcb->save.cpl
1044                         = (svm->vmcb->save.cs.attrib
1045                            >> SVM_SELECTOR_DPL_SHIFT) & 3;
1046
1047 }
1048
1049 static void update_db_intercept(struct kvm_vcpu *vcpu)
1050 {
1051         struct vcpu_svm *svm = to_svm(vcpu);
1052
1053         svm->vmcb->control.intercept_exceptions &=
1054                 ~((1 << DB_VECTOR) | (1 << BP_VECTOR));
1055
1056         if (vcpu->arch.singlestep)
1057                 svm->vmcb->control.intercept_exceptions |= (1 << DB_VECTOR);
1058
1059         if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
1060                 if (vcpu->guest_debug &
1061                     (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
1062                         svm->vmcb->control.intercept_exceptions |=
1063                                 1 << DB_VECTOR;
1064                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
1065                         svm->vmcb->control.intercept_exceptions |=
1066                                 1 << BP_VECTOR;
1067         } else
1068                 vcpu->guest_debug = 0;
1069 }
1070
1071 static void svm_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
1072 {
1073         struct vcpu_svm *svm = to_svm(vcpu);
1074
1075         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1076                 svm->vmcb->save.dr7 = dbg->arch.debugreg[7];
1077         else
1078                 svm->vmcb->save.dr7 = vcpu->arch.dr7;
1079
1080         update_db_intercept(vcpu);
1081 }
1082
1083 static void load_host_msrs(struct kvm_vcpu *vcpu)
1084 {
1085 #ifdef CONFIG_X86_64
1086         wrmsrl(MSR_GS_BASE, to_svm(vcpu)->host_gs_base);
1087 #endif
1088 }
1089
1090 static void save_host_msrs(struct kvm_vcpu *vcpu)
1091 {
1092 #ifdef CONFIG_X86_64
1093         rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host_gs_base);
1094 #endif
1095 }
1096
1097 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *svm_data)
1098 {
1099         if (svm_data->next_asid > svm_data->max_asid) {
1100                 ++svm_data->asid_generation;
1101                 svm_data->next_asid = 1;
1102                 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
1103         }
1104
1105         svm->asid_generation = svm_data->asid_generation;
1106         svm->vmcb->control.asid = svm_data->next_asid++;
1107 }
1108
1109 static unsigned long svm_get_dr(struct kvm_vcpu *vcpu, int dr)
1110 {
1111         struct vcpu_svm *svm = to_svm(vcpu);
1112         unsigned long val;
1113
1114         switch (dr) {
1115         case 0 ... 3:
1116                 val = vcpu->arch.db[dr];
1117                 break;
1118         case 6:
1119                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1120                         val = vcpu->arch.dr6;
1121                 else
1122                         val = svm->vmcb->save.dr6;
1123                 break;
1124         case 7:
1125                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1126                         val = vcpu->arch.dr7;
1127                 else
1128                         val = svm->vmcb->save.dr7;
1129                 break;
1130         default:
1131                 val = 0;
1132         }
1133
1134         return val;
1135 }
1136
1137 static void svm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long value,
1138                        int *exception)
1139 {
1140         struct vcpu_svm *svm = to_svm(vcpu);
1141
1142         *exception = 0;
1143
1144         switch (dr) {
1145         case 0 ... 3:
1146                 vcpu->arch.db[dr] = value;
1147                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1148                         vcpu->arch.eff_db[dr] = value;
1149                 return;
1150         case 4 ... 5:
1151                 if (vcpu->arch.cr4 & X86_CR4_DE)
1152                         *exception = UD_VECTOR;
1153                 return;
1154         case 6:
1155                 if (value & 0xffffffff00000000ULL) {
1156                         *exception = GP_VECTOR;
1157                         return;
1158                 }
1159                 vcpu->arch.dr6 = (value & DR6_VOLATILE) | DR6_FIXED_1;
1160                 return;
1161         case 7:
1162                 if (value & 0xffffffff00000000ULL) {
1163                         *exception = GP_VECTOR;
1164                         return;
1165                 }
1166                 vcpu->arch.dr7 = (value & DR7_VOLATILE) | DR7_FIXED_1;
1167                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1168                         svm->vmcb->save.dr7 = vcpu->arch.dr7;
1169                         vcpu->arch.switch_db_regs = (value & DR7_BP_EN_MASK);
1170                 }
1171                 return;
1172         default:
1173                 /* FIXME: Possible case? */
1174                 printk(KERN_DEBUG "%s: unexpected dr %u\n",
1175                        __func__, dr);
1176                 *exception = UD_VECTOR;
1177                 return;
1178         }
1179 }
1180
1181 static int pf_interception(struct vcpu_svm *svm)
1182 {
1183         u64 fault_address;
1184         u32 error_code;
1185
1186         fault_address  = svm->vmcb->control.exit_info_2;
1187         error_code = svm->vmcb->control.exit_info_1;
1188
1189         trace_kvm_page_fault(fault_address, error_code);
1190         if (!npt_enabled && kvm_event_needs_reinjection(&svm->vcpu))
1191                 kvm_mmu_unprotect_page_virt(&svm->vcpu, fault_address);
1192         return kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code);
1193 }
1194
1195 static int db_interception(struct vcpu_svm *svm)
1196 {
1197         struct kvm_run *kvm_run = svm->vcpu.run;
1198
1199         if (!(svm->vcpu.guest_debug &
1200               (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
1201                 !svm->vcpu.arch.singlestep) {
1202                 kvm_queue_exception(&svm->vcpu, DB_VECTOR);
1203                 return 1;
1204         }
1205
1206         if (svm->vcpu.arch.singlestep) {
1207                 svm->vcpu.arch.singlestep = false;
1208                 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP))
1209                         svm->vmcb->save.rflags &=
1210                                 ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
1211                 update_db_intercept(&svm->vcpu);
1212         }
1213
1214         if (svm->vcpu.guest_debug &
1215             (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)){
1216                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1217                 kvm_run->debug.arch.pc =
1218                         svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1219                 kvm_run->debug.arch.exception = DB_VECTOR;
1220                 return 0;
1221         }
1222
1223         return 1;
1224 }
1225
1226 static int bp_interception(struct vcpu_svm *svm)
1227 {
1228         struct kvm_run *kvm_run = svm->vcpu.run;
1229
1230         kvm_run->exit_reason = KVM_EXIT_DEBUG;
1231         kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1232         kvm_run->debug.arch.exception = BP_VECTOR;
1233         return 0;
1234 }
1235
1236 static int ud_interception(struct vcpu_svm *svm)
1237 {
1238         int er;
1239
1240         er = emulate_instruction(&svm->vcpu, 0, 0, EMULTYPE_TRAP_UD);
1241         if (er != EMULATE_DONE)
1242                 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1243         return 1;
1244 }
1245
1246 static int nm_interception(struct vcpu_svm *svm)
1247 {
1248         svm->vmcb->control.intercept_exceptions &= ~(1 << NM_VECTOR);
1249         if (!(svm->vcpu.arch.cr0 & X86_CR0_TS))
1250                 svm->vmcb->save.cr0 &= ~X86_CR0_TS;
1251         svm->vcpu.fpu_active = 1;
1252
1253         return 1;
1254 }
1255
1256 static int mc_interception(struct vcpu_svm *svm)
1257 {
1258         /*
1259          * On an #MC intercept the MCE handler is not called automatically in
1260          * the host. So do it by hand here.
1261          */
1262         asm volatile (
1263                 "int $0x12\n");
1264         /* not sure if we ever come back to this point */
1265
1266         return 1;
1267 }
1268
1269 static int shutdown_interception(struct vcpu_svm *svm)
1270 {
1271         struct kvm_run *kvm_run = svm->vcpu.run;
1272
1273         /*
1274          * VMCB is undefined after a SHUTDOWN intercept
1275          * so reinitialize it.
1276          */
1277         clear_page(svm->vmcb);
1278         init_vmcb(svm);
1279
1280         kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
1281         return 0;
1282 }
1283
1284 static int io_interception(struct vcpu_svm *svm)
1285 {
1286         u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
1287         int size, in, string;
1288         unsigned port;
1289
1290         ++svm->vcpu.stat.io_exits;
1291
1292         svm->next_rip = svm->vmcb->control.exit_info_2;
1293
1294         string = (io_info & SVM_IOIO_STR_MASK) != 0;
1295
1296         if (string) {
1297                 if (emulate_instruction(&svm->vcpu,
1298                                         0, 0, 0) == EMULATE_DO_MMIO)
1299                         return 0;
1300                 return 1;
1301         }
1302
1303         in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
1304         port = io_info >> 16;
1305         size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
1306
1307         skip_emulated_instruction(&svm->vcpu);
1308         return kvm_emulate_pio(&svm->vcpu, in, size, port);
1309 }
1310
1311 static int nmi_interception(struct vcpu_svm *svm)
1312 {
1313         return 1;
1314 }
1315
1316 static int intr_interception(struct vcpu_svm *svm)
1317 {
1318         ++svm->vcpu.stat.irq_exits;
1319         return 1;
1320 }
1321
1322 static int nop_on_interception(struct vcpu_svm *svm)
1323 {
1324         return 1;
1325 }
1326
1327 static int halt_interception(struct vcpu_svm *svm)
1328 {
1329         svm->next_rip = kvm_rip_read(&svm->vcpu) + 1;
1330         skip_emulated_instruction(&svm->vcpu);
1331         return kvm_emulate_halt(&svm->vcpu);
1332 }
1333
1334 static int vmmcall_interception(struct vcpu_svm *svm)
1335 {
1336         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1337         skip_emulated_instruction(&svm->vcpu);
1338         kvm_emulate_hypercall(&svm->vcpu);
1339         return 1;
1340 }
1341
1342 static int nested_svm_check_permissions(struct vcpu_svm *svm)
1343 {
1344         if (!(svm->vcpu.arch.shadow_efer & EFER_SVME)
1345             || !is_paging(&svm->vcpu)) {
1346                 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1347                 return 1;
1348         }
1349
1350         if (svm->vmcb->save.cpl) {
1351                 kvm_inject_gp(&svm->vcpu, 0);
1352                 return 1;
1353         }
1354
1355        return 0;
1356 }
1357
1358 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
1359                                       bool has_error_code, u32 error_code)
1360 {
1361         if (!is_nested(svm))
1362                 return 0;
1363
1364         svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
1365         svm->vmcb->control.exit_code_hi = 0;
1366         svm->vmcb->control.exit_info_1 = error_code;
1367         svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
1368
1369         return nested_svm_exit_handled(svm);
1370 }
1371
1372 static inline int nested_svm_intr(struct vcpu_svm *svm)
1373 {
1374         if (!is_nested(svm))
1375                 return 0;
1376
1377         if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
1378                 return 0;
1379
1380         if (!(svm->vcpu.arch.hflags & HF_HIF_MASK))
1381                 return 0;
1382
1383         svm->vmcb->control.exit_code = SVM_EXIT_INTR;
1384
1385         if (svm->nested.intercept & 1ULL) {
1386                 /*
1387                  * The #vmexit can't be emulated here directly because this
1388                  * code path runs with irqs and preemtion disabled. A
1389                  * #vmexit emulation might sleep. Only signal request for
1390                  * the #vmexit here.
1391                  */
1392                 svm->nested.exit_required = true;
1393                 trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip);
1394                 return 1;
1395         }
1396
1397         return 0;
1398 }
1399
1400 static void *nested_svm_map(struct vcpu_svm *svm, u64 gpa, enum km_type idx)
1401 {
1402         struct page *page;
1403
1404         page = gfn_to_page(svm->vcpu.kvm, gpa >> PAGE_SHIFT);
1405         if (is_error_page(page))
1406                 goto error;
1407
1408         return kmap_atomic(page, idx);
1409
1410 error:
1411         kvm_release_page_clean(page);
1412         kvm_inject_gp(&svm->vcpu, 0);
1413
1414         return NULL;
1415 }
1416
1417 static void nested_svm_unmap(void *addr, enum km_type idx)
1418 {
1419         struct page *page;
1420
1421         if (!addr)
1422                 return;
1423
1424         page = kmap_atomic_to_page(addr);
1425
1426         kunmap_atomic(addr, idx);
1427         kvm_release_page_dirty(page);
1428 }
1429
1430 static bool nested_svm_exit_handled_msr(struct vcpu_svm *svm)
1431 {
1432         u32 param = svm->vmcb->control.exit_info_1 & 1;
1433         u32 msr = svm->vcpu.arch.regs[VCPU_REGS_RCX];
1434         bool ret = false;
1435         u32 t0, t1;
1436         u8 *msrpm;
1437
1438         if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
1439                 return false;
1440
1441         msrpm = nested_svm_map(svm, svm->nested.vmcb_msrpm, KM_USER0);
1442
1443         if (!msrpm)
1444                 goto out;
1445
1446         switch (msr) {
1447         case 0 ... 0x1fff:
1448                 t0 = (msr * 2) % 8;
1449                 t1 = msr / 8;
1450                 break;
1451         case 0xc0000000 ... 0xc0001fff:
1452                 t0 = (8192 + msr - 0xc0000000) * 2;
1453                 t1 = (t0 / 8);
1454                 t0 %= 8;
1455                 break;
1456         case 0xc0010000 ... 0xc0011fff:
1457                 t0 = (16384 + msr - 0xc0010000) * 2;
1458                 t1 = (t0 / 8);
1459                 t0 %= 8;
1460                 break;
1461         default:
1462                 ret = true;
1463                 goto out;
1464         }
1465
1466         ret = msrpm[t1] & ((1 << param) << t0);
1467
1468 out:
1469         nested_svm_unmap(msrpm, KM_USER0);
1470
1471         return ret;
1472 }
1473
1474 static int nested_svm_exit_special(struct vcpu_svm *svm)
1475 {
1476         u32 exit_code = svm->vmcb->control.exit_code;
1477
1478         switch (exit_code) {
1479         case SVM_EXIT_INTR:
1480         case SVM_EXIT_NMI:
1481                 return NESTED_EXIT_HOST;
1482                 /* For now we are always handling NPFs when using them */
1483         case SVM_EXIT_NPF:
1484                 if (npt_enabled)
1485                         return NESTED_EXIT_HOST;
1486                 break;
1487         /* When we're shadowing, trap PFs */
1488         case SVM_EXIT_EXCP_BASE + PF_VECTOR:
1489                 if (!npt_enabled)
1490                         return NESTED_EXIT_HOST;
1491                 break;
1492         default:
1493                 break;
1494         }
1495
1496         return NESTED_EXIT_CONTINUE;
1497 }
1498
1499 /*
1500  * If this function returns true, this #vmexit was already handled
1501  */
1502 static int nested_svm_exit_handled(struct vcpu_svm *svm)
1503 {
1504         u32 exit_code = svm->vmcb->control.exit_code;
1505         int vmexit = NESTED_EXIT_HOST;
1506
1507         switch (exit_code) {
1508         case SVM_EXIT_MSR:
1509                 vmexit = nested_svm_exit_handled_msr(svm);
1510                 break;
1511         case SVM_EXIT_READ_CR0 ... SVM_EXIT_READ_CR8: {
1512                 u32 cr_bits = 1 << (exit_code - SVM_EXIT_READ_CR0);
1513                 if (svm->nested.intercept_cr_read & cr_bits)
1514                         vmexit = NESTED_EXIT_DONE;
1515                 break;
1516         }
1517         case SVM_EXIT_WRITE_CR0 ... SVM_EXIT_WRITE_CR8: {
1518                 u32 cr_bits = 1 << (exit_code - SVM_EXIT_WRITE_CR0);
1519                 if (svm->nested.intercept_cr_write & cr_bits)
1520                         vmexit = NESTED_EXIT_DONE;
1521                 break;
1522         }
1523         case SVM_EXIT_READ_DR0 ... SVM_EXIT_READ_DR7: {
1524                 u32 dr_bits = 1 << (exit_code - SVM_EXIT_READ_DR0);
1525                 if (svm->nested.intercept_dr_read & dr_bits)
1526                         vmexit = NESTED_EXIT_DONE;
1527                 break;
1528         }
1529         case SVM_EXIT_WRITE_DR0 ... SVM_EXIT_WRITE_DR7: {
1530                 u32 dr_bits = 1 << (exit_code - SVM_EXIT_WRITE_DR0);
1531                 if (svm->nested.intercept_dr_write & dr_bits)
1532                         vmexit = NESTED_EXIT_DONE;
1533                 break;
1534         }
1535         case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
1536                 u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
1537                 if (svm->nested.intercept_exceptions & excp_bits)
1538                         vmexit = NESTED_EXIT_DONE;
1539                 break;
1540         }
1541         default: {
1542                 u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR);
1543                 nsvm_printk("exit code: 0x%x\n", exit_code);
1544                 if (svm->nested.intercept & exit_bits)
1545                         vmexit = NESTED_EXIT_DONE;
1546         }
1547         }
1548
1549         if (vmexit == NESTED_EXIT_DONE) {
1550                 nsvm_printk("#VMEXIT reason=%04x\n", exit_code);
1551                 nested_svm_vmexit(svm);
1552         }
1553
1554         return vmexit;
1555 }
1556
1557 static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb)
1558 {
1559         struct vmcb_control_area *dst  = &dst_vmcb->control;
1560         struct vmcb_control_area *from = &from_vmcb->control;
1561
1562         dst->intercept_cr_read    = from->intercept_cr_read;
1563         dst->intercept_cr_write   = from->intercept_cr_write;
1564         dst->intercept_dr_read    = from->intercept_dr_read;
1565         dst->intercept_dr_write   = from->intercept_dr_write;
1566         dst->intercept_exceptions = from->intercept_exceptions;
1567         dst->intercept            = from->intercept;
1568         dst->iopm_base_pa         = from->iopm_base_pa;
1569         dst->msrpm_base_pa        = from->msrpm_base_pa;
1570         dst->tsc_offset           = from->tsc_offset;
1571         dst->asid                 = from->asid;
1572         dst->tlb_ctl              = from->tlb_ctl;
1573         dst->int_ctl              = from->int_ctl;
1574         dst->int_vector           = from->int_vector;
1575         dst->int_state            = from->int_state;
1576         dst->exit_code            = from->exit_code;
1577         dst->exit_code_hi         = from->exit_code_hi;
1578         dst->exit_info_1          = from->exit_info_1;
1579         dst->exit_info_2          = from->exit_info_2;
1580         dst->exit_int_info        = from->exit_int_info;
1581         dst->exit_int_info_err    = from->exit_int_info_err;
1582         dst->nested_ctl           = from->nested_ctl;
1583         dst->event_inj            = from->event_inj;
1584         dst->event_inj_err        = from->event_inj_err;
1585         dst->nested_cr3           = from->nested_cr3;
1586         dst->lbr_ctl              = from->lbr_ctl;
1587 }
1588
1589 static int nested_svm_vmexit(struct vcpu_svm *svm)
1590 {
1591         struct vmcb *nested_vmcb;
1592         struct vmcb *hsave = svm->nested.hsave;
1593         struct vmcb *vmcb = svm->vmcb;
1594
1595         trace_kvm_nested_vmexit_inject(vmcb->control.exit_code,
1596                                        vmcb->control.exit_info_1,
1597                                        vmcb->control.exit_info_2,
1598                                        vmcb->control.exit_int_info,
1599                                        vmcb->control.exit_int_info_err);
1600
1601         nested_vmcb = nested_svm_map(svm, svm->nested.vmcb, KM_USER0);
1602         if (!nested_vmcb)
1603                 return 1;
1604
1605         /* Give the current vmcb to the guest */
1606         disable_gif(svm);
1607
1608         nested_vmcb->save.es     = vmcb->save.es;
1609         nested_vmcb->save.cs     = vmcb->save.cs;
1610         nested_vmcb->save.ss     = vmcb->save.ss;
1611         nested_vmcb->save.ds     = vmcb->save.ds;
1612         nested_vmcb->save.gdtr   = vmcb->save.gdtr;
1613         nested_vmcb->save.idtr   = vmcb->save.idtr;
1614         if (npt_enabled)
1615                 nested_vmcb->save.cr3    = vmcb->save.cr3;
1616         nested_vmcb->save.cr2    = vmcb->save.cr2;
1617         nested_vmcb->save.rflags = vmcb->save.rflags;
1618         nested_vmcb->save.rip    = vmcb->save.rip;
1619         nested_vmcb->save.rsp    = vmcb->save.rsp;
1620         nested_vmcb->save.rax    = vmcb->save.rax;
1621         nested_vmcb->save.dr7    = vmcb->save.dr7;
1622         nested_vmcb->save.dr6    = vmcb->save.dr6;
1623         nested_vmcb->save.cpl    = vmcb->save.cpl;
1624
1625         nested_vmcb->control.int_ctl           = vmcb->control.int_ctl;
1626         nested_vmcb->control.int_vector        = vmcb->control.int_vector;
1627         nested_vmcb->control.int_state         = vmcb->control.int_state;
1628         nested_vmcb->control.exit_code         = vmcb->control.exit_code;
1629         nested_vmcb->control.exit_code_hi      = vmcb->control.exit_code_hi;
1630         nested_vmcb->control.exit_info_1       = vmcb->control.exit_info_1;
1631         nested_vmcb->control.exit_info_2       = vmcb->control.exit_info_2;
1632         nested_vmcb->control.exit_int_info     = vmcb->control.exit_int_info;
1633         nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err;
1634
1635         /*
1636          * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
1637          * to make sure that we do not lose injected events. So check event_inj
1638          * here and copy it to exit_int_info if it is valid.
1639          * Exit_int_info and event_inj can't be both valid because the case
1640          * below only happens on a VMRUN instruction intercept which has
1641          * no valid exit_int_info set.
1642          */
1643         if (vmcb->control.event_inj & SVM_EVTINJ_VALID) {
1644                 struct vmcb_control_area *nc = &nested_vmcb->control;
1645
1646                 nc->exit_int_info     = vmcb->control.event_inj;
1647                 nc->exit_int_info_err = vmcb->control.event_inj_err;
1648         }
1649
1650         nested_vmcb->control.tlb_ctl           = 0;
1651         nested_vmcb->control.event_inj         = 0;
1652         nested_vmcb->control.event_inj_err     = 0;
1653
1654         /* We always set V_INTR_MASKING and remember the old value in hflags */
1655         if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
1656                 nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
1657
1658         /* Restore the original control entries */
1659         copy_vmcb_control_area(vmcb, hsave);
1660
1661         /* Kill any pending exceptions */
1662         if (svm->vcpu.arch.exception.pending == true)
1663                 nsvm_printk("WARNING: Pending Exception\n");
1664
1665         kvm_clear_exception_queue(&svm->vcpu);
1666         kvm_clear_interrupt_queue(&svm->vcpu);
1667
1668         /* Restore selected save entries */
1669         svm->vmcb->save.es = hsave->save.es;
1670         svm->vmcb->save.cs = hsave->save.cs;
1671         svm->vmcb->save.ss = hsave->save.ss;
1672         svm->vmcb->save.ds = hsave->save.ds;
1673         svm->vmcb->save.gdtr = hsave->save.gdtr;
1674         svm->vmcb->save.idtr = hsave->save.idtr;
1675         svm->vmcb->save.rflags = hsave->save.rflags;
1676         svm_set_efer(&svm->vcpu, hsave->save.efer);
1677         svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
1678         svm_set_cr4(&svm->vcpu, hsave->save.cr4);
1679         if (npt_enabled) {
1680                 svm->vmcb->save.cr3 = hsave->save.cr3;
1681                 svm->vcpu.arch.cr3 = hsave->save.cr3;
1682         } else {
1683                 kvm_set_cr3(&svm->vcpu, hsave->save.cr3);
1684         }
1685         kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, hsave->save.rax);
1686         kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, hsave->save.rsp);
1687         kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, hsave->save.rip);
1688         svm->vmcb->save.dr7 = 0;
1689         svm->vmcb->save.cpl = 0;
1690         svm->vmcb->control.exit_int_info = 0;
1691
1692         /* Exit nested SVM mode */
1693         svm->nested.vmcb = 0;
1694
1695         nested_svm_unmap(nested_vmcb, KM_USER0);
1696
1697         kvm_mmu_reset_context(&svm->vcpu);
1698         kvm_mmu_load(&svm->vcpu);
1699
1700         return 0;
1701 }
1702
1703 static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
1704 {
1705         u32 *nested_msrpm;
1706         int i;
1707
1708         nested_msrpm = nested_svm_map(svm, svm->nested.vmcb_msrpm, KM_USER0);
1709         if (!nested_msrpm)
1710                 return false;
1711
1712         for (i=0; i< PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER) / 4; i++)
1713                 svm->nested.msrpm[i] = svm->msrpm[i] | nested_msrpm[i];
1714
1715         svm->vmcb->control.msrpm_base_pa = __pa(svm->nested.msrpm);
1716
1717         nested_svm_unmap(nested_msrpm, KM_USER0);
1718
1719         return true;
1720 }
1721
1722 static bool nested_svm_vmrun(struct vcpu_svm *svm)
1723 {
1724         struct vmcb *nested_vmcb;
1725         struct vmcb *hsave = svm->nested.hsave;
1726         struct vmcb *vmcb = svm->vmcb;
1727
1728         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, KM_USER0);
1729         if (!nested_vmcb)
1730                 return false;
1731
1732         /* nested_vmcb is our indicator if nested SVM is activated */
1733         svm->nested.vmcb = svm->vmcb->save.rax;
1734
1735         trace_kvm_nested_vmrun(svm->vmcb->save.rip - 3, svm->nested.vmcb,
1736                                nested_vmcb->save.rip,
1737                                nested_vmcb->control.int_ctl,
1738                                nested_vmcb->control.event_inj,
1739                                nested_vmcb->control.nested_ctl);
1740
1741         /* Clear internal status */
1742         kvm_clear_exception_queue(&svm->vcpu);
1743         kvm_clear_interrupt_queue(&svm->vcpu);
1744
1745         /* Save the old vmcb, so we don't need to pick what we save, but
1746            can restore everything when a VMEXIT occurs */
1747         hsave->save.es     = vmcb->save.es;
1748         hsave->save.cs     = vmcb->save.cs;
1749         hsave->save.ss     = vmcb->save.ss;
1750         hsave->save.ds     = vmcb->save.ds;
1751         hsave->save.gdtr   = vmcb->save.gdtr;
1752         hsave->save.idtr   = vmcb->save.idtr;
1753         hsave->save.efer   = svm->vcpu.arch.shadow_efer;
1754         hsave->save.cr0    = svm->vcpu.arch.cr0;
1755         hsave->save.cr4    = svm->vcpu.arch.cr4;
1756         hsave->save.rflags = vmcb->save.rflags;
1757         hsave->save.rip    = svm->next_rip;
1758         hsave->save.rsp    = vmcb->save.rsp;
1759         hsave->save.rax    = vmcb->save.rax;
1760         if (npt_enabled)
1761                 hsave->save.cr3    = vmcb->save.cr3;
1762         else
1763                 hsave->save.cr3    = svm->vcpu.arch.cr3;
1764
1765         copy_vmcb_control_area(hsave, vmcb);
1766
1767         if (svm->vmcb->save.rflags & X86_EFLAGS_IF)
1768                 svm->vcpu.arch.hflags |= HF_HIF_MASK;
1769         else
1770                 svm->vcpu.arch.hflags &= ~HF_HIF_MASK;
1771
1772         /* Load the nested guest state */
1773         svm->vmcb->save.es = nested_vmcb->save.es;
1774         svm->vmcb->save.cs = nested_vmcb->save.cs;
1775         svm->vmcb->save.ss = nested_vmcb->save.ss;
1776         svm->vmcb->save.ds = nested_vmcb->save.ds;
1777         svm->vmcb->save.gdtr = nested_vmcb->save.gdtr;
1778         svm->vmcb->save.idtr = nested_vmcb->save.idtr;
1779         svm->vmcb->save.rflags = nested_vmcb->save.rflags;
1780         svm_set_efer(&svm->vcpu, nested_vmcb->save.efer);
1781         svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0);
1782         svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4);
1783         if (npt_enabled) {
1784                 svm->vmcb->save.cr3 = nested_vmcb->save.cr3;
1785                 svm->vcpu.arch.cr3 = nested_vmcb->save.cr3;
1786         } else {
1787                 kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3);
1788                 kvm_mmu_reset_context(&svm->vcpu);
1789         }
1790         svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2;
1791         kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, nested_vmcb->save.rax);
1792         kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, nested_vmcb->save.rsp);
1793         kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, nested_vmcb->save.rip);
1794         /* In case we don't even reach vcpu_run, the fields are not updated */
1795         svm->vmcb->save.rax = nested_vmcb->save.rax;
1796         svm->vmcb->save.rsp = nested_vmcb->save.rsp;
1797         svm->vmcb->save.rip = nested_vmcb->save.rip;
1798         svm->vmcb->save.dr7 = nested_vmcb->save.dr7;
1799         svm->vmcb->save.dr6 = nested_vmcb->save.dr6;
1800         svm->vmcb->save.cpl = nested_vmcb->save.cpl;
1801
1802         /* We don't want a nested guest to be more powerful than the guest,
1803            so all intercepts are ORed */
1804         svm->vmcb->control.intercept_cr_read |=
1805                 nested_vmcb->control.intercept_cr_read;
1806         svm->vmcb->control.intercept_cr_write |=
1807                 nested_vmcb->control.intercept_cr_write;
1808         svm->vmcb->control.intercept_dr_read |=
1809                 nested_vmcb->control.intercept_dr_read;
1810         svm->vmcb->control.intercept_dr_write |=
1811                 nested_vmcb->control.intercept_dr_write;
1812         svm->vmcb->control.intercept_exceptions |=
1813                 nested_vmcb->control.intercept_exceptions;
1814
1815         svm->vmcb->control.intercept |= nested_vmcb->control.intercept;
1816
1817         svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa;
1818
1819         /* cache intercepts */
1820         svm->nested.intercept_cr_read    = nested_vmcb->control.intercept_cr_read;
1821         svm->nested.intercept_cr_write   = nested_vmcb->control.intercept_cr_write;
1822         svm->nested.intercept_dr_read    = nested_vmcb->control.intercept_dr_read;
1823         svm->nested.intercept_dr_write   = nested_vmcb->control.intercept_dr_write;
1824         svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions;
1825         svm->nested.intercept            = nested_vmcb->control.intercept;
1826
1827         force_new_asid(&svm->vcpu);
1828         svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK;
1829         if (nested_vmcb->control.int_ctl & V_IRQ_MASK) {
1830                 nsvm_printk("nSVM Injecting Interrupt: 0x%x\n",
1831                                 nested_vmcb->control.int_ctl);
1832         }
1833         if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK)
1834                 svm->vcpu.arch.hflags |= HF_VINTR_MASK;
1835         else
1836                 svm->vcpu.arch.hflags &= ~HF_VINTR_MASK;
1837
1838         nsvm_printk("nSVM exit_int_info: 0x%x | int_state: 0x%x\n",
1839                         nested_vmcb->control.exit_int_info,
1840                         nested_vmcb->control.int_state);
1841
1842         svm->vmcb->control.int_vector = nested_vmcb->control.int_vector;
1843         svm->vmcb->control.int_state = nested_vmcb->control.int_state;
1844         svm->vmcb->control.tsc_offset += nested_vmcb->control.tsc_offset;
1845         if (nested_vmcb->control.event_inj & SVM_EVTINJ_VALID)
1846                 nsvm_printk("Injecting Event: 0x%x\n",
1847                                 nested_vmcb->control.event_inj);
1848         svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
1849         svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;
1850
1851         nested_svm_unmap(nested_vmcb, KM_USER0);
1852
1853         enable_gif(svm);
1854
1855         return true;
1856 }
1857
1858 static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
1859 {
1860         to_vmcb->save.fs = from_vmcb->save.fs;
1861         to_vmcb->save.gs = from_vmcb->save.gs;
1862         to_vmcb->save.tr = from_vmcb->save.tr;
1863         to_vmcb->save.ldtr = from_vmcb->save.ldtr;
1864         to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
1865         to_vmcb->save.star = from_vmcb->save.star;
1866         to_vmcb->save.lstar = from_vmcb->save.lstar;
1867         to_vmcb->save.cstar = from_vmcb->save.cstar;
1868         to_vmcb->save.sfmask = from_vmcb->save.sfmask;
1869         to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
1870         to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
1871         to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
1872 }
1873
1874 static int vmload_interception(struct vcpu_svm *svm)
1875 {
1876         struct vmcb *nested_vmcb;
1877
1878         if (nested_svm_check_permissions(svm))
1879                 return 1;
1880
1881         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1882         skip_emulated_instruction(&svm->vcpu);
1883
1884         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, KM_USER0);
1885         if (!nested_vmcb)
1886                 return 1;
1887
1888         nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
1889         nested_svm_unmap(nested_vmcb, KM_USER0);
1890
1891         return 1;
1892 }
1893
1894 static int vmsave_interception(struct vcpu_svm *svm)
1895 {
1896         struct vmcb *nested_vmcb;
1897
1898         if (nested_svm_check_permissions(svm))
1899                 return 1;
1900
1901         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1902         skip_emulated_instruction(&svm->vcpu);
1903
1904         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, KM_USER0);
1905         if (!nested_vmcb)
1906                 return 1;
1907
1908         nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
1909         nested_svm_unmap(nested_vmcb, KM_USER0);
1910
1911         return 1;
1912 }
1913
1914 static int vmrun_interception(struct vcpu_svm *svm)
1915 {
1916         nsvm_printk("VMrun\n");
1917
1918         if (nested_svm_check_permissions(svm))
1919                 return 1;
1920
1921         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1922         skip_emulated_instruction(&svm->vcpu);
1923
1924         if (!nested_svm_vmrun(svm))
1925                 return 1;
1926
1927         if (!nested_svm_vmrun_msrpm(svm))
1928                 goto failed;
1929
1930         return 1;
1931
1932 failed:
1933
1934         svm->vmcb->control.exit_code    = SVM_EXIT_ERR;
1935         svm->vmcb->control.exit_code_hi = 0;
1936         svm->vmcb->control.exit_info_1  = 0;
1937         svm->vmcb->control.exit_info_2  = 0;
1938
1939         nested_svm_vmexit(svm);
1940
1941         return 1;
1942 }
1943
1944 static int stgi_interception(struct vcpu_svm *svm)
1945 {
1946         if (nested_svm_check_permissions(svm))
1947                 return 1;
1948
1949         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1950         skip_emulated_instruction(&svm->vcpu);
1951
1952         enable_gif(svm);
1953
1954         return 1;
1955 }
1956
1957 static int clgi_interception(struct vcpu_svm *svm)
1958 {
1959         if (nested_svm_check_permissions(svm))
1960                 return 1;
1961
1962         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1963         skip_emulated_instruction(&svm->vcpu);
1964
1965         disable_gif(svm);
1966
1967         /* After a CLGI no interrupts should come */
1968         svm_clear_vintr(svm);
1969         svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
1970
1971         return 1;
1972 }
1973
1974 static int invlpga_interception(struct vcpu_svm *svm)
1975 {
1976         struct kvm_vcpu *vcpu = &svm->vcpu;
1977         nsvm_printk("INVLPGA\n");
1978
1979         trace_kvm_invlpga(svm->vmcb->save.rip, vcpu->arch.regs[VCPU_REGS_RCX],
1980                           vcpu->arch.regs[VCPU_REGS_RAX]);
1981
1982         /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
1983         kvm_mmu_invlpg(vcpu, vcpu->arch.regs[VCPU_REGS_RAX]);
1984
1985         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1986         skip_emulated_instruction(&svm->vcpu);
1987         return 1;
1988 }
1989
1990 static int skinit_interception(struct vcpu_svm *svm)
1991 {
1992         trace_kvm_skinit(svm->vmcb->save.rip, svm->vcpu.arch.regs[VCPU_REGS_RAX]);
1993
1994         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1995         return 1;
1996 }
1997
1998 static int invalid_op_interception(struct vcpu_svm *svm)
1999 {
2000         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2001         return 1;
2002 }
2003
2004 static int task_switch_interception(struct vcpu_svm *svm)
2005 {
2006         u16 tss_selector;
2007         int reason;
2008         int int_type = svm->vmcb->control.exit_int_info &
2009                 SVM_EXITINTINFO_TYPE_MASK;
2010         int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
2011         uint32_t type =
2012                 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
2013         uint32_t idt_v =
2014                 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
2015
2016         tss_selector = (u16)svm->vmcb->control.exit_info_1;
2017
2018         if (svm->vmcb->control.exit_info_2 &
2019             (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
2020                 reason = TASK_SWITCH_IRET;
2021         else if (svm->vmcb->control.exit_info_2 &
2022                  (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
2023                 reason = TASK_SWITCH_JMP;
2024         else if (idt_v)
2025                 reason = TASK_SWITCH_GATE;
2026         else
2027                 reason = TASK_SWITCH_CALL;
2028
2029         if (reason == TASK_SWITCH_GATE) {
2030                 switch (type) {
2031                 case SVM_EXITINTINFO_TYPE_NMI:
2032                         svm->vcpu.arch.nmi_injected = false;
2033                         break;
2034                 case SVM_EXITINTINFO_TYPE_EXEPT:
2035                         kvm_clear_exception_queue(&svm->vcpu);
2036                         break;
2037                 case SVM_EXITINTINFO_TYPE_INTR:
2038                         kvm_clear_interrupt_queue(&svm->vcpu);
2039                         break;
2040                 default:
2041                         break;
2042                 }
2043         }
2044
2045         if (reason != TASK_SWITCH_GATE ||
2046             int_type == SVM_EXITINTINFO_TYPE_SOFT ||
2047             (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
2048              (int_vec == OF_VECTOR || int_vec == BP_VECTOR)))
2049                 skip_emulated_instruction(&svm->vcpu);
2050
2051         return kvm_task_switch(&svm->vcpu, tss_selector, reason);
2052 }
2053
2054 static int cpuid_interception(struct vcpu_svm *svm)
2055 {
2056         svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
2057         kvm_emulate_cpuid(&svm->vcpu);
2058         return 1;
2059 }
2060
2061 static int iret_interception(struct vcpu_svm *svm)
2062 {
2063         ++svm->vcpu.stat.nmi_window_exits;
2064         svm->vmcb->control.intercept &= ~(1UL << INTERCEPT_IRET);
2065         svm->vcpu.arch.hflags |= HF_IRET_MASK;
2066         return 1;
2067 }
2068
2069 static int invlpg_interception(struct vcpu_svm *svm)
2070 {
2071         if (emulate_instruction(&svm->vcpu, 0, 0, 0) != EMULATE_DONE)
2072                 pr_unimpl(&svm->vcpu, "%s: failed\n", __func__);
2073         return 1;
2074 }
2075
2076 static int emulate_on_interception(struct vcpu_svm *svm)
2077 {
2078         if (emulate_instruction(&svm->vcpu, 0, 0, 0) != EMULATE_DONE)
2079                 pr_unimpl(&svm->vcpu, "%s: failed\n", __func__);
2080         return 1;
2081 }
2082
2083 static int cr8_write_interception(struct vcpu_svm *svm)
2084 {
2085         struct kvm_run *kvm_run = svm->vcpu.run;
2086
2087         u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
2088         /* instruction emulation calls kvm_set_cr8() */
2089         emulate_instruction(&svm->vcpu, 0, 0, 0);
2090         if (irqchip_in_kernel(svm->vcpu.kvm)) {
2091                 svm->vmcb->control.intercept_cr_write &= ~INTERCEPT_CR8_MASK;
2092                 return 1;
2093         }
2094         if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
2095                 return 1;
2096         kvm_run->exit_reason = KVM_EXIT_SET_TPR;
2097         return 0;
2098 }
2099
2100 static int svm_get_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 *data)
2101 {
2102         struct vcpu_svm *svm = to_svm(vcpu);
2103
2104         switch (ecx) {
2105         case MSR_IA32_TSC: {
2106                 u64 tsc_offset;
2107
2108                 if (is_nested(svm))
2109                         tsc_offset = svm->nested.hsave->control.tsc_offset;
2110                 else
2111                         tsc_offset = svm->vmcb->control.tsc_offset;
2112
2113                 *data = tsc_offset + native_read_tsc();
2114                 break;
2115         }
2116         case MSR_K6_STAR:
2117                 *data = svm->vmcb->save.star;
2118                 break;
2119 #ifdef CONFIG_X86_64
2120         case MSR_LSTAR:
2121                 *data = svm->vmcb->save.lstar;
2122                 break;
2123         case MSR_CSTAR:
2124                 *data = svm->vmcb->save.cstar;
2125                 break;
2126         case MSR_KERNEL_GS_BASE:
2127                 *data = svm->vmcb->save.kernel_gs_base;
2128                 break;
2129         case MSR_SYSCALL_MASK:
2130                 *data = svm->vmcb->save.sfmask;
2131                 break;
2132 #endif
2133         case MSR_IA32_SYSENTER_CS:
2134                 *data = svm->vmcb->save.sysenter_cs;
2135                 break;
2136         case MSR_IA32_SYSENTER_EIP:
2137                 *data = svm->sysenter_eip;
2138                 break;
2139         case MSR_IA32_SYSENTER_ESP:
2140                 *data = svm->sysenter_esp;
2141                 break;
2142         /* Nobody will change the following 5 values in the VMCB so
2143            we can safely return them on rdmsr. They will always be 0
2144            until LBRV is implemented. */
2145         case MSR_IA32_DEBUGCTLMSR:
2146                 *data = svm->vmcb->save.dbgctl;
2147                 break;
2148         case MSR_IA32_LASTBRANCHFROMIP:
2149                 *data = svm->vmcb->save.br_from;
2150                 break;
2151         case MSR_IA32_LASTBRANCHTOIP:
2152                 *data = svm->vmcb->save.br_to;
2153                 break;
2154         case MSR_IA32_LASTINTFROMIP:
2155                 *data = svm->vmcb->save.last_excp_from;
2156                 break;
2157         case MSR_IA32_LASTINTTOIP:
2158                 *data = svm->vmcb->save.last_excp_to;
2159                 break;
2160         case MSR_VM_HSAVE_PA:
2161                 *data = svm->nested.hsave_msr;
2162                 break;
2163         case MSR_VM_CR:
2164                 *data = 0;
2165                 break;
2166         case MSR_IA32_UCODE_REV:
2167                 *data = 0x01000065;
2168                 break;
2169         default:
2170                 return kvm_get_msr_common(vcpu, ecx, data);
2171         }
2172         return 0;
2173 }
2174
2175 static int rdmsr_interception(struct vcpu_svm *svm)
2176 {
2177         u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
2178         u64 data;
2179
2180         if (svm_get_msr(&svm->vcpu, ecx, &data))
2181                 kvm_inject_gp(&svm->vcpu, 0);
2182         else {
2183                 trace_kvm_msr_read(ecx, data);
2184
2185                 svm->vcpu.arch.regs[VCPU_REGS_RAX] = data & 0xffffffff;
2186                 svm->vcpu.arch.regs[VCPU_REGS_RDX] = data >> 32;
2187                 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
2188                 skip_emulated_instruction(&svm->vcpu);
2189         }
2190         return 1;
2191 }
2192
2193 static int svm_set_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 data)
2194 {
2195         struct vcpu_svm *svm = to_svm(vcpu);
2196
2197         switch (ecx) {
2198         case MSR_IA32_TSC: {
2199                 u64 tsc_offset = data - native_read_tsc();
2200                 u64 g_tsc_offset = 0;
2201
2202                 if (is_nested(svm)) {
2203                         g_tsc_offset = svm->vmcb->control.tsc_offset -
2204                                        svm->nested.hsave->control.tsc_offset;
2205                         svm->nested.hsave->control.tsc_offset = tsc_offset;
2206                 }
2207
2208                 svm->vmcb->control.tsc_offset = tsc_offset + g_tsc_offset;
2209
2210                 break;
2211         }
2212         case MSR_K6_STAR:
2213                 svm->vmcb->save.star = data;
2214                 break;
2215 #ifdef CONFIG_X86_64
2216         case MSR_LSTAR:
2217                 svm->vmcb->save.lstar = data;
2218                 break;
2219         case MSR_CSTAR:
2220                 svm->vmcb->save.cstar = data;
2221                 break;
2222         case MSR_KERNEL_GS_BASE:
2223                 svm->vmcb->save.kernel_gs_base = data;
2224                 break;
2225         case MSR_SYSCALL_MASK:
2226                 svm->vmcb->save.sfmask = data;
2227                 break;
2228 #endif
2229         case MSR_IA32_SYSENTER_CS:
2230                 svm->vmcb->save.sysenter_cs = data;
2231                 break;
2232         case MSR_IA32_SYSENTER_EIP:
2233                 svm->sysenter_eip = data;
2234                 svm->vmcb->save.sysenter_eip = data;
2235                 break;
2236         case MSR_IA32_SYSENTER_ESP:
2237                 svm->sysenter_esp = data;
2238                 svm->vmcb->save.sysenter_esp = data;
2239                 break;
2240         case MSR_IA32_DEBUGCTLMSR:
2241                 if (!svm_has(SVM_FEATURE_LBRV)) {
2242                         pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
2243                                         __func__, data);
2244                         break;
2245                 }
2246                 if (data & DEBUGCTL_RESERVED_BITS)
2247                         return 1;
2248
2249                 svm->vmcb->save.dbgctl = data;
2250                 if (data & (1ULL<<0))
2251                         svm_enable_lbrv(svm);
2252                 else
2253                         svm_disable_lbrv(svm);
2254                 break;
2255         case MSR_VM_HSAVE_PA:
2256                 svm->nested.hsave_msr = data;
2257                 break;
2258         case MSR_VM_CR:
2259         case MSR_VM_IGNNE:
2260                 pr_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
2261                 break;
2262         default:
2263                 return kvm_set_msr_common(vcpu, ecx, data);
2264         }
2265         return 0;
2266 }
2267
2268 static int wrmsr_interception(struct vcpu_svm *svm)
2269 {
2270         u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
2271         u64 data = (svm->vcpu.arch.regs[VCPU_REGS_RAX] & -1u)
2272                 | ((u64)(svm->vcpu.arch.regs[VCPU_REGS_RDX] & -1u) << 32);
2273
2274         trace_kvm_msr_write(ecx, data);
2275
2276         svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
2277         if (svm_set_msr(&svm->vcpu, ecx, data))
2278                 kvm_inject_gp(&svm->vcpu, 0);
2279         else
2280                 skip_emulated_instruction(&svm->vcpu);
2281         return 1;
2282 }
2283
2284 static int msr_interception(struct vcpu_svm *svm)
2285 {
2286         if (svm->vmcb->control.exit_info_1)
2287                 return wrmsr_interception(svm);
2288         else
2289                 return rdmsr_interception(svm);
2290 }
2291
2292 static int interrupt_window_interception(struct vcpu_svm *svm)
2293 {
2294         struct kvm_run *kvm_run = svm->vcpu.run;
2295
2296         svm_clear_vintr(svm);
2297         svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
2298         /*
2299          * If the user space waits to inject interrupts, exit as soon as
2300          * possible
2301          */
2302         if (!irqchip_in_kernel(svm->vcpu.kvm) &&
2303             kvm_run->request_interrupt_window &&
2304             !kvm_cpu_has_interrupt(&svm->vcpu)) {
2305                 ++svm->vcpu.stat.irq_window_exits;
2306                 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
2307                 return 0;
2308         }
2309
2310         return 1;
2311 }
2312
2313 static int (*svm_exit_handlers[])(struct vcpu_svm *svm) = {
2314         [SVM_EXIT_READ_CR0]                     = emulate_on_interception,
2315         [SVM_EXIT_READ_CR3]                     = emulate_on_interception,
2316         [SVM_EXIT_READ_CR4]                     = emulate_on_interception,
2317         [SVM_EXIT_READ_CR8]                     = emulate_on_interception,
2318         /* for now: */
2319         [SVM_EXIT_WRITE_CR0]                    = emulate_on_interception,
2320         [SVM_EXIT_WRITE_CR3]                    = emulate_on_interception,
2321         [SVM_EXIT_WRITE_CR4]                    = emulate_on_interception,
2322         [SVM_EXIT_WRITE_CR8]                    = cr8_write_interception,
2323         [SVM_EXIT_READ_DR0]                     = emulate_on_interception,
2324         [SVM_EXIT_READ_DR1]                     = emulate_on_interception,
2325         [SVM_EXIT_READ_DR2]                     = emulate_on_interception,
2326         [SVM_EXIT_READ_DR3]                     = emulate_on_interception,
2327         [SVM_EXIT_WRITE_DR0]                    = emulate_on_interception,
2328         [SVM_EXIT_WRITE_DR1]                    = emulate_on_interception,
2329         [SVM_EXIT_WRITE_DR2]                    = emulate_on_interception,
2330         [SVM_EXIT_WRITE_DR3]                    = emulate_on_interception,
2331         [SVM_EXIT_WRITE_DR5]                    = emulate_on_interception,
2332         [SVM_EXIT_WRITE_DR7]                    = emulate_on_interception,
2333         [SVM_EXIT_EXCP_BASE + DB_VECTOR]        = db_interception,
2334         [SVM_EXIT_EXCP_BASE + BP_VECTOR]        = bp_interception,
2335         [SVM_EXIT_EXCP_BASE + UD_VECTOR]        = ud_interception,
2336         [SVM_EXIT_EXCP_BASE + PF_VECTOR]        = pf_interception,
2337         [SVM_EXIT_EXCP_BASE + NM_VECTOR]        = nm_interception,
2338         [SVM_EXIT_EXCP_BASE + MC_VECTOR]        = mc_interception,
2339         [SVM_EXIT_INTR]                         = intr_interception,
2340         [SVM_EXIT_NMI]                          = nmi_interception,
2341         [SVM_EXIT_SMI]                          = nop_on_interception,
2342         [SVM_EXIT_INIT]                         = nop_on_interception,
2343         [SVM_EXIT_VINTR]                        = interrupt_window_interception,
2344         /* [SVM_EXIT_CR0_SEL_WRITE]             = emulate_on_interception, */
2345         [SVM_EXIT_CPUID]                        = cpuid_interception,
2346         [SVM_EXIT_IRET]                         = iret_interception,
2347         [SVM_EXIT_INVD]                         = emulate_on_interception,
2348         [SVM_EXIT_HLT]                          = halt_interception,
2349         [SVM_EXIT_INVLPG]                       = invlpg_interception,
2350         [SVM_EXIT_INVLPGA]                      = invlpga_interception,
2351         [SVM_EXIT_IOIO]                         = io_interception,
2352         [SVM_EXIT_MSR]                          = msr_interception,
2353         [SVM_EXIT_TASK_SWITCH]                  = task_switch_interception,
2354         [SVM_EXIT_SHUTDOWN]                     = shutdown_interception,
2355         [SVM_EXIT_VMRUN]                        = vmrun_interception,
2356         [SVM_EXIT_VMMCALL]                      = vmmcall_interception,
2357         [SVM_EXIT_VMLOAD]                       = vmload_interception,
2358         [SVM_EXIT_VMSAVE]                       = vmsave_interception,
2359         [SVM_EXIT_STGI]                         = stgi_interception,
2360         [SVM_EXIT_CLGI]                         = clgi_interception,
2361         [SVM_EXIT_SKINIT]                       = skinit_interception,
2362         [SVM_EXIT_WBINVD]                       = emulate_on_interception,
2363         [SVM_EXIT_MONITOR]                      = invalid_op_interception,
2364         [SVM_EXIT_MWAIT]                        = invalid_op_interception,
2365         [SVM_EXIT_NPF]                          = pf_interception,
2366 };
2367
2368 static int handle_exit(struct kvm_vcpu *vcpu)
2369 {
2370         struct vcpu_svm *svm = to_svm(vcpu);
2371         struct kvm_run *kvm_run = vcpu->run;
2372         u32 exit_code = svm->vmcb->control.exit_code;
2373
2374         trace_kvm_exit(exit_code, svm->vmcb->save.rip);
2375
2376         if (unlikely(svm->nested.exit_required)) {
2377                 nested_svm_vmexit(svm);
2378                 svm->nested.exit_required = false;
2379
2380                 return 1;
2381         }
2382
2383         if (is_nested(svm)) {
2384                 int vmexit;
2385
2386                 trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code,
2387                                         svm->vmcb->control.exit_info_1,
2388                                         svm->vmcb->control.exit_info_2,
2389                                         svm->vmcb->control.exit_int_info,
2390                                         svm->vmcb->control.exit_int_info_err);
2391
2392                 nsvm_printk("nested handle_exit: 0x%x | 0x%lx | 0x%lx | 0x%lx\n",
2393                             exit_code, svm->vmcb->control.exit_info_1,
2394                             svm->vmcb->control.exit_info_2, svm->vmcb->save.rip);
2395
2396                 vmexit = nested_svm_exit_special(svm);
2397
2398                 if (vmexit == NESTED_EXIT_CONTINUE)
2399                         vmexit = nested_svm_exit_handled(svm);
2400
2401                 if (vmexit == NESTED_EXIT_DONE)
2402                         return 1;
2403         }
2404
2405         svm_complete_interrupts(svm);
2406
2407         if (npt_enabled) {
2408                 int mmu_reload = 0;
2409                 if ((vcpu->arch.cr0 ^ svm->vmcb->save.cr0) & X86_CR0_PG) {
2410                         svm_set_cr0(vcpu, svm->vmcb->save.cr0);
2411                         mmu_reload = 1;
2412                 }
2413                 vcpu->arch.cr0 = svm->vmcb->save.cr0;
2414                 vcpu->arch.cr3 = svm->vmcb->save.cr3;
2415                 if (mmu_reload) {
2416                         kvm_mmu_reset_context(vcpu);
2417                         kvm_mmu_load(vcpu);
2418                 }
2419         }
2420
2421
2422         if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
2423                 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
2424                 kvm_run->fail_entry.hardware_entry_failure_reason
2425                         = svm->vmcb->control.exit_code;
2426                 return 0;
2427         }
2428
2429         if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
2430             exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
2431             exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH)
2432                 printk(KERN_ERR "%s: unexpected exit_ini_info 0x%x "
2433                        "exit_code 0x%x\n",
2434                        __func__, svm->vmcb->control.exit_int_info,
2435                        exit_code);
2436
2437         if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
2438             || !svm_exit_handlers[exit_code]) {
2439                 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
2440                 kvm_run->hw.hardware_exit_reason = exit_code;
2441                 return 0;
2442         }
2443
2444         return svm_exit_handlers[exit_code](svm);
2445 }
2446
2447 static void reload_tss(struct kvm_vcpu *vcpu)
2448 {
2449         int cpu = raw_smp_processor_id();
2450
2451         struct svm_cpu_data *svm_data = per_cpu(svm_data, cpu);
2452         svm_data->tss_desc->type = 9; /* available 32/64-bit TSS */
2453         load_TR_desc();
2454 }
2455
2456 static void pre_svm_run(struct vcpu_svm *svm)
2457 {
2458         int cpu = raw_smp_processor_id();
2459
2460         struct svm_cpu_data *svm_data = per_cpu(svm_data, cpu);
2461
2462         svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
2463         /* FIXME: handle wraparound of asid_generation */
2464         if (svm->asid_generation != svm_data->asid_generation)
2465                 new_asid(svm, svm_data);
2466 }
2467
2468 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
2469 {
2470         struct vcpu_svm *svm = to_svm(vcpu);
2471
2472         svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
2473         vcpu->arch.hflags |= HF_NMI_MASK;
2474         svm->vmcb->control.intercept |= (1UL << INTERCEPT_IRET);
2475         ++vcpu->stat.nmi_injections;
2476 }
2477
2478 static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
2479 {
2480         struct vmcb_control_area *control;
2481
2482         trace_kvm_inj_virq(irq);
2483
2484         ++svm->vcpu.stat.irq_injections;
2485         control = &svm->vmcb->control;
2486         control->int_vector = irq;
2487         control->int_ctl &= ~V_INTR_PRIO_MASK;
2488         control->int_ctl |= V_IRQ_MASK |
2489                 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
2490 }
2491
2492 static void svm_set_irq(struct kvm_vcpu *vcpu)
2493 {
2494         struct vcpu_svm *svm = to_svm(vcpu);
2495
2496         BUG_ON(!(gif_set(svm)));
2497
2498         svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
2499                 SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
2500 }
2501
2502 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
2503 {
2504         struct vcpu_svm *svm = to_svm(vcpu);
2505
2506         if (irr == -1)
2507                 return;
2508
2509         if (tpr >= irr)
2510                 svm->vmcb->control.intercept_cr_write |= INTERCEPT_CR8_MASK;
2511 }
2512
2513 static int svm_nmi_allowed(struct kvm_vcpu *vcpu)
2514 {
2515         struct vcpu_svm *svm = to_svm(vcpu);
2516         struct vmcb *vmcb = svm->vmcb;
2517         return !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
2518                 !(svm->vcpu.arch.hflags & HF_NMI_MASK);
2519 }
2520
2521 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu)
2522 {
2523         struct vcpu_svm *svm = to_svm(vcpu);
2524         struct vmcb *vmcb = svm->vmcb;
2525         int ret;
2526
2527         if (!gif_set(svm) ||
2528              (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK))
2529                 return 0;
2530
2531         ret = !!(vmcb->save.rflags & X86_EFLAGS_IF);
2532
2533         if (is_nested(svm))
2534                 return ret && !(svm->vcpu.arch.hflags & HF_VINTR_MASK);
2535
2536         return ret;
2537 }
2538
2539 static void enable_irq_window(struct kvm_vcpu *vcpu)
2540 {
2541         struct vcpu_svm *svm = to_svm(vcpu);
2542         nsvm_printk("Trying to open IRQ window\n");
2543
2544         nested_svm_intr(svm);
2545
2546         /* In case GIF=0 we can't rely on the CPU to tell us when
2547          * GIF becomes 1, because that's a separate STGI/VMRUN intercept.
2548          * The next time we get that intercept, this function will be
2549          * called again though and we'll get the vintr intercept. */
2550         if (gif_set(svm)) {
2551                 svm_set_vintr(svm);
2552                 svm_inject_irq(svm, 0x0);
2553         }
2554 }
2555
2556 static void enable_nmi_window(struct kvm_vcpu *vcpu)
2557 {
2558         struct vcpu_svm *svm = to_svm(vcpu);
2559
2560         if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
2561             == HF_NMI_MASK)
2562                 return; /* IRET will cause a vm exit */
2563
2564         /* Something prevents NMI from been injected. Single step over
2565            possible problem (IRET or exception injection or interrupt
2566            shadow) */
2567         vcpu->arch.singlestep = true;
2568         svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
2569         update_db_intercept(vcpu);
2570 }
2571
2572 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
2573 {
2574         return 0;
2575 }
2576
2577 static void svm_flush_tlb(struct kvm_vcpu *vcpu)
2578 {
2579         force_new_asid(vcpu);
2580 }
2581
2582 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
2583 {
2584 }
2585
2586 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
2587 {
2588         struct vcpu_svm *svm = to_svm(vcpu);
2589
2590         if (!(svm->vmcb->control.intercept_cr_write & INTERCEPT_CR8_MASK)) {
2591                 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
2592                 kvm_set_cr8(vcpu, cr8);
2593         }
2594 }
2595
2596 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
2597 {
2598         struct vcpu_svm *svm = to_svm(vcpu);
2599         u64 cr8;
2600
2601         cr8 = kvm_get_cr8(vcpu);
2602         svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
2603         svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
2604 }
2605
2606 static void svm_complete_interrupts(struct vcpu_svm *svm)
2607 {
2608         u8 vector;
2609         int type;
2610         u32 exitintinfo = svm->vmcb->control.exit_int_info;
2611
2612         if (svm->vcpu.arch.hflags & HF_IRET_MASK)
2613                 svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
2614
2615         svm->vcpu.arch.nmi_injected = false;
2616         kvm_clear_exception_queue(&svm->vcpu);
2617         kvm_clear_interrupt_queue(&svm->vcpu);
2618
2619         if (!(exitintinfo & SVM_EXITINTINFO_VALID))
2620                 return;
2621
2622         vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
2623         type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
2624
2625         switch (type) {
2626         case SVM_EXITINTINFO_TYPE_NMI:
2627                 svm->vcpu.arch.nmi_injected = true;
2628                 break;
2629         case SVM_EXITINTINFO_TYPE_EXEPT:
2630                 /* In case of software exception do not reinject an exception
2631                    vector, but re-execute and instruction instead */
2632                 if (is_nested(svm))
2633                         break;
2634                 if (kvm_exception_is_soft(vector))
2635                         break;
2636                 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
2637                         u32 err = svm->vmcb->control.exit_int_info_err;
2638                         kvm_queue_exception_e(&svm->vcpu, vector, err);
2639
2640                 } else
2641                         kvm_queue_exception(&svm->vcpu, vector);
2642                 break;
2643         case SVM_EXITINTINFO_TYPE_INTR:
2644                 kvm_queue_interrupt(&svm->vcpu, vector, false);
2645                 break;
2646         default:
2647                 break;
2648         }
2649 }
2650
2651 #ifdef CONFIG_X86_64
2652 #define R "r"
2653 #else
2654 #define R "e"
2655 #endif
2656
2657 static void svm_vcpu_run(struct kvm_vcpu *vcpu)
2658 {
2659         struct vcpu_svm *svm = to_svm(vcpu);
2660         u16 fs_selector;
2661         u16 gs_selector;
2662         u16 ldt_selector;
2663
2664         /*
2665          * A vmexit emulation is required before the vcpu can be executed
2666          * again.
2667          */
2668         if (unlikely(svm->nested.exit_required))
2669                 return;
2670
2671         svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
2672         svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
2673         svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
2674
2675         pre_svm_run(svm);
2676
2677         sync_lapic_to_cr8(vcpu);
2678
2679         save_host_msrs(vcpu);
2680         fs_selector = kvm_read_fs();
2681         gs_selector = kvm_read_gs();
2682         ldt_selector = kvm_read_ldt();
2683         svm->vmcb->save.cr2 = vcpu->arch.cr2;
2684         /* required for live migration with NPT */
2685         if (npt_enabled)
2686                 svm->vmcb->save.cr3 = vcpu->arch.cr3;
2687
2688         clgi();
2689
2690         local_irq_enable();
2691
2692         asm volatile (
2693                 "push %%"R"bp; \n\t"
2694                 "mov %c[rbx](%[svm]), %%"R"bx \n\t"
2695                 "mov %c[rcx](%[svm]), %%"R"cx \n\t"
2696                 "mov %c[rdx](%[svm]), %%"R"dx \n\t"
2697                 "mov %c[rsi](%[svm]), %%"R"si \n\t"
2698                 "mov %c[rdi](%[svm]), %%"R"di \n\t"
2699                 "mov %c[rbp](%[svm]), %%"R"bp \n\t"
2700 #ifdef CONFIG_X86_64
2701                 "mov %c[r8](%[svm]),  %%r8  \n\t"
2702                 "mov %c[r9](%[svm]),  %%r9  \n\t"
2703                 "mov %c[r10](%[svm]), %%r10 \n\t"
2704                 "mov %c[r11](%[svm]), %%r11 \n\t"
2705                 "mov %c[r12](%[svm]), %%r12 \n\t"
2706                 "mov %c[r13](%[svm]), %%r13 \n\t"
2707                 "mov %c[r14](%[svm]), %%r14 \n\t"
2708                 "mov %c[r15](%[svm]), %%r15 \n\t"
2709 #endif
2710
2711                 /* Enter guest mode */
2712                 "push %%"R"ax \n\t"
2713                 "mov %c[vmcb](%[svm]), %%"R"ax \n\t"
2714                 __ex(SVM_VMLOAD) "\n\t"
2715                 __ex(SVM_VMRUN) "\n\t"
2716                 __ex(SVM_VMSAVE) "\n\t"
2717                 "pop %%"R"ax \n\t"
2718
2719                 /* Save guest registers, load host registers */
2720                 "mov %%"R"bx, %c[rbx](%[svm]) \n\t"
2721                 "mov %%"R"cx, %c[rcx](%[svm]) \n\t"
2722                 "mov %%"R"dx, %c[rdx](%[svm]) \n\t"
2723                 "mov %%"R"si, %c[rsi](%[svm]) \n\t"
2724                 "mov %%"R"di, %c[rdi](%[svm]) \n\t"
2725                 "mov %%"R"bp, %c[rbp](%[svm]) \n\t"
2726 #ifdef CONFIG_X86_64
2727                 "mov %%r8,  %c[r8](%[svm]) \n\t"
2728                 "mov %%r9,  %c[r9](%[svm]) \n\t"
2729                 "mov %%r10, %c[r10](%[svm]) \n\t"
2730                 "mov %%r11, %c[r11](%[svm]) \n\t"
2731                 "mov %%r12, %c[r12](%[svm]) \n\t"
2732                 "mov %%r13, %c[r13](%[svm]) \n\t"
2733                 "mov %%r14, %c[r14](%[svm]) \n\t"
2734                 "mov %%r15, %c[r15](%[svm]) \n\t"
2735 #endif
2736                 "pop %%"R"bp"
2737                 :
2738                 : [svm]"a"(svm),
2739                   [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
2740                   [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
2741                   [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
2742                   [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
2743                   [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
2744                   [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
2745                   [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
2746 #ifdef CONFIG_X86_64
2747                   , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
2748                   [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
2749                   [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
2750                   [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
2751                   [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
2752                   [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
2753                   [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
2754                   [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
2755 #endif
2756                 : "cc", "memory"
2757                 , R"bx", R"cx", R"dx", R"si", R"di"
2758 #ifdef CONFIG_X86_64
2759                 , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
2760 #endif
2761                 );
2762
2763         vcpu->arch.cr2 = svm->vmcb->save.cr2;
2764         vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
2765         vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
2766         vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
2767
2768         kvm_load_fs(fs_selector);
2769         kvm_load_gs(gs_selector);
2770         kvm_load_ldt(ldt_selector);
2771         load_host_msrs(vcpu);
2772
2773         reload_tss(vcpu);
2774
2775         local_irq_disable();
2776
2777         stgi();
2778
2779         sync_cr8_to_lapic(vcpu);
2780
2781         svm->next_rip = 0;
2782
2783         if (npt_enabled) {
2784                 vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
2785                 vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
2786         }
2787 }
2788
2789 #undef R
2790
2791 static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
2792 {
2793         struct vcpu_svm *svm = to_svm(vcpu);
2794
2795         if (npt_enabled) {
2796                 svm->vmcb->control.nested_cr3 = root;
2797                 force_new_asid(vcpu);
2798                 return;
2799         }
2800
2801         svm->vmcb->save.cr3 = root;
2802         force_new_asid(vcpu);
2803
2804         if (vcpu->fpu_active) {
2805                 svm->vmcb->control.intercept_exceptions |= (1 << NM_VECTOR);
2806                 svm->vmcb->save.cr0 |= X86_CR0_TS;
2807                 vcpu->fpu_active = 0;
2808         }
2809 }
2810
2811 static int is_disabled(void)
2812 {
2813         u64 vm_cr;
2814
2815         rdmsrl(MSR_VM_CR, vm_cr);
2816         if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
2817                 return 1;
2818
2819         return 0;
2820 }
2821
2822 static void
2823 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
2824 {
2825         /*
2826          * Patch in the VMMCALL instruction:
2827          */
2828         hypercall[0] = 0x0f;
2829         hypercall[1] = 0x01;
2830         hypercall[2] = 0xd9;
2831 }
2832
2833 static void svm_check_processor_compat(void *rtn)
2834 {
2835         *(int *)rtn = 0;
2836 }
2837
2838 static bool svm_cpu_has_accelerated_tpr(void)
2839 {
2840         return false;
2841 }
2842
2843 static int get_npt_level(void)
2844 {
2845 #ifdef CONFIG_X86_64
2846         return PT64_ROOT_LEVEL;
2847 #else
2848         return PT32E_ROOT_LEVEL;
2849 #endif
2850 }
2851
2852 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
2853 {
2854         return 0;
2855 }
2856
2857 static const struct trace_print_flags svm_exit_reasons_str[] = {
2858         { SVM_EXIT_READ_CR0,                    "read_cr0" },
2859         { SVM_EXIT_READ_CR3,                    "read_cr3" },
2860         { SVM_EXIT_READ_CR4,                    "read_cr4" },
2861         { SVM_EXIT_READ_CR8,                    "read_cr8" },
2862         { SVM_EXIT_WRITE_CR0,                   "write_cr0" },
2863         { SVM_EXIT_WRITE_CR3,                   "write_cr3" },
2864         { SVM_EXIT_WRITE_CR4,                   "write_cr4" },
2865         { SVM_EXIT_WRITE_CR8,                   "write_cr8" },
2866         { SVM_EXIT_READ_DR0,                    "read_dr0" },
2867         { SVM_EXIT_READ_DR1,                    "read_dr1" },
2868         { SVM_EXIT_READ_DR2,                    "read_dr2" },
2869         { SVM_EXIT_READ_DR3,                    "read_dr3" },
2870         { SVM_EXIT_WRITE_DR0,                   "write_dr0" },
2871         { SVM_EXIT_WRITE_DR1,                   "write_dr1" },
2872         { SVM_EXIT_WRITE_DR2,                   "write_dr2" },
2873         { SVM_EXIT_WRITE_DR3,                   "write_dr3" },
2874         { SVM_EXIT_WRITE_DR5,                   "write_dr5" },
2875         { SVM_EXIT_WRITE_DR7,                   "write_dr7" },
2876         { SVM_EXIT_EXCP_BASE + DB_VECTOR,       "DB excp" },
2877         { SVM_EXIT_EXCP_BASE + BP_VECTOR,       "BP excp" },
2878         { SVM_EXIT_EXCP_BASE + UD_VECTOR,       "UD excp" },
2879         { SVM_EXIT_EXCP_BASE + PF_VECTOR,       "PF excp" },
2880         { SVM_EXIT_EXCP_BASE + NM_VECTOR,       "NM excp" },
2881         { SVM_EXIT_EXCP_BASE + MC_VECTOR,       "MC excp" },
2882         { SVM_EXIT_INTR,                        "interrupt" },
2883         { SVM_EXIT_NMI,                         "nmi" },
2884         { SVM_EXIT_SMI,                         "smi" },
2885         { SVM_EXIT_INIT,                        "init" },
2886         { SVM_EXIT_VINTR,                       "vintr" },
2887         { SVM_EXIT_CPUID,                       "cpuid" },
2888         { SVM_EXIT_INVD,                        "invd" },
2889         { SVM_EXIT_HLT,                         "hlt" },
2890         { SVM_EXIT_INVLPG,                      "invlpg" },
2891         { SVM_EXIT_INVLPGA,                     "invlpga" },
2892         { SVM_EXIT_IOIO,                        "io" },
2893         { SVM_EXIT_MSR,                         "msr" },
2894         { SVM_EXIT_TASK_SWITCH,                 "task_switch" },
2895         { SVM_EXIT_SHUTDOWN,                    "shutdown" },
2896         { SVM_EXIT_VMRUN,                       "vmrun" },
2897         { SVM_EXIT_VMMCALL,                     "hypercall" },
2898         { SVM_EXIT_VMLOAD,                      "vmload" },
2899         { SVM_EXIT_VMSAVE,                      "vmsave" },
2900         { SVM_EXIT_STGI,                        "stgi" },
2901         { SVM_EXIT_CLGI,                        "clgi" },
2902         { SVM_EXIT_SKINIT,                      "skinit" },
2903         { SVM_EXIT_WBINVD,                      "wbinvd" },
2904         { SVM_EXIT_MONITOR,                     "monitor" },
2905         { SVM_EXIT_MWAIT,                       "mwait" },
2906         { SVM_EXIT_NPF,                         "npf" },
2907         { -1, NULL }
2908 };
2909
2910 static bool svm_gb_page_enable(void)
2911 {
2912         return true;
2913 }
2914
2915 static struct kvm_x86_ops svm_x86_ops = {
2916         .cpu_has_kvm_support = has_svm,
2917         .disabled_by_bios = is_disabled,
2918         .hardware_setup = svm_hardware_setup,
2919         .hardware_unsetup = svm_hardware_unsetup,
2920         .check_processor_compatibility = svm_check_processor_compat,
2921         .hardware_enable = svm_hardware_enable,
2922         .hardware_disable = svm_hardware_disable,
2923         .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
2924
2925         .vcpu_create = svm_create_vcpu,
2926         .vcpu_free = svm_free_vcpu,
2927         .vcpu_reset = svm_vcpu_reset,
2928
2929         .prepare_guest_switch = svm_prepare_guest_switch,
2930         .vcpu_load = svm_vcpu_load,
2931         .vcpu_put = svm_vcpu_put,
2932
2933         .set_guest_debug = svm_guest_debug,
2934         .get_msr = svm_get_msr,
2935         .set_msr = svm_set_msr,
2936         .get_segment_base = svm_get_segment_base,
2937         .get_segment = svm_get_segment,
2938         .set_segment = svm_set_segment,
2939         .get_cpl = svm_get_cpl,
2940         .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
2941         .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
2942         .set_cr0 = svm_set_cr0,
2943         .set_cr3 = svm_set_cr3,
2944         .set_cr4 = svm_set_cr4,
2945         .set_efer = svm_set_efer,
2946         .get_idt = svm_get_idt,
2947         .set_idt = svm_set_idt,
2948         .get_gdt = svm_get_gdt,
2949         .set_gdt = svm_set_gdt,
2950         .get_dr = svm_get_dr,
2951         .set_dr = svm_set_dr,
2952         .cache_reg = svm_cache_reg,
2953         .get_rflags = svm_get_rflags,
2954         .set_rflags = svm_set_rflags,
2955
2956         .tlb_flush = svm_flush_tlb,
2957
2958         .run = svm_vcpu_run,
2959         .handle_exit = handle_exit,
2960         .skip_emulated_instruction = skip_emulated_instruction,
2961         .set_interrupt_shadow = svm_set_interrupt_shadow,
2962         .get_interrupt_shadow = svm_get_interrupt_shadow,
2963         .patch_hypercall = svm_patch_hypercall,
2964         .set_irq = svm_set_irq,
2965         .set_nmi = svm_inject_nmi,
2966         .queue_exception = svm_queue_exception,
2967         .interrupt_allowed = svm_interrupt_allowed,
2968         .nmi_allowed = svm_nmi_allowed,
2969         .enable_nmi_window = enable_nmi_window,
2970         .enable_irq_window = enable_irq_window,
2971         .update_cr8_intercept = update_cr8_intercept,
2972
2973         .set_tss_addr = svm_set_tss_addr,
2974         .get_tdp_level = get_npt_level,
2975         .get_mt_mask = svm_get_mt_mask,
2976
2977         .exit_reasons_str = svm_exit_reasons_str,
2978         .gb_page_enable = svm_gb_page_enable,
2979 };
2980
2981 static int __init svm_init(void)
2982 {
2983         return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
2984                               THIS_MODULE);
2985 }
2986
2987 static void __exit svm_exit(void)
2988 {
2989         kvm_exit();
2990 }
2991
2992 module_init(svm_init)
2993 module_exit(svm_exit)