59fe4d54da113e7d062e55af0b2c7855c85a92d4
[safe/jmp/linux-2.6] / arch / x86 / kvm / svm.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * AMD SVM support
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  *
8  * Authors:
9  *   Yaniv Kamay  <yaniv@qumranet.com>
10  *   Avi Kivity   <avi@qumranet.com>
11  *
12  * This work is licensed under the terms of the GNU GPL, version 2.  See
13  * the COPYING file in the top-level directory.
14  *
15  */
16 #include <linux/kvm_host.h>
17
18 #include "irq.h"
19 #include "mmu.h"
20 #include "kvm_cache_regs.h"
21 #include "x86.h"
22
23 #include <linux/module.h>
24 #include <linux/kernel.h>
25 #include <linux/vmalloc.h>
26 #include <linux/highmem.h>
27 #include <linux/sched.h>
28 #include <linux/ftrace_event.h>
29
30 #include <asm/desc.h>
31
32 #include <asm/virtext.h>
33 #include "trace.h"
34
35 #define __ex(x) __kvm_handle_fault_on_reboot(x)
36
37 MODULE_AUTHOR("Qumranet");
38 MODULE_LICENSE("GPL");
39
40 #define IOPM_ALLOC_ORDER 2
41 #define MSRPM_ALLOC_ORDER 1
42
43 #define SEG_TYPE_LDT 2
44 #define SEG_TYPE_BUSY_TSS16 3
45
46 #define SVM_FEATURE_NPT  (1 << 0)
47 #define SVM_FEATURE_LBRV (1 << 1)
48 #define SVM_FEATURE_SVML (1 << 2)
49
50 #define NESTED_EXIT_HOST        0       /* Exit handled on host level */
51 #define NESTED_EXIT_DONE        1       /* Exit caused nested vmexit  */
52 #define NESTED_EXIT_CONTINUE    2       /* Further checks needed      */
53
54 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
55
56 /* Turn on to get debugging output*/
57 /* #define NESTED_DEBUG */
58
59 #ifdef NESTED_DEBUG
60 #define nsvm_printk(fmt, args...) printk(KERN_INFO fmt, ## args)
61 #else
62 #define nsvm_printk(fmt, args...) do {} while(0)
63 #endif
64
65 static const u32 host_save_user_msrs[] = {
66 #ifdef CONFIG_X86_64
67         MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE,
68         MSR_FS_BASE,
69 #endif
70         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
71 };
72
73 #define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
74
75 struct kvm_vcpu;
76
77 struct nested_state {
78         struct vmcb *hsave;
79         u64 hsave_msr;
80         u64 vmcb;
81
82         /* These are the merged vectors */
83         u32 *msrpm;
84
85         /* gpa pointers to the real vectors */
86         u64 vmcb_msrpm;
87
88         /* cache for intercepts of the guest */
89         u16 intercept_cr_read;
90         u16 intercept_cr_write;
91         u16 intercept_dr_read;
92         u16 intercept_dr_write;
93         u32 intercept_exceptions;
94         u64 intercept;
95
96 };
97
98 struct vcpu_svm {
99         struct kvm_vcpu vcpu;
100         struct vmcb *vmcb;
101         unsigned long vmcb_pa;
102         struct svm_cpu_data *svm_data;
103         uint64_t asid_generation;
104         uint64_t sysenter_esp;
105         uint64_t sysenter_eip;
106
107         u64 next_rip;
108
109         u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS];
110         u64 host_gs_base;
111
112         u32 *msrpm;
113
114         struct nested_state nested;
115 };
116
117 /* enable NPT for AMD64 and X86 with PAE */
118 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
119 static bool npt_enabled = true;
120 #else
121 static bool npt_enabled = false;
122 #endif
123 static int npt = 1;
124
125 module_param(npt, int, S_IRUGO);
126
127 static int nested = 1;
128 module_param(nested, int, S_IRUGO);
129
130 static void svm_flush_tlb(struct kvm_vcpu *vcpu);
131 static void svm_complete_interrupts(struct vcpu_svm *svm);
132
133 static int nested_svm_exit_handled(struct vcpu_svm *svm);
134 static int nested_svm_vmexit(struct vcpu_svm *svm);
135 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
136                                       bool has_error_code, u32 error_code);
137
138 static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
139 {
140         return container_of(vcpu, struct vcpu_svm, vcpu);
141 }
142
143 static inline bool is_nested(struct vcpu_svm *svm)
144 {
145         return svm->nested.vmcb;
146 }
147
148 static inline void enable_gif(struct vcpu_svm *svm)
149 {
150         svm->vcpu.arch.hflags |= HF_GIF_MASK;
151 }
152
153 static inline void disable_gif(struct vcpu_svm *svm)
154 {
155         svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
156 }
157
158 static inline bool gif_set(struct vcpu_svm *svm)
159 {
160         return !!(svm->vcpu.arch.hflags & HF_GIF_MASK);
161 }
162
163 static unsigned long iopm_base;
164
165 struct kvm_ldttss_desc {
166         u16 limit0;
167         u16 base0;
168         unsigned base1 : 8, type : 5, dpl : 2, p : 1;
169         unsigned limit1 : 4, zero0 : 3, g : 1, base2 : 8;
170         u32 base3;
171         u32 zero1;
172 } __attribute__((packed));
173
174 struct svm_cpu_data {
175         int cpu;
176
177         u64 asid_generation;
178         u32 max_asid;
179         u32 next_asid;
180         struct kvm_ldttss_desc *tss_desc;
181
182         struct page *save_area;
183 };
184
185 static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
186 static uint32_t svm_features;
187
188 struct svm_init_data {
189         int cpu;
190         int r;
191 };
192
193 static u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
194
195 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
196 #define MSRS_RANGE_SIZE 2048
197 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
198
199 #define MAX_INST_SIZE 15
200
201 static inline u32 svm_has(u32 feat)
202 {
203         return svm_features & feat;
204 }
205
206 static inline void clgi(void)
207 {
208         asm volatile (__ex(SVM_CLGI));
209 }
210
211 static inline void stgi(void)
212 {
213         asm volatile (__ex(SVM_STGI));
214 }
215
216 static inline void invlpga(unsigned long addr, u32 asid)
217 {
218         asm volatile (__ex(SVM_INVLPGA) :: "a"(addr), "c"(asid));
219 }
220
221 static inline void force_new_asid(struct kvm_vcpu *vcpu)
222 {
223         to_svm(vcpu)->asid_generation--;
224 }
225
226 static inline void flush_guest_tlb(struct kvm_vcpu *vcpu)
227 {
228         force_new_asid(vcpu);
229 }
230
231 static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
232 {
233         if (!npt_enabled && !(efer & EFER_LMA))
234                 efer &= ~EFER_LME;
235
236         to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME;
237         vcpu->arch.shadow_efer = efer;
238 }
239
240 static void svm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
241                                 bool has_error_code, u32 error_code)
242 {
243         struct vcpu_svm *svm = to_svm(vcpu);
244
245         /* If we are within a nested VM we'd better #VMEXIT and let the
246            guest handle the exception */
247         if (nested_svm_check_exception(svm, nr, has_error_code, error_code))
248                 return;
249
250         svm->vmcb->control.event_inj = nr
251                 | SVM_EVTINJ_VALID
252                 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
253                 | SVM_EVTINJ_TYPE_EXEPT;
254         svm->vmcb->control.event_inj_err = error_code;
255 }
256
257 static int is_external_interrupt(u32 info)
258 {
259         info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
260         return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
261 }
262
263 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
264 {
265         struct vcpu_svm *svm = to_svm(vcpu);
266         u32 ret = 0;
267
268         if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
269                 ret |= X86_SHADOW_INT_STI | X86_SHADOW_INT_MOV_SS;
270         return ret & mask;
271 }
272
273 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
274 {
275         struct vcpu_svm *svm = to_svm(vcpu);
276
277         if (mask == 0)
278                 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
279         else
280                 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
281
282 }
283
284 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
285 {
286         struct vcpu_svm *svm = to_svm(vcpu);
287
288         if (!svm->next_rip) {
289                 if (emulate_instruction(vcpu, 0, 0, EMULTYPE_SKIP) !=
290                                 EMULATE_DONE)
291                         printk(KERN_DEBUG "%s: NOP\n", __func__);
292                 return;
293         }
294         if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
295                 printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n",
296                        __func__, kvm_rip_read(vcpu), svm->next_rip);
297
298         kvm_rip_write(vcpu, svm->next_rip);
299         svm_set_interrupt_shadow(vcpu, 0);
300 }
301
302 static int has_svm(void)
303 {
304         const char *msg;
305
306         if (!cpu_has_svm(&msg)) {
307                 printk(KERN_INFO "has_svm: %s\n", msg);
308                 return 0;
309         }
310
311         return 1;
312 }
313
314 static void svm_hardware_disable(void *garbage)
315 {
316         cpu_svm_disable();
317 }
318
319 static int svm_hardware_enable(void *garbage)
320 {
321
322         struct svm_cpu_data *svm_data;
323         uint64_t efer;
324         struct descriptor_table gdt_descr;
325         struct desc_struct *gdt;
326         int me = raw_smp_processor_id();
327
328         rdmsrl(MSR_EFER, efer);
329         if (efer & EFER_SVME)
330                 return -EBUSY;
331
332         if (!has_svm()) {
333                 printk(KERN_ERR "svm_cpu_init: err EOPNOTSUPP on %d\n", me);
334                 return -EINVAL;
335         }
336         svm_data = per_cpu(svm_data, me);
337
338         if (!svm_data) {
339                 printk(KERN_ERR "svm_cpu_init: svm_data is NULL on %d\n",
340                        me);
341                 return -EINVAL;
342         }
343
344         svm_data->asid_generation = 1;
345         svm_data->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
346         svm_data->next_asid = svm_data->max_asid + 1;
347
348         kvm_get_gdt(&gdt_descr);
349         gdt = (struct desc_struct *)gdt_descr.base;
350         svm_data->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
351
352         wrmsrl(MSR_EFER, efer | EFER_SVME);
353
354         wrmsrl(MSR_VM_HSAVE_PA,
355                page_to_pfn(svm_data->save_area) << PAGE_SHIFT);
356
357         return 0;
358 }
359
360 static void svm_cpu_uninit(int cpu)
361 {
362         struct svm_cpu_data *svm_data
363                 = per_cpu(svm_data, raw_smp_processor_id());
364
365         if (!svm_data)
366                 return;
367
368         per_cpu(svm_data, raw_smp_processor_id()) = NULL;
369         __free_page(svm_data->save_area);
370         kfree(svm_data);
371 }
372
373 static int svm_cpu_init(int cpu)
374 {
375         struct svm_cpu_data *svm_data;
376         int r;
377
378         svm_data = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
379         if (!svm_data)
380                 return -ENOMEM;
381         svm_data->cpu = cpu;
382         svm_data->save_area = alloc_page(GFP_KERNEL);
383         r = -ENOMEM;
384         if (!svm_data->save_area)
385                 goto err_1;
386
387         per_cpu(svm_data, cpu) = svm_data;
388
389         return 0;
390
391 err_1:
392         kfree(svm_data);
393         return r;
394
395 }
396
397 static void set_msr_interception(u32 *msrpm, unsigned msr,
398                                  int read, int write)
399 {
400         int i;
401
402         for (i = 0; i < NUM_MSR_MAPS; i++) {
403                 if (msr >= msrpm_ranges[i] &&
404                     msr < msrpm_ranges[i] + MSRS_IN_RANGE) {
405                         u32 msr_offset = (i * MSRS_IN_RANGE + msr -
406                                           msrpm_ranges[i]) * 2;
407
408                         u32 *base = msrpm + (msr_offset / 32);
409                         u32 msr_shift = msr_offset % 32;
410                         u32 mask = ((write) ? 0 : 2) | ((read) ? 0 : 1);
411                         *base = (*base & ~(0x3 << msr_shift)) |
412                                 (mask << msr_shift);
413                         return;
414                 }
415         }
416         BUG();
417 }
418
419 static void svm_vcpu_init_msrpm(u32 *msrpm)
420 {
421         memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
422
423 #ifdef CONFIG_X86_64
424         set_msr_interception(msrpm, MSR_GS_BASE, 1, 1);
425         set_msr_interception(msrpm, MSR_FS_BASE, 1, 1);
426         set_msr_interception(msrpm, MSR_KERNEL_GS_BASE, 1, 1);
427         set_msr_interception(msrpm, MSR_LSTAR, 1, 1);
428         set_msr_interception(msrpm, MSR_CSTAR, 1, 1);
429         set_msr_interception(msrpm, MSR_SYSCALL_MASK, 1, 1);
430 #endif
431         set_msr_interception(msrpm, MSR_K6_STAR, 1, 1);
432         set_msr_interception(msrpm, MSR_IA32_SYSENTER_CS, 1, 1);
433 }
434
435 static void svm_enable_lbrv(struct vcpu_svm *svm)
436 {
437         u32 *msrpm = svm->msrpm;
438
439         svm->vmcb->control.lbr_ctl = 1;
440         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
441         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
442         set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
443         set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
444 }
445
446 static void svm_disable_lbrv(struct vcpu_svm *svm)
447 {
448         u32 *msrpm = svm->msrpm;
449
450         svm->vmcb->control.lbr_ctl = 0;
451         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
452         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
453         set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
454         set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
455 }
456
457 static __init int svm_hardware_setup(void)
458 {
459         int cpu;
460         struct page *iopm_pages;
461         void *iopm_va;
462         int r;
463
464         iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
465
466         if (!iopm_pages)
467                 return -ENOMEM;
468
469         iopm_va = page_address(iopm_pages);
470         memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
471         iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
472
473         if (boot_cpu_has(X86_FEATURE_NX))
474                 kvm_enable_efer_bits(EFER_NX);
475
476         if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
477                 kvm_enable_efer_bits(EFER_FFXSR);
478
479         if (nested) {
480                 printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
481                 kvm_enable_efer_bits(EFER_SVME);
482         }
483
484         for_each_online_cpu(cpu) {
485                 r = svm_cpu_init(cpu);
486                 if (r)
487                         goto err;
488         }
489
490         svm_features = cpuid_edx(SVM_CPUID_FUNC);
491
492         if (!svm_has(SVM_FEATURE_NPT))
493                 npt_enabled = false;
494
495         if (npt_enabled && !npt) {
496                 printk(KERN_INFO "kvm: Nested Paging disabled\n");
497                 npt_enabled = false;
498         }
499
500         if (npt_enabled) {
501                 printk(KERN_INFO "kvm: Nested Paging enabled\n");
502                 kvm_enable_tdp();
503         } else
504                 kvm_disable_tdp();
505
506         return 0;
507
508 err:
509         __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
510         iopm_base = 0;
511         return r;
512 }
513
514 static __exit void svm_hardware_unsetup(void)
515 {
516         int cpu;
517
518         for_each_online_cpu(cpu)
519                 svm_cpu_uninit(cpu);
520
521         __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
522         iopm_base = 0;
523 }
524
525 static void init_seg(struct vmcb_seg *seg)
526 {
527         seg->selector = 0;
528         seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
529                 SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
530         seg->limit = 0xffff;
531         seg->base = 0;
532 }
533
534 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
535 {
536         seg->selector = 0;
537         seg->attrib = SVM_SELECTOR_P_MASK | type;
538         seg->limit = 0xffff;
539         seg->base = 0;
540 }
541
542 static void init_vmcb(struct vcpu_svm *svm)
543 {
544         struct vmcb_control_area *control = &svm->vmcb->control;
545         struct vmcb_save_area *save = &svm->vmcb->save;
546
547         control->intercept_cr_read =    INTERCEPT_CR0_MASK |
548                                         INTERCEPT_CR3_MASK |
549                                         INTERCEPT_CR4_MASK;
550
551         control->intercept_cr_write =   INTERCEPT_CR0_MASK |
552                                         INTERCEPT_CR3_MASK |
553                                         INTERCEPT_CR4_MASK |
554                                         INTERCEPT_CR8_MASK;
555
556         control->intercept_dr_read =    INTERCEPT_DR0_MASK |
557                                         INTERCEPT_DR1_MASK |
558                                         INTERCEPT_DR2_MASK |
559                                         INTERCEPT_DR3_MASK;
560
561         control->intercept_dr_write =   INTERCEPT_DR0_MASK |
562                                         INTERCEPT_DR1_MASK |
563                                         INTERCEPT_DR2_MASK |
564                                         INTERCEPT_DR3_MASK |
565                                         INTERCEPT_DR5_MASK |
566                                         INTERCEPT_DR7_MASK;
567
568         control->intercept_exceptions = (1 << PF_VECTOR) |
569                                         (1 << UD_VECTOR) |
570                                         (1 << MC_VECTOR);
571
572
573         control->intercept =    (1ULL << INTERCEPT_INTR) |
574                                 (1ULL << INTERCEPT_NMI) |
575                                 (1ULL << INTERCEPT_SMI) |
576                                 (1ULL << INTERCEPT_CPUID) |
577                                 (1ULL << INTERCEPT_INVD) |
578                                 (1ULL << INTERCEPT_HLT) |
579                                 (1ULL << INTERCEPT_INVLPG) |
580                                 (1ULL << INTERCEPT_INVLPGA) |
581                                 (1ULL << INTERCEPT_IOIO_PROT) |
582                                 (1ULL << INTERCEPT_MSR_PROT) |
583                                 (1ULL << INTERCEPT_TASK_SWITCH) |
584                                 (1ULL << INTERCEPT_SHUTDOWN) |
585                                 (1ULL << INTERCEPT_VMRUN) |
586                                 (1ULL << INTERCEPT_VMMCALL) |
587                                 (1ULL << INTERCEPT_VMLOAD) |
588                                 (1ULL << INTERCEPT_VMSAVE) |
589                                 (1ULL << INTERCEPT_STGI) |
590                                 (1ULL << INTERCEPT_CLGI) |
591                                 (1ULL << INTERCEPT_SKINIT) |
592                                 (1ULL << INTERCEPT_WBINVD) |
593                                 (1ULL << INTERCEPT_MONITOR) |
594                                 (1ULL << INTERCEPT_MWAIT);
595
596         control->iopm_base_pa = iopm_base;
597         control->msrpm_base_pa = __pa(svm->msrpm);
598         control->tsc_offset = 0;
599         control->int_ctl = V_INTR_MASKING_MASK;
600
601         init_seg(&save->es);
602         init_seg(&save->ss);
603         init_seg(&save->ds);
604         init_seg(&save->fs);
605         init_seg(&save->gs);
606
607         save->cs.selector = 0xf000;
608         /* Executable/Readable Code Segment */
609         save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
610                 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
611         save->cs.limit = 0xffff;
612         /*
613          * cs.base should really be 0xffff0000, but vmx can't handle that, so
614          * be consistent with it.
615          *
616          * Replace when we have real mode working for vmx.
617          */
618         save->cs.base = 0xf0000;
619
620         save->gdtr.limit = 0xffff;
621         save->idtr.limit = 0xffff;
622
623         init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
624         init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
625
626         save->efer = EFER_SVME;
627         save->dr6 = 0xffff0ff0;
628         save->dr7 = 0x400;
629         save->rflags = 2;
630         save->rip = 0x0000fff0;
631         svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
632
633         /*
634          * cr0 val on cpu init should be 0x60000010, we enable cpu
635          * cache by default. the orderly way is to enable cache in bios.
636          */
637         save->cr0 = 0x00000010 | X86_CR0_PG | X86_CR0_WP;
638         save->cr4 = X86_CR4_PAE;
639         /* rdx = ?? */
640
641         if (npt_enabled) {
642                 /* Setup VMCB for Nested Paging */
643                 control->nested_ctl = 1;
644                 control->intercept &= ~((1ULL << INTERCEPT_TASK_SWITCH) |
645                                         (1ULL << INTERCEPT_INVLPG));
646                 control->intercept_exceptions &= ~(1 << PF_VECTOR);
647                 control->intercept_cr_read &= ~(INTERCEPT_CR0_MASK|
648                                                 INTERCEPT_CR3_MASK);
649                 control->intercept_cr_write &= ~(INTERCEPT_CR0_MASK|
650                                                  INTERCEPT_CR3_MASK);
651                 save->g_pat = 0x0007040600070406ULL;
652                 /* enable caching because the QEMU Bios doesn't enable it */
653                 save->cr0 = X86_CR0_ET;
654                 save->cr3 = 0;
655                 save->cr4 = 0;
656         }
657         force_new_asid(&svm->vcpu);
658
659         svm->nested.vmcb = 0;
660         svm->vcpu.arch.hflags = 0;
661
662         enable_gif(svm);
663 }
664
665 static int svm_vcpu_reset(struct kvm_vcpu *vcpu)
666 {
667         struct vcpu_svm *svm = to_svm(vcpu);
668
669         init_vmcb(svm);
670
671         if (!kvm_vcpu_is_bsp(vcpu)) {
672                 kvm_rip_write(vcpu, 0);
673                 svm->vmcb->save.cs.base = svm->vcpu.arch.sipi_vector << 12;
674                 svm->vmcb->save.cs.selector = svm->vcpu.arch.sipi_vector << 8;
675         }
676         vcpu->arch.regs_avail = ~0;
677         vcpu->arch.regs_dirty = ~0;
678
679         return 0;
680 }
681
682 static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
683 {
684         struct vcpu_svm *svm;
685         struct page *page;
686         struct page *msrpm_pages;
687         struct page *hsave_page;
688         struct page *nested_msrpm_pages;
689         int err;
690
691         svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
692         if (!svm) {
693                 err = -ENOMEM;
694                 goto out;
695         }
696
697         err = kvm_vcpu_init(&svm->vcpu, kvm, id);
698         if (err)
699                 goto free_svm;
700
701         page = alloc_page(GFP_KERNEL);
702         if (!page) {
703                 err = -ENOMEM;
704                 goto uninit;
705         }
706
707         err = -ENOMEM;
708         msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
709         if (!msrpm_pages)
710                 goto uninit;
711
712         nested_msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
713         if (!nested_msrpm_pages)
714                 goto uninit;
715
716         svm->msrpm = page_address(msrpm_pages);
717         svm_vcpu_init_msrpm(svm->msrpm);
718
719         hsave_page = alloc_page(GFP_KERNEL);
720         if (!hsave_page)
721                 goto uninit;
722         svm->nested.hsave = page_address(hsave_page);
723
724         svm->nested.msrpm = page_address(nested_msrpm_pages);
725
726         svm->vmcb = page_address(page);
727         clear_page(svm->vmcb);
728         svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
729         svm->asid_generation = 0;
730         init_vmcb(svm);
731
732         fx_init(&svm->vcpu);
733         svm->vcpu.fpu_active = 1;
734         svm->vcpu.arch.apic_base = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
735         if (kvm_vcpu_is_bsp(&svm->vcpu))
736                 svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
737
738         return &svm->vcpu;
739
740 uninit:
741         kvm_vcpu_uninit(&svm->vcpu);
742 free_svm:
743         kmem_cache_free(kvm_vcpu_cache, svm);
744 out:
745         return ERR_PTR(err);
746 }
747
748 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
749 {
750         struct vcpu_svm *svm = to_svm(vcpu);
751
752         __free_page(pfn_to_page(svm->vmcb_pa >> PAGE_SHIFT));
753         __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
754         __free_page(virt_to_page(svm->nested.hsave));
755         __free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
756         kvm_vcpu_uninit(vcpu);
757         kmem_cache_free(kvm_vcpu_cache, svm);
758 }
759
760 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
761 {
762         struct vcpu_svm *svm = to_svm(vcpu);
763         int i;
764
765         if (unlikely(cpu != vcpu->cpu)) {
766                 u64 tsc_this, delta;
767
768                 /*
769                  * Make sure that the guest sees a monotonically
770                  * increasing TSC.
771                  */
772                 rdtscll(tsc_this);
773                 delta = vcpu->arch.host_tsc - tsc_this;
774                 svm->vmcb->control.tsc_offset += delta;
775                 if (is_nested(svm))
776                         svm->nested.hsave->control.tsc_offset += delta;
777                 vcpu->cpu = cpu;
778                 kvm_migrate_timers(vcpu);
779                 svm->asid_generation = 0;
780         }
781
782         for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
783                 rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
784 }
785
786 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
787 {
788         struct vcpu_svm *svm = to_svm(vcpu);
789         int i;
790
791         ++vcpu->stat.host_state_reload;
792         for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
793                 wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
794
795         rdtscll(vcpu->arch.host_tsc);
796 }
797
798 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
799 {
800         return to_svm(vcpu)->vmcb->save.rflags;
801 }
802
803 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
804 {
805         to_svm(vcpu)->vmcb->save.rflags = rflags;
806 }
807
808 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
809 {
810         switch (reg) {
811         case VCPU_EXREG_PDPTR:
812                 BUG_ON(!npt_enabled);
813                 load_pdptrs(vcpu, vcpu->arch.cr3);
814                 break;
815         default:
816                 BUG();
817         }
818 }
819
820 static void svm_set_vintr(struct vcpu_svm *svm)
821 {
822         svm->vmcb->control.intercept |= 1ULL << INTERCEPT_VINTR;
823 }
824
825 static void svm_clear_vintr(struct vcpu_svm *svm)
826 {
827         svm->vmcb->control.intercept &= ~(1ULL << INTERCEPT_VINTR);
828 }
829
830 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
831 {
832         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
833
834         switch (seg) {
835         case VCPU_SREG_CS: return &save->cs;
836         case VCPU_SREG_DS: return &save->ds;
837         case VCPU_SREG_ES: return &save->es;
838         case VCPU_SREG_FS: return &save->fs;
839         case VCPU_SREG_GS: return &save->gs;
840         case VCPU_SREG_SS: return &save->ss;
841         case VCPU_SREG_TR: return &save->tr;
842         case VCPU_SREG_LDTR: return &save->ldtr;
843         }
844         BUG();
845         return NULL;
846 }
847
848 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
849 {
850         struct vmcb_seg *s = svm_seg(vcpu, seg);
851
852         return s->base;
853 }
854
855 static void svm_get_segment(struct kvm_vcpu *vcpu,
856                             struct kvm_segment *var, int seg)
857 {
858         struct vmcb_seg *s = svm_seg(vcpu, seg);
859
860         var->base = s->base;
861         var->limit = s->limit;
862         var->selector = s->selector;
863         var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
864         var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
865         var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
866         var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
867         var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
868         var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
869         var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
870         var->g = (s->attrib >> SVM_SELECTOR_G_SHIFT) & 1;
871
872         /* AMD's VMCB does not have an explicit unusable field, so emulate it
873          * for cross vendor migration purposes by "not present"
874          */
875         var->unusable = !var->present || (var->type == 0);
876
877         switch (seg) {
878         case VCPU_SREG_CS:
879                 /*
880                  * SVM always stores 0 for the 'G' bit in the CS selector in
881                  * the VMCB on a VMEXIT. This hurts cross-vendor migration:
882                  * Intel's VMENTRY has a check on the 'G' bit.
883                  */
884                 var->g = s->limit > 0xfffff;
885                 break;
886         case VCPU_SREG_TR:
887                 /*
888                  * Work around a bug where the busy flag in the tr selector
889                  * isn't exposed
890                  */
891                 var->type |= 0x2;
892                 break;
893         case VCPU_SREG_DS:
894         case VCPU_SREG_ES:
895         case VCPU_SREG_FS:
896         case VCPU_SREG_GS:
897                 /*
898                  * The accessed bit must always be set in the segment
899                  * descriptor cache, although it can be cleared in the
900                  * descriptor, the cached bit always remains at 1. Since
901                  * Intel has a check on this, set it here to support
902                  * cross-vendor migration.
903                  */
904                 if (!var->unusable)
905                         var->type |= 0x1;
906                 break;
907         case VCPU_SREG_SS:
908                 /* On AMD CPUs sometimes the DB bit in the segment
909                  * descriptor is left as 1, although the whole segment has
910                  * been made unusable. Clear it here to pass an Intel VMX
911                  * entry check when cross vendor migrating.
912                  */
913                 if (var->unusable)
914                         var->db = 0;
915                 break;
916         }
917 }
918
919 static int svm_get_cpl(struct kvm_vcpu *vcpu)
920 {
921         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
922
923         return save->cpl;
924 }
925
926 static void svm_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
927 {
928         struct vcpu_svm *svm = to_svm(vcpu);
929
930         dt->limit = svm->vmcb->save.idtr.limit;
931         dt->base = svm->vmcb->save.idtr.base;
932 }
933
934 static void svm_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
935 {
936         struct vcpu_svm *svm = to_svm(vcpu);
937
938         svm->vmcb->save.idtr.limit = dt->limit;
939         svm->vmcb->save.idtr.base = dt->base ;
940 }
941
942 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
943 {
944         struct vcpu_svm *svm = to_svm(vcpu);
945
946         dt->limit = svm->vmcb->save.gdtr.limit;
947         dt->base = svm->vmcb->save.gdtr.base;
948 }
949
950 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
951 {
952         struct vcpu_svm *svm = to_svm(vcpu);
953
954         svm->vmcb->save.gdtr.limit = dt->limit;
955         svm->vmcb->save.gdtr.base = dt->base ;
956 }
957
958 static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
959 {
960 }
961
962 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
963 {
964         struct vcpu_svm *svm = to_svm(vcpu);
965
966 #ifdef CONFIG_X86_64
967         if (vcpu->arch.shadow_efer & EFER_LME) {
968                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
969                         vcpu->arch.shadow_efer |= EFER_LMA;
970                         svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
971                 }
972
973                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
974                         vcpu->arch.shadow_efer &= ~EFER_LMA;
975                         svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
976                 }
977         }
978 #endif
979         if (npt_enabled)
980                 goto set;
981
982         if ((vcpu->arch.cr0 & X86_CR0_TS) && !(cr0 & X86_CR0_TS)) {
983                 svm->vmcb->control.intercept_exceptions &= ~(1 << NM_VECTOR);
984                 vcpu->fpu_active = 1;
985         }
986
987         vcpu->arch.cr0 = cr0;
988         cr0 |= X86_CR0_PG | X86_CR0_WP;
989         if (!vcpu->fpu_active) {
990                 svm->vmcb->control.intercept_exceptions |= (1 << NM_VECTOR);
991                 cr0 |= X86_CR0_TS;
992         }
993 set:
994         /*
995          * re-enable caching here because the QEMU bios
996          * does not do it - this results in some delay at
997          * reboot
998          */
999         cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1000         svm->vmcb->save.cr0 = cr0;
1001 }
1002
1003 static void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1004 {
1005         unsigned long host_cr4_mce = read_cr4() & X86_CR4_MCE;
1006         unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
1007
1008         if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
1009                 force_new_asid(vcpu);
1010
1011         vcpu->arch.cr4 = cr4;
1012         if (!npt_enabled)
1013                 cr4 |= X86_CR4_PAE;
1014         cr4 |= host_cr4_mce;
1015         to_svm(vcpu)->vmcb->save.cr4 = cr4;
1016 }
1017
1018 static void svm_set_segment(struct kvm_vcpu *vcpu,
1019                             struct kvm_segment *var, int seg)
1020 {
1021         struct vcpu_svm *svm = to_svm(vcpu);
1022         struct vmcb_seg *s = svm_seg(vcpu, seg);
1023
1024         s->base = var->base;
1025         s->limit = var->limit;
1026         s->selector = var->selector;
1027         if (var->unusable)
1028                 s->attrib = 0;
1029         else {
1030                 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1031                 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1032                 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1033                 s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT;
1034                 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1035                 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1036                 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1037                 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1038         }
1039         if (seg == VCPU_SREG_CS)
1040                 svm->vmcb->save.cpl
1041                         = (svm->vmcb->save.cs.attrib
1042                            >> SVM_SELECTOR_DPL_SHIFT) & 3;
1043
1044 }
1045
1046 static void update_db_intercept(struct kvm_vcpu *vcpu)
1047 {
1048         struct vcpu_svm *svm = to_svm(vcpu);
1049
1050         svm->vmcb->control.intercept_exceptions &=
1051                 ~((1 << DB_VECTOR) | (1 << BP_VECTOR));
1052
1053         if (vcpu->arch.singlestep)
1054                 svm->vmcb->control.intercept_exceptions |= (1 << DB_VECTOR);
1055
1056         if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
1057                 if (vcpu->guest_debug &
1058                     (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
1059                         svm->vmcb->control.intercept_exceptions |=
1060                                 1 << DB_VECTOR;
1061                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
1062                         svm->vmcb->control.intercept_exceptions |=
1063                                 1 << BP_VECTOR;
1064         } else
1065                 vcpu->guest_debug = 0;
1066 }
1067
1068 static int svm_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
1069 {
1070         int old_debug = vcpu->guest_debug;
1071         struct vcpu_svm *svm = to_svm(vcpu);
1072
1073         vcpu->guest_debug = dbg->control;
1074
1075         update_db_intercept(vcpu);
1076
1077         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1078                 svm->vmcb->save.dr7 = dbg->arch.debugreg[7];
1079         else
1080                 svm->vmcb->save.dr7 = vcpu->arch.dr7;
1081
1082         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
1083                 svm->vmcb->save.rflags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
1084         else if (old_debug & KVM_GUESTDBG_SINGLESTEP)
1085                 svm->vmcb->save.rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
1086
1087         return 0;
1088 }
1089
1090 static void load_host_msrs(struct kvm_vcpu *vcpu)
1091 {
1092 #ifdef CONFIG_X86_64
1093         wrmsrl(MSR_GS_BASE, to_svm(vcpu)->host_gs_base);
1094 #endif
1095 }
1096
1097 static void save_host_msrs(struct kvm_vcpu *vcpu)
1098 {
1099 #ifdef CONFIG_X86_64
1100         rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host_gs_base);
1101 #endif
1102 }
1103
1104 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *svm_data)
1105 {
1106         if (svm_data->next_asid > svm_data->max_asid) {
1107                 ++svm_data->asid_generation;
1108                 svm_data->next_asid = 1;
1109                 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
1110         }
1111
1112         svm->asid_generation = svm_data->asid_generation;
1113         svm->vmcb->control.asid = svm_data->next_asid++;
1114 }
1115
1116 static unsigned long svm_get_dr(struct kvm_vcpu *vcpu, int dr)
1117 {
1118         struct vcpu_svm *svm = to_svm(vcpu);
1119         unsigned long val;
1120
1121         switch (dr) {
1122         case 0 ... 3:
1123                 val = vcpu->arch.db[dr];
1124                 break;
1125         case 6:
1126                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1127                         val = vcpu->arch.dr6;
1128                 else
1129                         val = svm->vmcb->save.dr6;
1130                 break;
1131         case 7:
1132                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1133                         val = vcpu->arch.dr7;
1134                 else
1135                         val = svm->vmcb->save.dr7;
1136                 break;
1137         default:
1138                 val = 0;
1139         }
1140
1141         return val;
1142 }
1143
1144 static void svm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long value,
1145                        int *exception)
1146 {
1147         struct vcpu_svm *svm = to_svm(vcpu);
1148
1149         *exception = 0;
1150
1151         switch (dr) {
1152         case 0 ... 3:
1153                 vcpu->arch.db[dr] = value;
1154                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1155                         vcpu->arch.eff_db[dr] = value;
1156                 return;
1157         case 4 ... 5:
1158                 if (vcpu->arch.cr4 & X86_CR4_DE)
1159                         *exception = UD_VECTOR;
1160                 return;
1161         case 6:
1162                 if (value & 0xffffffff00000000ULL) {
1163                         *exception = GP_VECTOR;
1164                         return;
1165                 }
1166                 vcpu->arch.dr6 = (value & DR6_VOLATILE) | DR6_FIXED_1;
1167                 return;
1168         case 7:
1169                 if (value & 0xffffffff00000000ULL) {
1170                         *exception = GP_VECTOR;
1171                         return;
1172                 }
1173                 vcpu->arch.dr7 = (value & DR7_VOLATILE) | DR7_FIXED_1;
1174                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1175                         svm->vmcb->save.dr7 = vcpu->arch.dr7;
1176                         vcpu->arch.switch_db_regs = (value & DR7_BP_EN_MASK);
1177                 }
1178                 return;
1179         default:
1180                 /* FIXME: Possible case? */
1181                 printk(KERN_DEBUG "%s: unexpected dr %u\n",
1182                        __func__, dr);
1183                 *exception = UD_VECTOR;
1184                 return;
1185         }
1186 }
1187
1188 static int pf_interception(struct vcpu_svm *svm)
1189 {
1190         u64 fault_address;
1191         u32 error_code;
1192
1193         fault_address  = svm->vmcb->control.exit_info_2;
1194         error_code = svm->vmcb->control.exit_info_1;
1195
1196         trace_kvm_page_fault(fault_address, error_code);
1197         if (!npt_enabled && kvm_event_needs_reinjection(&svm->vcpu))
1198                 kvm_mmu_unprotect_page_virt(&svm->vcpu, fault_address);
1199         return kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code);
1200 }
1201
1202 static int db_interception(struct vcpu_svm *svm)
1203 {
1204         struct kvm_run *kvm_run = svm->vcpu.run;
1205
1206         if (!(svm->vcpu.guest_debug &
1207               (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
1208                 !svm->vcpu.arch.singlestep) {
1209                 kvm_queue_exception(&svm->vcpu, DB_VECTOR);
1210                 return 1;
1211         }
1212
1213         if (svm->vcpu.arch.singlestep) {
1214                 svm->vcpu.arch.singlestep = false;
1215                 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP))
1216                         svm->vmcb->save.rflags &=
1217                                 ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
1218                 update_db_intercept(&svm->vcpu);
1219         }
1220
1221         if (svm->vcpu.guest_debug &
1222             (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)){
1223                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1224                 kvm_run->debug.arch.pc =
1225                         svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1226                 kvm_run->debug.arch.exception = DB_VECTOR;
1227                 return 0;
1228         }
1229
1230         return 1;
1231 }
1232
1233 static int bp_interception(struct vcpu_svm *svm)
1234 {
1235         struct kvm_run *kvm_run = svm->vcpu.run;
1236
1237         kvm_run->exit_reason = KVM_EXIT_DEBUG;
1238         kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1239         kvm_run->debug.arch.exception = BP_VECTOR;
1240         return 0;
1241 }
1242
1243 static int ud_interception(struct vcpu_svm *svm)
1244 {
1245         int er;
1246
1247         er = emulate_instruction(&svm->vcpu, 0, 0, EMULTYPE_TRAP_UD);
1248         if (er != EMULATE_DONE)
1249                 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1250         return 1;
1251 }
1252
1253 static int nm_interception(struct vcpu_svm *svm)
1254 {
1255         svm->vmcb->control.intercept_exceptions &= ~(1 << NM_VECTOR);
1256         if (!(svm->vcpu.arch.cr0 & X86_CR0_TS))
1257                 svm->vmcb->save.cr0 &= ~X86_CR0_TS;
1258         svm->vcpu.fpu_active = 1;
1259
1260         return 1;
1261 }
1262
1263 static int mc_interception(struct vcpu_svm *svm)
1264 {
1265         /*
1266          * On an #MC intercept the MCE handler is not called automatically in
1267          * the host. So do it by hand here.
1268          */
1269         asm volatile (
1270                 "int $0x12\n");
1271         /* not sure if we ever come back to this point */
1272
1273         return 1;
1274 }
1275
1276 static int shutdown_interception(struct vcpu_svm *svm)
1277 {
1278         struct kvm_run *kvm_run = svm->vcpu.run;
1279
1280         /*
1281          * VMCB is undefined after a SHUTDOWN intercept
1282          * so reinitialize it.
1283          */
1284         clear_page(svm->vmcb);
1285         init_vmcb(svm);
1286
1287         kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
1288         return 0;
1289 }
1290
1291 static int io_interception(struct vcpu_svm *svm)
1292 {
1293         u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
1294         int size, in, string;
1295         unsigned port;
1296
1297         ++svm->vcpu.stat.io_exits;
1298
1299         svm->next_rip = svm->vmcb->control.exit_info_2;
1300
1301         string = (io_info & SVM_IOIO_STR_MASK) != 0;
1302
1303         if (string) {
1304                 if (emulate_instruction(&svm->vcpu,
1305                                         0, 0, 0) == EMULATE_DO_MMIO)
1306                         return 0;
1307                 return 1;
1308         }
1309
1310         in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
1311         port = io_info >> 16;
1312         size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
1313
1314         skip_emulated_instruction(&svm->vcpu);
1315         return kvm_emulate_pio(&svm->vcpu, in, size, port);
1316 }
1317
1318 static int nmi_interception(struct vcpu_svm *svm)
1319 {
1320         return 1;
1321 }
1322
1323 static int intr_interception(struct vcpu_svm *svm)
1324 {
1325         ++svm->vcpu.stat.irq_exits;
1326         return 1;
1327 }
1328
1329 static int nop_on_interception(struct vcpu_svm *svm)
1330 {
1331         return 1;
1332 }
1333
1334 static int halt_interception(struct vcpu_svm *svm)
1335 {
1336         svm->next_rip = kvm_rip_read(&svm->vcpu) + 1;
1337         skip_emulated_instruction(&svm->vcpu);
1338         return kvm_emulate_halt(&svm->vcpu);
1339 }
1340
1341 static int vmmcall_interception(struct vcpu_svm *svm)
1342 {
1343         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1344         skip_emulated_instruction(&svm->vcpu);
1345         kvm_emulate_hypercall(&svm->vcpu);
1346         return 1;
1347 }
1348
1349 static int nested_svm_check_permissions(struct vcpu_svm *svm)
1350 {
1351         if (!(svm->vcpu.arch.shadow_efer & EFER_SVME)
1352             || !is_paging(&svm->vcpu)) {
1353                 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1354                 return 1;
1355         }
1356
1357         if (svm->vmcb->save.cpl) {
1358                 kvm_inject_gp(&svm->vcpu, 0);
1359                 return 1;
1360         }
1361
1362        return 0;
1363 }
1364
1365 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
1366                                       bool has_error_code, u32 error_code)
1367 {
1368         if (!is_nested(svm))
1369                 return 0;
1370
1371         svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
1372         svm->vmcb->control.exit_code_hi = 0;
1373         svm->vmcb->control.exit_info_1 = error_code;
1374         svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
1375
1376         return nested_svm_exit_handled(svm);
1377 }
1378
1379 static inline int nested_svm_intr(struct vcpu_svm *svm)
1380 {
1381         if (!is_nested(svm))
1382                 return 0;
1383
1384         if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
1385                 return 0;
1386
1387         if (!(svm->vcpu.arch.hflags & HF_HIF_MASK))
1388                 return 0;
1389
1390         svm->vmcb->control.exit_code = SVM_EXIT_INTR;
1391
1392         if (nested_svm_exit_handled(svm)) {
1393                 nsvm_printk("VMexit -> INTR\n");
1394                 return 1;
1395         }
1396
1397         return 0;
1398 }
1399
1400 static void *nested_svm_map(struct vcpu_svm *svm, u64 gpa, enum km_type idx)
1401 {
1402         struct page *page;
1403
1404         page = gfn_to_page(svm->vcpu.kvm, gpa >> PAGE_SHIFT);
1405         if (is_error_page(page))
1406                 goto error;
1407
1408         return kmap_atomic(page, idx);
1409
1410 error:
1411         kvm_release_page_clean(page);
1412         kvm_inject_gp(&svm->vcpu, 0);
1413
1414         return NULL;
1415 }
1416
1417 static void nested_svm_unmap(void *addr, enum km_type idx)
1418 {
1419         struct page *page;
1420
1421         if (!addr)
1422                 return;
1423
1424         page = kmap_atomic_to_page(addr);
1425
1426         kunmap_atomic(addr, idx);
1427         kvm_release_page_dirty(page);
1428 }
1429
1430 static bool nested_svm_exit_handled_msr(struct vcpu_svm *svm)
1431 {
1432         u32 param = svm->vmcb->control.exit_info_1 & 1;
1433         u32 msr = svm->vcpu.arch.regs[VCPU_REGS_RCX];
1434         bool ret = false;
1435         u32 t0, t1;
1436         u8 *msrpm;
1437
1438         if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
1439                 return false;
1440
1441         msrpm = nested_svm_map(svm, svm->nested.vmcb_msrpm, KM_USER0);
1442
1443         if (!msrpm)
1444                 goto out;
1445
1446         switch (msr) {
1447         case 0 ... 0x1fff:
1448                 t0 = (msr * 2) % 8;
1449                 t1 = msr / 8;
1450                 break;
1451         case 0xc0000000 ... 0xc0001fff:
1452                 t0 = (8192 + msr - 0xc0000000) * 2;
1453                 t1 = (t0 / 8);
1454                 t0 %= 8;
1455                 break;
1456         case 0xc0010000 ... 0xc0011fff:
1457                 t0 = (16384 + msr - 0xc0010000) * 2;
1458                 t1 = (t0 / 8);
1459                 t0 %= 8;
1460                 break;
1461         default:
1462                 ret = true;
1463                 goto out;
1464         }
1465
1466         ret = msrpm[t1] & ((1 << param) << t0);
1467
1468 out:
1469         nested_svm_unmap(msrpm, KM_USER0);
1470
1471         return ret;
1472 }
1473
1474 static int nested_svm_exit_special(struct vcpu_svm *svm)
1475 {
1476         u32 exit_code = svm->vmcb->control.exit_code;
1477
1478         switch (exit_code) {
1479         case SVM_EXIT_INTR:
1480         case SVM_EXIT_NMI:
1481                 return NESTED_EXIT_HOST;
1482                 /* For now we are always handling NPFs when using them */
1483         case SVM_EXIT_NPF:
1484                 if (npt_enabled)
1485                         return NESTED_EXIT_HOST;
1486                 break;
1487         /* When we're shadowing, trap PFs */
1488         case SVM_EXIT_EXCP_BASE + PF_VECTOR:
1489                 if (!npt_enabled)
1490                         return NESTED_EXIT_HOST;
1491                 break;
1492         default:
1493                 break;
1494         }
1495
1496         return NESTED_EXIT_CONTINUE;
1497 }
1498
1499 /*
1500  * If this function returns true, this #vmexit was already handled
1501  */
1502 static int nested_svm_exit_handled(struct vcpu_svm *svm)
1503 {
1504         u32 exit_code = svm->vmcb->control.exit_code;
1505         int vmexit = NESTED_EXIT_HOST;
1506
1507         switch (exit_code) {
1508         case SVM_EXIT_MSR:
1509                 vmexit = nested_svm_exit_handled_msr(svm);
1510                 break;
1511         case SVM_EXIT_READ_CR0 ... SVM_EXIT_READ_CR8: {
1512                 u32 cr_bits = 1 << (exit_code - SVM_EXIT_READ_CR0);
1513                 if (svm->nested.intercept_cr_read & cr_bits)
1514                         vmexit = NESTED_EXIT_DONE;
1515                 break;
1516         }
1517         case SVM_EXIT_WRITE_CR0 ... SVM_EXIT_WRITE_CR8: {
1518                 u32 cr_bits = 1 << (exit_code - SVM_EXIT_WRITE_CR0);
1519                 if (svm->nested.intercept_cr_write & cr_bits)
1520                         vmexit = NESTED_EXIT_DONE;
1521                 break;
1522         }
1523         case SVM_EXIT_READ_DR0 ... SVM_EXIT_READ_DR7: {
1524                 u32 dr_bits = 1 << (exit_code - SVM_EXIT_READ_DR0);
1525                 if (svm->nested.intercept_dr_read & dr_bits)
1526                         vmexit = NESTED_EXIT_DONE;
1527                 break;
1528         }
1529         case SVM_EXIT_WRITE_DR0 ... SVM_EXIT_WRITE_DR7: {
1530                 u32 dr_bits = 1 << (exit_code - SVM_EXIT_WRITE_DR0);
1531                 if (svm->nested.intercept_dr_write & dr_bits)
1532                         vmexit = NESTED_EXIT_DONE;
1533                 break;
1534         }
1535         case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
1536                 u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
1537                 if (svm->nested.intercept_exceptions & excp_bits)
1538                         vmexit = NESTED_EXIT_DONE;
1539                 break;
1540         }
1541         default: {
1542                 u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR);
1543                 nsvm_printk("exit code: 0x%x\n", exit_code);
1544                 if (svm->nested.intercept & exit_bits)
1545                         vmexit = NESTED_EXIT_DONE;
1546         }
1547         }
1548
1549         if (vmexit == NESTED_EXIT_DONE) {
1550                 nsvm_printk("#VMEXIT reason=%04x\n", exit_code);
1551                 nested_svm_vmexit(svm);
1552         }
1553
1554         return vmexit;
1555 }
1556
1557 static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb)
1558 {
1559         struct vmcb_control_area *dst  = &dst_vmcb->control;
1560         struct vmcb_control_area *from = &from_vmcb->control;
1561
1562         dst->intercept_cr_read    = from->intercept_cr_read;
1563         dst->intercept_cr_write   = from->intercept_cr_write;
1564         dst->intercept_dr_read    = from->intercept_dr_read;
1565         dst->intercept_dr_write   = from->intercept_dr_write;
1566         dst->intercept_exceptions = from->intercept_exceptions;
1567         dst->intercept            = from->intercept;
1568         dst->iopm_base_pa         = from->iopm_base_pa;
1569         dst->msrpm_base_pa        = from->msrpm_base_pa;
1570         dst->tsc_offset           = from->tsc_offset;
1571         dst->asid                 = from->asid;
1572         dst->tlb_ctl              = from->tlb_ctl;
1573         dst->int_ctl              = from->int_ctl;
1574         dst->int_vector           = from->int_vector;
1575         dst->int_state            = from->int_state;
1576         dst->exit_code            = from->exit_code;
1577         dst->exit_code_hi         = from->exit_code_hi;
1578         dst->exit_info_1          = from->exit_info_1;
1579         dst->exit_info_2          = from->exit_info_2;
1580         dst->exit_int_info        = from->exit_int_info;
1581         dst->exit_int_info_err    = from->exit_int_info_err;
1582         dst->nested_ctl           = from->nested_ctl;
1583         dst->event_inj            = from->event_inj;
1584         dst->event_inj_err        = from->event_inj_err;
1585         dst->nested_cr3           = from->nested_cr3;
1586         dst->lbr_ctl              = from->lbr_ctl;
1587 }
1588
1589 static int nested_svm_vmexit(struct vcpu_svm *svm)
1590 {
1591         struct vmcb *nested_vmcb;
1592         struct vmcb *hsave = svm->nested.hsave;
1593         struct vmcb *vmcb = svm->vmcb;
1594
1595         nested_vmcb = nested_svm_map(svm, svm->nested.vmcb, KM_USER0);
1596         if (!nested_vmcb)
1597                 return 1;
1598
1599         /* Give the current vmcb to the guest */
1600         disable_gif(svm);
1601
1602         nested_vmcb->save.es     = vmcb->save.es;
1603         nested_vmcb->save.cs     = vmcb->save.cs;
1604         nested_vmcb->save.ss     = vmcb->save.ss;
1605         nested_vmcb->save.ds     = vmcb->save.ds;
1606         nested_vmcb->save.gdtr   = vmcb->save.gdtr;
1607         nested_vmcb->save.idtr   = vmcb->save.idtr;
1608         if (npt_enabled)
1609                 nested_vmcb->save.cr3    = vmcb->save.cr3;
1610         nested_vmcb->save.cr2    = vmcb->save.cr2;
1611         nested_vmcb->save.rflags = vmcb->save.rflags;
1612         nested_vmcb->save.rip    = vmcb->save.rip;
1613         nested_vmcb->save.rsp    = vmcb->save.rsp;
1614         nested_vmcb->save.rax    = vmcb->save.rax;
1615         nested_vmcb->save.dr7    = vmcb->save.dr7;
1616         nested_vmcb->save.dr6    = vmcb->save.dr6;
1617         nested_vmcb->save.cpl    = vmcb->save.cpl;
1618
1619         nested_vmcb->control.int_ctl           = vmcb->control.int_ctl;
1620         nested_vmcb->control.int_vector        = vmcb->control.int_vector;
1621         nested_vmcb->control.int_state         = vmcb->control.int_state;
1622         nested_vmcb->control.exit_code         = vmcb->control.exit_code;
1623         nested_vmcb->control.exit_code_hi      = vmcb->control.exit_code_hi;
1624         nested_vmcb->control.exit_info_1       = vmcb->control.exit_info_1;
1625         nested_vmcb->control.exit_info_2       = vmcb->control.exit_info_2;
1626         nested_vmcb->control.exit_int_info     = vmcb->control.exit_int_info;
1627         nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err;
1628         nested_vmcb->control.tlb_ctl           = 0;
1629         nested_vmcb->control.event_inj         = 0;
1630         nested_vmcb->control.event_inj_err     = 0;
1631
1632         /* We always set V_INTR_MASKING and remember the old value in hflags */
1633         if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
1634                 nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
1635
1636         /* Restore the original control entries */
1637         copy_vmcb_control_area(vmcb, hsave);
1638
1639         /* Kill any pending exceptions */
1640         if (svm->vcpu.arch.exception.pending == true)
1641                 nsvm_printk("WARNING: Pending Exception\n");
1642
1643         kvm_clear_exception_queue(&svm->vcpu);
1644         kvm_clear_interrupt_queue(&svm->vcpu);
1645
1646         /* Restore selected save entries */
1647         svm->vmcb->save.es = hsave->save.es;
1648         svm->vmcb->save.cs = hsave->save.cs;
1649         svm->vmcb->save.ss = hsave->save.ss;
1650         svm->vmcb->save.ds = hsave->save.ds;
1651         svm->vmcb->save.gdtr = hsave->save.gdtr;
1652         svm->vmcb->save.idtr = hsave->save.idtr;
1653         svm->vmcb->save.rflags = hsave->save.rflags;
1654         svm_set_efer(&svm->vcpu, hsave->save.efer);
1655         svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
1656         svm_set_cr4(&svm->vcpu, hsave->save.cr4);
1657         if (npt_enabled) {
1658                 svm->vmcb->save.cr3 = hsave->save.cr3;
1659                 svm->vcpu.arch.cr3 = hsave->save.cr3;
1660         } else {
1661                 kvm_set_cr3(&svm->vcpu, hsave->save.cr3);
1662         }
1663         kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, hsave->save.rax);
1664         kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, hsave->save.rsp);
1665         kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, hsave->save.rip);
1666         svm->vmcb->save.dr7 = 0;
1667         svm->vmcb->save.cpl = 0;
1668         svm->vmcb->control.exit_int_info = 0;
1669
1670         /* Exit nested SVM mode */
1671         svm->nested.vmcb = 0;
1672
1673         nested_svm_unmap(nested_vmcb, KM_USER0);
1674
1675         kvm_mmu_reset_context(&svm->vcpu);
1676         kvm_mmu_load(&svm->vcpu);
1677
1678         return 0;
1679 }
1680
1681 static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
1682 {
1683         u32 *nested_msrpm;
1684         int i;
1685
1686         nested_msrpm = nested_svm_map(svm, svm->nested.vmcb_msrpm, KM_USER0);
1687         if (!nested_msrpm)
1688                 return false;
1689
1690         for (i=0; i< PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER) / 4; i++)
1691                 svm->nested.msrpm[i] = svm->msrpm[i] | nested_msrpm[i];
1692
1693         svm->vmcb->control.msrpm_base_pa = __pa(svm->nested.msrpm);
1694
1695         nested_svm_unmap(nested_msrpm, KM_USER0);
1696
1697         return true;
1698 }
1699
1700 static bool nested_svm_vmrun(struct vcpu_svm *svm)
1701 {
1702         struct vmcb *nested_vmcb;
1703         struct vmcb *hsave = svm->nested.hsave;
1704         struct vmcb *vmcb = svm->vmcb;
1705
1706         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, KM_USER0);
1707         if (!nested_vmcb)
1708                 return false;
1709
1710         /* nested_vmcb is our indicator if nested SVM is activated */
1711         svm->nested.vmcb = svm->vmcb->save.rax;
1712
1713         /* Clear internal status */
1714         kvm_clear_exception_queue(&svm->vcpu);
1715         kvm_clear_interrupt_queue(&svm->vcpu);
1716
1717         /* Save the old vmcb, so we don't need to pick what we save, but
1718            can restore everything when a VMEXIT occurs */
1719         hsave->save.es     = vmcb->save.es;
1720         hsave->save.cs     = vmcb->save.cs;
1721         hsave->save.ss     = vmcb->save.ss;
1722         hsave->save.ds     = vmcb->save.ds;
1723         hsave->save.gdtr   = vmcb->save.gdtr;
1724         hsave->save.idtr   = vmcb->save.idtr;
1725         hsave->save.efer   = svm->vcpu.arch.shadow_efer;
1726         hsave->save.cr0    = svm->vcpu.arch.cr0;
1727         hsave->save.cr4    = svm->vcpu.arch.cr4;
1728         hsave->save.rflags = vmcb->save.rflags;
1729         hsave->save.rip    = svm->next_rip;
1730         hsave->save.rsp    = vmcb->save.rsp;
1731         hsave->save.rax    = vmcb->save.rax;
1732         if (npt_enabled)
1733                 hsave->save.cr3    = vmcb->save.cr3;
1734         else
1735                 hsave->save.cr3    = svm->vcpu.arch.cr3;
1736
1737         copy_vmcb_control_area(hsave, vmcb);
1738
1739         if (svm->vmcb->save.rflags & X86_EFLAGS_IF)
1740                 svm->vcpu.arch.hflags |= HF_HIF_MASK;
1741         else
1742                 svm->vcpu.arch.hflags &= ~HF_HIF_MASK;
1743
1744         /* Load the nested guest state */
1745         svm->vmcb->save.es = nested_vmcb->save.es;
1746         svm->vmcb->save.cs = nested_vmcb->save.cs;
1747         svm->vmcb->save.ss = nested_vmcb->save.ss;
1748         svm->vmcb->save.ds = nested_vmcb->save.ds;
1749         svm->vmcb->save.gdtr = nested_vmcb->save.gdtr;
1750         svm->vmcb->save.idtr = nested_vmcb->save.idtr;
1751         svm->vmcb->save.rflags = nested_vmcb->save.rflags;
1752         svm_set_efer(&svm->vcpu, nested_vmcb->save.efer);
1753         svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0);
1754         svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4);
1755         if (npt_enabled) {
1756                 svm->vmcb->save.cr3 = nested_vmcb->save.cr3;
1757                 svm->vcpu.arch.cr3 = nested_vmcb->save.cr3;
1758         } else {
1759                 kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3);
1760                 kvm_mmu_reset_context(&svm->vcpu);
1761         }
1762         svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2;
1763         kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, nested_vmcb->save.rax);
1764         kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, nested_vmcb->save.rsp);
1765         kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, nested_vmcb->save.rip);
1766         /* In case we don't even reach vcpu_run, the fields are not updated */
1767         svm->vmcb->save.rax = nested_vmcb->save.rax;
1768         svm->vmcb->save.rsp = nested_vmcb->save.rsp;
1769         svm->vmcb->save.rip = nested_vmcb->save.rip;
1770         svm->vmcb->save.dr7 = nested_vmcb->save.dr7;
1771         svm->vmcb->save.dr6 = nested_vmcb->save.dr6;
1772         svm->vmcb->save.cpl = nested_vmcb->save.cpl;
1773
1774         /* We don't want a nested guest to be more powerful than the guest,
1775            so all intercepts are ORed */
1776         svm->vmcb->control.intercept_cr_read |=
1777                 nested_vmcb->control.intercept_cr_read;
1778         svm->vmcb->control.intercept_cr_write |=
1779                 nested_vmcb->control.intercept_cr_write;
1780         svm->vmcb->control.intercept_dr_read |=
1781                 nested_vmcb->control.intercept_dr_read;
1782         svm->vmcb->control.intercept_dr_write |=
1783                 nested_vmcb->control.intercept_dr_write;
1784         svm->vmcb->control.intercept_exceptions |=
1785                 nested_vmcb->control.intercept_exceptions;
1786
1787         svm->vmcb->control.intercept |= nested_vmcb->control.intercept;
1788
1789         svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa;
1790
1791         /* cache intercepts */
1792         svm->nested.intercept_cr_read    = nested_vmcb->control.intercept_cr_read;
1793         svm->nested.intercept_cr_write   = nested_vmcb->control.intercept_cr_write;
1794         svm->nested.intercept_dr_read    = nested_vmcb->control.intercept_dr_read;
1795         svm->nested.intercept_dr_write   = nested_vmcb->control.intercept_dr_write;
1796         svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions;
1797         svm->nested.intercept            = nested_vmcb->control.intercept;
1798
1799         force_new_asid(&svm->vcpu);
1800         svm->vmcb->control.exit_int_info = nested_vmcb->control.exit_int_info;
1801         svm->vmcb->control.exit_int_info_err = nested_vmcb->control.exit_int_info_err;
1802         svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK;
1803         if (nested_vmcb->control.int_ctl & V_IRQ_MASK) {
1804                 nsvm_printk("nSVM Injecting Interrupt: 0x%x\n",
1805                                 nested_vmcb->control.int_ctl);
1806         }
1807         if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK)
1808                 svm->vcpu.arch.hflags |= HF_VINTR_MASK;
1809         else
1810                 svm->vcpu.arch.hflags &= ~HF_VINTR_MASK;
1811
1812         nsvm_printk("nSVM exit_int_info: 0x%x | int_state: 0x%x\n",
1813                         nested_vmcb->control.exit_int_info,
1814                         nested_vmcb->control.int_state);
1815
1816         svm->vmcb->control.int_vector = nested_vmcb->control.int_vector;
1817         svm->vmcb->control.int_state = nested_vmcb->control.int_state;
1818         svm->vmcb->control.tsc_offset += nested_vmcb->control.tsc_offset;
1819         if (nested_vmcb->control.event_inj & SVM_EVTINJ_VALID)
1820                 nsvm_printk("Injecting Event: 0x%x\n",
1821                                 nested_vmcb->control.event_inj);
1822         svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
1823         svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;
1824
1825         nested_svm_unmap(nested_vmcb, KM_USER0);
1826
1827         enable_gif(svm);
1828
1829         return true;
1830 }
1831
1832 static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
1833 {
1834         to_vmcb->save.fs = from_vmcb->save.fs;
1835         to_vmcb->save.gs = from_vmcb->save.gs;
1836         to_vmcb->save.tr = from_vmcb->save.tr;
1837         to_vmcb->save.ldtr = from_vmcb->save.ldtr;
1838         to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
1839         to_vmcb->save.star = from_vmcb->save.star;
1840         to_vmcb->save.lstar = from_vmcb->save.lstar;
1841         to_vmcb->save.cstar = from_vmcb->save.cstar;
1842         to_vmcb->save.sfmask = from_vmcb->save.sfmask;
1843         to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
1844         to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
1845         to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
1846 }
1847
1848 static int vmload_interception(struct vcpu_svm *svm)
1849 {
1850         struct vmcb *nested_vmcb;
1851
1852         if (nested_svm_check_permissions(svm))
1853                 return 1;
1854
1855         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1856         skip_emulated_instruction(&svm->vcpu);
1857
1858         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, KM_USER0);
1859         if (!nested_vmcb)
1860                 return 1;
1861
1862         nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
1863         nested_svm_unmap(nested_vmcb, KM_USER0);
1864
1865         return 1;
1866 }
1867
1868 static int vmsave_interception(struct vcpu_svm *svm)
1869 {
1870         struct vmcb *nested_vmcb;
1871
1872         if (nested_svm_check_permissions(svm))
1873                 return 1;
1874
1875         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1876         skip_emulated_instruction(&svm->vcpu);
1877
1878         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, KM_USER0);
1879         if (!nested_vmcb)
1880                 return 1;
1881
1882         nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
1883         nested_svm_unmap(nested_vmcb, KM_USER0);
1884
1885         return 1;
1886 }
1887
1888 static int vmrun_interception(struct vcpu_svm *svm)
1889 {
1890         nsvm_printk("VMrun\n");
1891
1892         if (nested_svm_check_permissions(svm))
1893                 return 1;
1894
1895         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1896         skip_emulated_instruction(&svm->vcpu);
1897
1898         if (!nested_svm_vmrun(svm))
1899                 return 1;
1900
1901         if (!nested_svm_vmrun_msrpm(svm))
1902                 goto failed;
1903
1904         return 1;
1905
1906 failed:
1907
1908         svm->vmcb->control.exit_code    = SVM_EXIT_ERR;
1909         svm->vmcb->control.exit_code_hi = 0;
1910         svm->vmcb->control.exit_info_1  = 0;
1911         svm->vmcb->control.exit_info_2  = 0;
1912
1913         nested_svm_vmexit(svm);
1914
1915         return 1;
1916 }
1917
1918 static int stgi_interception(struct vcpu_svm *svm)
1919 {
1920         if (nested_svm_check_permissions(svm))
1921                 return 1;
1922
1923         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1924         skip_emulated_instruction(&svm->vcpu);
1925
1926         enable_gif(svm);
1927
1928         return 1;
1929 }
1930
1931 static int clgi_interception(struct vcpu_svm *svm)
1932 {
1933         if (nested_svm_check_permissions(svm))
1934                 return 1;
1935
1936         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1937         skip_emulated_instruction(&svm->vcpu);
1938
1939         disable_gif(svm);
1940
1941         /* After a CLGI no interrupts should come */
1942         svm_clear_vintr(svm);
1943         svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
1944
1945         return 1;
1946 }
1947
1948 static int invlpga_interception(struct vcpu_svm *svm)
1949 {
1950         struct kvm_vcpu *vcpu = &svm->vcpu;
1951         nsvm_printk("INVLPGA\n");
1952
1953         /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
1954         kvm_mmu_invlpg(vcpu, vcpu->arch.regs[VCPU_REGS_RAX]);
1955
1956         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1957         skip_emulated_instruction(&svm->vcpu);
1958         return 1;
1959 }
1960
1961 static int invalid_op_interception(struct vcpu_svm *svm)
1962 {
1963         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1964         return 1;
1965 }
1966
1967 static int task_switch_interception(struct vcpu_svm *svm)
1968 {
1969         u16 tss_selector;
1970         int reason;
1971         int int_type = svm->vmcb->control.exit_int_info &
1972                 SVM_EXITINTINFO_TYPE_MASK;
1973         int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
1974         uint32_t type =
1975                 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
1976         uint32_t idt_v =
1977                 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
1978
1979         tss_selector = (u16)svm->vmcb->control.exit_info_1;
1980
1981         if (svm->vmcb->control.exit_info_2 &
1982             (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
1983                 reason = TASK_SWITCH_IRET;
1984         else if (svm->vmcb->control.exit_info_2 &
1985                  (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
1986                 reason = TASK_SWITCH_JMP;
1987         else if (idt_v)
1988                 reason = TASK_SWITCH_GATE;
1989         else
1990                 reason = TASK_SWITCH_CALL;
1991
1992         if (reason == TASK_SWITCH_GATE) {
1993                 switch (type) {
1994                 case SVM_EXITINTINFO_TYPE_NMI:
1995                         svm->vcpu.arch.nmi_injected = false;
1996                         break;
1997                 case SVM_EXITINTINFO_TYPE_EXEPT:
1998                         kvm_clear_exception_queue(&svm->vcpu);
1999                         break;
2000                 case SVM_EXITINTINFO_TYPE_INTR:
2001                         kvm_clear_interrupt_queue(&svm->vcpu);
2002                         break;
2003                 default:
2004                         break;
2005                 }
2006         }
2007
2008         if (reason != TASK_SWITCH_GATE ||
2009             int_type == SVM_EXITINTINFO_TYPE_SOFT ||
2010             (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
2011              (int_vec == OF_VECTOR || int_vec == BP_VECTOR)))
2012                 skip_emulated_instruction(&svm->vcpu);
2013
2014         return kvm_task_switch(&svm->vcpu, tss_selector, reason);
2015 }
2016
2017 static int cpuid_interception(struct vcpu_svm *svm)
2018 {
2019         svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
2020         kvm_emulate_cpuid(&svm->vcpu);
2021         return 1;
2022 }
2023
2024 static int iret_interception(struct vcpu_svm *svm)
2025 {
2026         ++svm->vcpu.stat.nmi_window_exits;
2027         svm->vmcb->control.intercept &= ~(1UL << INTERCEPT_IRET);
2028         svm->vcpu.arch.hflags |= HF_IRET_MASK;
2029         return 1;
2030 }
2031
2032 static int invlpg_interception(struct vcpu_svm *svm)
2033 {
2034         if (emulate_instruction(&svm->vcpu, 0, 0, 0) != EMULATE_DONE)
2035                 pr_unimpl(&svm->vcpu, "%s: failed\n", __func__);
2036         return 1;
2037 }
2038
2039 static int emulate_on_interception(struct vcpu_svm *svm)
2040 {
2041         if (emulate_instruction(&svm->vcpu, 0, 0, 0) != EMULATE_DONE)
2042                 pr_unimpl(&svm->vcpu, "%s: failed\n", __func__);
2043         return 1;
2044 }
2045
2046 static int cr8_write_interception(struct vcpu_svm *svm)
2047 {
2048         struct kvm_run *kvm_run = svm->vcpu.run;
2049
2050         u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
2051         /* instruction emulation calls kvm_set_cr8() */
2052         emulate_instruction(&svm->vcpu, 0, 0, 0);
2053         if (irqchip_in_kernel(svm->vcpu.kvm)) {
2054                 svm->vmcb->control.intercept_cr_write &= ~INTERCEPT_CR8_MASK;
2055                 return 1;
2056         }
2057         if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
2058                 return 1;
2059         kvm_run->exit_reason = KVM_EXIT_SET_TPR;
2060         return 0;
2061 }
2062
2063 static int svm_get_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 *data)
2064 {
2065         struct vcpu_svm *svm = to_svm(vcpu);
2066
2067         switch (ecx) {
2068         case MSR_IA32_TSC: {
2069                 u64 tsc_offset;
2070
2071                 if (is_nested(svm))
2072                         tsc_offset = svm->nested.hsave->control.tsc_offset;
2073                 else
2074                         tsc_offset = svm->vmcb->control.tsc_offset;
2075
2076                 *data = tsc_offset + native_read_tsc();
2077                 break;
2078         }
2079         case MSR_K6_STAR:
2080                 *data = svm->vmcb->save.star;
2081                 break;
2082 #ifdef CONFIG_X86_64
2083         case MSR_LSTAR:
2084                 *data = svm->vmcb->save.lstar;
2085                 break;
2086         case MSR_CSTAR:
2087                 *data = svm->vmcb->save.cstar;
2088                 break;
2089         case MSR_KERNEL_GS_BASE:
2090                 *data = svm->vmcb->save.kernel_gs_base;
2091                 break;
2092         case MSR_SYSCALL_MASK:
2093                 *data = svm->vmcb->save.sfmask;
2094                 break;
2095 #endif
2096         case MSR_IA32_SYSENTER_CS:
2097                 *data = svm->vmcb->save.sysenter_cs;
2098                 break;
2099         case MSR_IA32_SYSENTER_EIP:
2100                 *data = svm->sysenter_eip;
2101                 break;
2102         case MSR_IA32_SYSENTER_ESP:
2103                 *data = svm->sysenter_esp;
2104                 break;
2105         /* Nobody will change the following 5 values in the VMCB so
2106            we can safely return them on rdmsr. They will always be 0
2107            until LBRV is implemented. */
2108         case MSR_IA32_DEBUGCTLMSR:
2109                 *data = svm->vmcb->save.dbgctl;
2110                 break;
2111         case MSR_IA32_LASTBRANCHFROMIP:
2112                 *data = svm->vmcb->save.br_from;
2113                 break;
2114         case MSR_IA32_LASTBRANCHTOIP:
2115                 *data = svm->vmcb->save.br_to;
2116                 break;
2117         case MSR_IA32_LASTINTFROMIP:
2118                 *data = svm->vmcb->save.last_excp_from;
2119                 break;
2120         case MSR_IA32_LASTINTTOIP:
2121                 *data = svm->vmcb->save.last_excp_to;
2122                 break;
2123         case MSR_VM_HSAVE_PA:
2124                 *data = svm->nested.hsave_msr;
2125                 break;
2126         case MSR_VM_CR:
2127                 *data = 0;
2128                 break;
2129         case MSR_IA32_UCODE_REV:
2130                 *data = 0x01000065;
2131                 break;
2132         default:
2133                 return kvm_get_msr_common(vcpu, ecx, data);
2134         }
2135         return 0;
2136 }
2137
2138 static int rdmsr_interception(struct vcpu_svm *svm)
2139 {
2140         u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
2141         u64 data;
2142
2143         if (svm_get_msr(&svm->vcpu, ecx, &data))
2144                 kvm_inject_gp(&svm->vcpu, 0);
2145         else {
2146                 trace_kvm_msr_read(ecx, data);
2147
2148                 svm->vcpu.arch.regs[VCPU_REGS_RAX] = data & 0xffffffff;
2149                 svm->vcpu.arch.regs[VCPU_REGS_RDX] = data >> 32;
2150                 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
2151                 skip_emulated_instruction(&svm->vcpu);
2152         }
2153         return 1;
2154 }
2155
2156 static int svm_set_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 data)
2157 {
2158         struct vcpu_svm *svm = to_svm(vcpu);
2159
2160         switch (ecx) {
2161         case MSR_IA32_TSC: {
2162                 u64 tsc_offset = data - native_read_tsc();
2163                 u64 g_tsc_offset = 0;
2164
2165                 if (is_nested(svm)) {
2166                         g_tsc_offset = svm->vmcb->control.tsc_offset -
2167                                        svm->nested.hsave->control.tsc_offset;
2168                         svm->nested.hsave->control.tsc_offset = tsc_offset;
2169                 }
2170
2171                 svm->vmcb->control.tsc_offset = tsc_offset + g_tsc_offset;
2172
2173                 break;
2174         }
2175         case MSR_K6_STAR:
2176                 svm->vmcb->save.star = data;
2177                 break;
2178 #ifdef CONFIG_X86_64
2179         case MSR_LSTAR:
2180                 svm->vmcb->save.lstar = data;
2181                 break;
2182         case MSR_CSTAR:
2183                 svm->vmcb->save.cstar = data;
2184                 break;
2185         case MSR_KERNEL_GS_BASE:
2186                 svm->vmcb->save.kernel_gs_base = data;
2187                 break;
2188         case MSR_SYSCALL_MASK:
2189                 svm->vmcb->save.sfmask = data;
2190                 break;
2191 #endif
2192         case MSR_IA32_SYSENTER_CS:
2193                 svm->vmcb->save.sysenter_cs = data;
2194                 break;
2195         case MSR_IA32_SYSENTER_EIP:
2196                 svm->sysenter_eip = data;
2197                 svm->vmcb->save.sysenter_eip = data;
2198                 break;
2199         case MSR_IA32_SYSENTER_ESP:
2200                 svm->sysenter_esp = data;
2201                 svm->vmcb->save.sysenter_esp = data;
2202                 break;
2203         case MSR_IA32_DEBUGCTLMSR:
2204                 if (!svm_has(SVM_FEATURE_LBRV)) {
2205                         pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
2206                                         __func__, data);
2207                         break;
2208                 }
2209                 if (data & DEBUGCTL_RESERVED_BITS)
2210                         return 1;
2211
2212                 svm->vmcb->save.dbgctl = data;
2213                 if (data & (1ULL<<0))
2214                         svm_enable_lbrv(svm);
2215                 else
2216                         svm_disable_lbrv(svm);
2217                 break;
2218         case MSR_VM_HSAVE_PA:
2219                 svm->nested.hsave_msr = data;
2220                 break;
2221         case MSR_VM_CR:
2222         case MSR_VM_IGNNE:
2223                 pr_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
2224                 break;
2225         default:
2226                 return kvm_set_msr_common(vcpu, ecx, data);
2227         }
2228         return 0;
2229 }
2230
2231 static int wrmsr_interception(struct vcpu_svm *svm)
2232 {
2233         u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
2234         u64 data = (svm->vcpu.arch.regs[VCPU_REGS_RAX] & -1u)
2235                 | ((u64)(svm->vcpu.arch.regs[VCPU_REGS_RDX] & -1u) << 32);
2236
2237         trace_kvm_msr_write(ecx, data);
2238
2239         svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
2240         if (svm_set_msr(&svm->vcpu, ecx, data))
2241                 kvm_inject_gp(&svm->vcpu, 0);
2242         else
2243                 skip_emulated_instruction(&svm->vcpu);
2244         return 1;
2245 }
2246
2247 static int msr_interception(struct vcpu_svm *svm)
2248 {
2249         if (svm->vmcb->control.exit_info_1)
2250                 return wrmsr_interception(svm);
2251         else
2252                 return rdmsr_interception(svm);
2253 }
2254
2255 static int interrupt_window_interception(struct vcpu_svm *svm)
2256 {
2257         struct kvm_run *kvm_run = svm->vcpu.run;
2258
2259         svm_clear_vintr(svm);
2260         svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
2261         /*
2262          * If the user space waits to inject interrupts, exit as soon as
2263          * possible
2264          */
2265         if (!irqchip_in_kernel(svm->vcpu.kvm) &&
2266             kvm_run->request_interrupt_window &&
2267             !kvm_cpu_has_interrupt(&svm->vcpu)) {
2268                 ++svm->vcpu.stat.irq_window_exits;
2269                 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
2270                 return 0;
2271         }
2272
2273         return 1;
2274 }
2275
2276 static int (*svm_exit_handlers[])(struct vcpu_svm *svm) = {
2277         [SVM_EXIT_READ_CR0]                     = emulate_on_interception,
2278         [SVM_EXIT_READ_CR3]                     = emulate_on_interception,
2279         [SVM_EXIT_READ_CR4]                     = emulate_on_interception,
2280         [SVM_EXIT_READ_CR8]                     = emulate_on_interception,
2281         /* for now: */
2282         [SVM_EXIT_WRITE_CR0]                    = emulate_on_interception,
2283         [SVM_EXIT_WRITE_CR3]                    = emulate_on_interception,
2284         [SVM_EXIT_WRITE_CR4]                    = emulate_on_interception,
2285         [SVM_EXIT_WRITE_CR8]                    = cr8_write_interception,
2286         [SVM_EXIT_READ_DR0]                     = emulate_on_interception,
2287         [SVM_EXIT_READ_DR1]                     = emulate_on_interception,
2288         [SVM_EXIT_READ_DR2]                     = emulate_on_interception,
2289         [SVM_EXIT_READ_DR3]                     = emulate_on_interception,
2290         [SVM_EXIT_WRITE_DR0]                    = emulate_on_interception,
2291         [SVM_EXIT_WRITE_DR1]                    = emulate_on_interception,
2292         [SVM_EXIT_WRITE_DR2]                    = emulate_on_interception,
2293         [SVM_EXIT_WRITE_DR3]                    = emulate_on_interception,
2294         [SVM_EXIT_WRITE_DR5]                    = emulate_on_interception,
2295         [SVM_EXIT_WRITE_DR7]                    = emulate_on_interception,
2296         [SVM_EXIT_EXCP_BASE + DB_VECTOR]        = db_interception,
2297         [SVM_EXIT_EXCP_BASE + BP_VECTOR]        = bp_interception,
2298         [SVM_EXIT_EXCP_BASE + UD_VECTOR]        = ud_interception,
2299         [SVM_EXIT_EXCP_BASE + PF_VECTOR]        = pf_interception,
2300         [SVM_EXIT_EXCP_BASE + NM_VECTOR]        = nm_interception,
2301         [SVM_EXIT_EXCP_BASE + MC_VECTOR]        = mc_interception,
2302         [SVM_EXIT_INTR]                         = intr_interception,
2303         [SVM_EXIT_NMI]                          = nmi_interception,
2304         [SVM_EXIT_SMI]                          = nop_on_interception,
2305         [SVM_EXIT_INIT]                         = nop_on_interception,
2306         [SVM_EXIT_VINTR]                        = interrupt_window_interception,
2307         /* [SVM_EXIT_CR0_SEL_WRITE]             = emulate_on_interception, */
2308         [SVM_EXIT_CPUID]                        = cpuid_interception,
2309         [SVM_EXIT_IRET]                         = iret_interception,
2310         [SVM_EXIT_INVD]                         = emulate_on_interception,
2311         [SVM_EXIT_HLT]                          = halt_interception,
2312         [SVM_EXIT_INVLPG]                       = invlpg_interception,
2313         [SVM_EXIT_INVLPGA]                      = invlpga_interception,
2314         [SVM_EXIT_IOIO]                         = io_interception,
2315         [SVM_EXIT_MSR]                          = msr_interception,
2316         [SVM_EXIT_TASK_SWITCH]                  = task_switch_interception,
2317         [SVM_EXIT_SHUTDOWN]                     = shutdown_interception,
2318         [SVM_EXIT_VMRUN]                        = vmrun_interception,
2319         [SVM_EXIT_VMMCALL]                      = vmmcall_interception,
2320         [SVM_EXIT_VMLOAD]                       = vmload_interception,
2321         [SVM_EXIT_VMSAVE]                       = vmsave_interception,
2322         [SVM_EXIT_STGI]                         = stgi_interception,
2323         [SVM_EXIT_CLGI]                         = clgi_interception,
2324         [SVM_EXIT_SKINIT]                       = invalid_op_interception,
2325         [SVM_EXIT_WBINVD]                       = emulate_on_interception,
2326         [SVM_EXIT_MONITOR]                      = invalid_op_interception,
2327         [SVM_EXIT_MWAIT]                        = invalid_op_interception,
2328         [SVM_EXIT_NPF]                          = pf_interception,
2329 };
2330
2331 static int handle_exit(struct kvm_vcpu *vcpu)
2332 {
2333         struct vcpu_svm *svm = to_svm(vcpu);
2334         struct kvm_run *kvm_run = vcpu->run;
2335         u32 exit_code = svm->vmcb->control.exit_code;
2336
2337         trace_kvm_exit(exit_code, svm->vmcb->save.rip);
2338
2339         if (is_nested(svm)) {
2340                 int vmexit;
2341
2342                 nsvm_printk("nested handle_exit: 0x%x | 0x%lx | 0x%lx | 0x%lx\n",
2343                             exit_code, svm->vmcb->control.exit_info_1,
2344                             svm->vmcb->control.exit_info_2, svm->vmcb->save.rip);
2345
2346                 vmexit = nested_svm_exit_special(svm);
2347
2348                 if (vmexit == NESTED_EXIT_CONTINUE)
2349                         vmexit = nested_svm_exit_handled(svm);
2350
2351                 if (vmexit == NESTED_EXIT_DONE)
2352                         return 1;
2353         }
2354
2355         svm_complete_interrupts(svm);
2356
2357         if (npt_enabled) {
2358                 int mmu_reload = 0;
2359                 if ((vcpu->arch.cr0 ^ svm->vmcb->save.cr0) & X86_CR0_PG) {
2360                         svm_set_cr0(vcpu, svm->vmcb->save.cr0);
2361                         mmu_reload = 1;
2362                 }
2363                 vcpu->arch.cr0 = svm->vmcb->save.cr0;
2364                 vcpu->arch.cr3 = svm->vmcb->save.cr3;
2365                 if (mmu_reload) {
2366                         kvm_mmu_reset_context(vcpu);
2367                         kvm_mmu_load(vcpu);
2368                 }
2369         }
2370
2371
2372         if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
2373                 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
2374                 kvm_run->fail_entry.hardware_entry_failure_reason
2375                         = svm->vmcb->control.exit_code;
2376                 return 0;
2377         }
2378
2379         if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
2380             exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
2381             exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH)
2382                 printk(KERN_ERR "%s: unexpected exit_ini_info 0x%x "
2383                        "exit_code 0x%x\n",
2384                        __func__, svm->vmcb->control.exit_int_info,
2385                        exit_code);
2386
2387         if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
2388             || !svm_exit_handlers[exit_code]) {
2389                 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
2390                 kvm_run->hw.hardware_exit_reason = exit_code;
2391                 return 0;
2392         }
2393
2394         return svm_exit_handlers[exit_code](svm);
2395 }
2396
2397 static void reload_tss(struct kvm_vcpu *vcpu)
2398 {
2399         int cpu = raw_smp_processor_id();
2400
2401         struct svm_cpu_data *svm_data = per_cpu(svm_data, cpu);
2402         svm_data->tss_desc->type = 9; /* available 32/64-bit TSS */
2403         load_TR_desc();
2404 }
2405
2406 static void pre_svm_run(struct vcpu_svm *svm)
2407 {
2408         int cpu = raw_smp_processor_id();
2409
2410         struct svm_cpu_data *svm_data = per_cpu(svm_data, cpu);
2411
2412         svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
2413         /* FIXME: handle wraparound of asid_generation */
2414         if (svm->asid_generation != svm_data->asid_generation)
2415                 new_asid(svm, svm_data);
2416 }
2417
2418 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
2419 {
2420         struct vcpu_svm *svm = to_svm(vcpu);
2421
2422         svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
2423         vcpu->arch.hflags |= HF_NMI_MASK;
2424         svm->vmcb->control.intercept |= (1UL << INTERCEPT_IRET);
2425         ++vcpu->stat.nmi_injections;
2426 }
2427
2428 static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
2429 {
2430         struct vmcb_control_area *control;
2431
2432         trace_kvm_inj_virq(irq);
2433
2434         ++svm->vcpu.stat.irq_injections;
2435         control = &svm->vmcb->control;
2436         control->int_vector = irq;
2437         control->int_ctl &= ~V_INTR_PRIO_MASK;
2438         control->int_ctl |= V_IRQ_MASK |
2439                 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
2440 }
2441
2442 static void svm_set_irq(struct kvm_vcpu *vcpu)
2443 {
2444         struct vcpu_svm *svm = to_svm(vcpu);
2445
2446         BUG_ON(!(gif_set(svm)));
2447
2448         svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
2449                 SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
2450 }
2451
2452 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
2453 {
2454         struct vcpu_svm *svm = to_svm(vcpu);
2455
2456         if (irr == -1)
2457                 return;
2458
2459         if (tpr >= irr)
2460                 svm->vmcb->control.intercept_cr_write |= INTERCEPT_CR8_MASK;
2461 }
2462
2463 static int svm_nmi_allowed(struct kvm_vcpu *vcpu)
2464 {
2465         struct vcpu_svm *svm = to_svm(vcpu);
2466         struct vmcb *vmcb = svm->vmcb;
2467         return !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
2468                 !(svm->vcpu.arch.hflags & HF_NMI_MASK);
2469 }
2470
2471 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu)
2472 {
2473         struct vcpu_svm *svm = to_svm(vcpu);
2474         struct vmcb *vmcb = svm->vmcb;
2475         return (vmcb->save.rflags & X86_EFLAGS_IF) &&
2476                 !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
2477                 gif_set(svm) &&
2478                 !(is_nested(svm) && (svm->vcpu.arch.hflags & HF_VINTR_MASK));
2479 }
2480
2481 static void enable_irq_window(struct kvm_vcpu *vcpu)
2482 {
2483         struct vcpu_svm *svm = to_svm(vcpu);
2484         nsvm_printk("Trying to open IRQ window\n");
2485
2486         nested_svm_intr(svm);
2487
2488         /* In case GIF=0 we can't rely on the CPU to tell us when
2489          * GIF becomes 1, because that's a separate STGI/VMRUN intercept.
2490          * The next time we get that intercept, this function will be
2491          * called again though and we'll get the vintr intercept. */
2492         if (gif_set(svm)) {
2493                 svm_set_vintr(svm);
2494                 svm_inject_irq(svm, 0x0);
2495         }
2496 }
2497
2498 static void enable_nmi_window(struct kvm_vcpu *vcpu)
2499 {
2500         struct vcpu_svm *svm = to_svm(vcpu);
2501
2502         if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
2503             == HF_NMI_MASK)
2504                 return; /* IRET will cause a vm exit */
2505
2506         /* Something prevents NMI from been injected. Single step over
2507            possible problem (IRET or exception injection or interrupt
2508            shadow) */
2509         vcpu->arch.singlestep = true;
2510         svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
2511         update_db_intercept(vcpu);
2512 }
2513
2514 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
2515 {
2516         return 0;
2517 }
2518
2519 static void svm_flush_tlb(struct kvm_vcpu *vcpu)
2520 {
2521         force_new_asid(vcpu);
2522 }
2523
2524 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
2525 {
2526 }
2527
2528 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
2529 {
2530         struct vcpu_svm *svm = to_svm(vcpu);
2531
2532         if (!(svm->vmcb->control.intercept_cr_write & INTERCEPT_CR8_MASK)) {
2533                 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
2534                 kvm_set_cr8(vcpu, cr8);
2535         }
2536 }
2537
2538 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
2539 {
2540         struct vcpu_svm *svm = to_svm(vcpu);
2541         u64 cr8;
2542
2543         cr8 = kvm_get_cr8(vcpu);
2544         svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
2545         svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
2546 }
2547
2548 static void svm_complete_interrupts(struct vcpu_svm *svm)
2549 {
2550         u8 vector;
2551         int type;
2552         u32 exitintinfo = svm->vmcb->control.exit_int_info;
2553
2554         if (svm->vcpu.arch.hflags & HF_IRET_MASK)
2555                 svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
2556
2557         svm->vcpu.arch.nmi_injected = false;
2558         kvm_clear_exception_queue(&svm->vcpu);
2559         kvm_clear_interrupt_queue(&svm->vcpu);
2560
2561         if (!(exitintinfo & SVM_EXITINTINFO_VALID))
2562                 return;
2563
2564         vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
2565         type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
2566
2567         switch (type) {
2568         case SVM_EXITINTINFO_TYPE_NMI:
2569                 svm->vcpu.arch.nmi_injected = true;
2570                 break;
2571         case SVM_EXITINTINFO_TYPE_EXEPT:
2572                 /* In case of software exception do not reinject an exception
2573                    vector, but re-execute and instruction instead */
2574                 if (is_nested(svm))
2575                         break;
2576                 if (kvm_exception_is_soft(vector))
2577                         break;
2578                 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
2579                         u32 err = svm->vmcb->control.exit_int_info_err;
2580                         kvm_queue_exception_e(&svm->vcpu, vector, err);
2581
2582                 } else
2583                         kvm_queue_exception(&svm->vcpu, vector);
2584                 break;
2585         case SVM_EXITINTINFO_TYPE_INTR:
2586                 kvm_queue_interrupt(&svm->vcpu, vector, false);
2587                 break;
2588         default:
2589                 break;
2590         }
2591 }
2592
2593 #ifdef CONFIG_X86_64
2594 #define R "r"
2595 #else
2596 #define R "e"
2597 #endif
2598
2599 static void svm_vcpu_run(struct kvm_vcpu *vcpu)
2600 {
2601         struct vcpu_svm *svm = to_svm(vcpu);
2602         u16 fs_selector;
2603         u16 gs_selector;
2604         u16 ldt_selector;
2605
2606         svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
2607         svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
2608         svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
2609
2610         pre_svm_run(svm);
2611
2612         sync_lapic_to_cr8(vcpu);
2613
2614         save_host_msrs(vcpu);
2615         fs_selector = kvm_read_fs();
2616         gs_selector = kvm_read_gs();
2617         ldt_selector = kvm_read_ldt();
2618         svm->vmcb->save.cr2 = vcpu->arch.cr2;
2619         /* required for live migration with NPT */
2620         if (npt_enabled)
2621                 svm->vmcb->save.cr3 = vcpu->arch.cr3;
2622
2623         clgi();
2624
2625         local_irq_enable();
2626
2627         asm volatile (
2628                 "push %%"R"bp; \n\t"
2629                 "mov %c[rbx](%[svm]), %%"R"bx \n\t"
2630                 "mov %c[rcx](%[svm]), %%"R"cx \n\t"
2631                 "mov %c[rdx](%[svm]), %%"R"dx \n\t"
2632                 "mov %c[rsi](%[svm]), %%"R"si \n\t"
2633                 "mov %c[rdi](%[svm]), %%"R"di \n\t"
2634                 "mov %c[rbp](%[svm]), %%"R"bp \n\t"
2635 #ifdef CONFIG_X86_64
2636                 "mov %c[r8](%[svm]),  %%r8  \n\t"
2637                 "mov %c[r9](%[svm]),  %%r9  \n\t"
2638                 "mov %c[r10](%[svm]), %%r10 \n\t"
2639                 "mov %c[r11](%[svm]), %%r11 \n\t"
2640                 "mov %c[r12](%[svm]), %%r12 \n\t"
2641                 "mov %c[r13](%[svm]), %%r13 \n\t"
2642                 "mov %c[r14](%[svm]), %%r14 \n\t"
2643                 "mov %c[r15](%[svm]), %%r15 \n\t"
2644 #endif
2645
2646                 /* Enter guest mode */
2647                 "push %%"R"ax \n\t"
2648                 "mov %c[vmcb](%[svm]), %%"R"ax \n\t"
2649                 __ex(SVM_VMLOAD) "\n\t"
2650                 __ex(SVM_VMRUN) "\n\t"
2651                 __ex(SVM_VMSAVE) "\n\t"
2652                 "pop %%"R"ax \n\t"
2653
2654                 /* Save guest registers, load host registers */
2655                 "mov %%"R"bx, %c[rbx](%[svm]) \n\t"
2656                 "mov %%"R"cx, %c[rcx](%[svm]) \n\t"
2657                 "mov %%"R"dx, %c[rdx](%[svm]) \n\t"
2658                 "mov %%"R"si, %c[rsi](%[svm]) \n\t"
2659                 "mov %%"R"di, %c[rdi](%[svm]) \n\t"
2660                 "mov %%"R"bp, %c[rbp](%[svm]) \n\t"
2661 #ifdef CONFIG_X86_64
2662                 "mov %%r8,  %c[r8](%[svm]) \n\t"
2663                 "mov %%r9,  %c[r9](%[svm]) \n\t"
2664                 "mov %%r10, %c[r10](%[svm]) \n\t"
2665                 "mov %%r11, %c[r11](%[svm]) \n\t"
2666                 "mov %%r12, %c[r12](%[svm]) \n\t"
2667                 "mov %%r13, %c[r13](%[svm]) \n\t"
2668                 "mov %%r14, %c[r14](%[svm]) \n\t"
2669                 "mov %%r15, %c[r15](%[svm]) \n\t"
2670 #endif
2671                 "pop %%"R"bp"
2672                 :
2673                 : [svm]"a"(svm),
2674                   [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
2675                   [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
2676                   [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
2677                   [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
2678                   [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
2679                   [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
2680                   [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
2681 #ifdef CONFIG_X86_64
2682                   , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
2683                   [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
2684                   [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
2685                   [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
2686                   [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
2687                   [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
2688                   [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
2689                   [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
2690 #endif
2691                 : "cc", "memory"
2692                 , R"bx", R"cx", R"dx", R"si", R"di"
2693 #ifdef CONFIG_X86_64
2694                 , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
2695 #endif
2696                 );
2697
2698         vcpu->arch.cr2 = svm->vmcb->save.cr2;
2699         vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
2700         vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
2701         vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
2702
2703         kvm_load_fs(fs_selector);
2704         kvm_load_gs(gs_selector);
2705         kvm_load_ldt(ldt_selector);
2706         load_host_msrs(vcpu);
2707
2708         reload_tss(vcpu);
2709
2710         local_irq_disable();
2711
2712         stgi();
2713
2714         sync_cr8_to_lapic(vcpu);
2715
2716         svm->next_rip = 0;
2717
2718         if (npt_enabled) {
2719                 vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
2720                 vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
2721         }
2722 }
2723
2724 #undef R
2725
2726 static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
2727 {
2728         struct vcpu_svm *svm = to_svm(vcpu);
2729
2730         if (npt_enabled) {
2731                 svm->vmcb->control.nested_cr3 = root;
2732                 force_new_asid(vcpu);
2733                 return;
2734         }
2735
2736         svm->vmcb->save.cr3 = root;
2737         force_new_asid(vcpu);
2738
2739         if (vcpu->fpu_active) {
2740                 svm->vmcb->control.intercept_exceptions |= (1 << NM_VECTOR);
2741                 svm->vmcb->save.cr0 |= X86_CR0_TS;
2742                 vcpu->fpu_active = 0;
2743         }
2744 }
2745
2746 static int is_disabled(void)
2747 {
2748         u64 vm_cr;
2749
2750         rdmsrl(MSR_VM_CR, vm_cr);
2751         if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
2752                 return 1;
2753
2754         return 0;
2755 }
2756
2757 static void
2758 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
2759 {
2760         /*
2761          * Patch in the VMMCALL instruction:
2762          */
2763         hypercall[0] = 0x0f;
2764         hypercall[1] = 0x01;
2765         hypercall[2] = 0xd9;
2766 }
2767
2768 static void svm_check_processor_compat(void *rtn)
2769 {
2770         *(int *)rtn = 0;
2771 }
2772
2773 static bool svm_cpu_has_accelerated_tpr(void)
2774 {
2775         return false;
2776 }
2777
2778 static int get_npt_level(void)
2779 {
2780 #ifdef CONFIG_X86_64
2781         return PT64_ROOT_LEVEL;
2782 #else
2783         return PT32E_ROOT_LEVEL;
2784 #endif
2785 }
2786
2787 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
2788 {
2789         return 0;
2790 }
2791
2792 static const struct trace_print_flags svm_exit_reasons_str[] = {
2793         { SVM_EXIT_READ_CR0,                    "read_cr0" },
2794         { SVM_EXIT_READ_CR3,                    "read_cr3" },
2795         { SVM_EXIT_READ_CR4,                    "read_cr4" },
2796         { SVM_EXIT_READ_CR8,                    "read_cr8" },
2797         { SVM_EXIT_WRITE_CR0,                   "write_cr0" },
2798         { SVM_EXIT_WRITE_CR3,                   "write_cr3" },
2799         { SVM_EXIT_WRITE_CR4,                   "write_cr4" },
2800         { SVM_EXIT_WRITE_CR8,                   "write_cr8" },
2801         { SVM_EXIT_READ_DR0,                    "read_dr0" },
2802         { SVM_EXIT_READ_DR1,                    "read_dr1" },
2803         { SVM_EXIT_READ_DR2,                    "read_dr2" },
2804         { SVM_EXIT_READ_DR3,                    "read_dr3" },
2805         { SVM_EXIT_WRITE_DR0,                   "write_dr0" },
2806         { SVM_EXIT_WRITE_DR1,                   "write_dr1" },
2807         { SVM_EXIT_WRITE_DR2,                   "write_dr2" },
2808         { SVM_EXIT_WRITE_DR3,                   "write_dr3" },
2809         { SVM_EXIT_WRITE_DR5,                   "write_dr5" },
2810         { SVM_EXIT_WRITE_DR7,                   "write_dr7" },
2811         { SVM_EXIT_EXCP_BASE + DB_VECTOR,       "DB excp" },
2812         { SVM_EXIT_EXCP_BASE + BP_VECTOR,       "BP excp" },
2813         { SVM_EXIT_EXCP_BASE + UD_VECTOR,       "UD excp" },
2814         { SVM_EXIT_EXCP_BASE + PF_VECTOR,       "PF excp" },
2815         { SVM_EXIT_EXCP_BASE + NM_VECTOR,       "NM excp" },
2816         { SVM_EXIT_EXCP_BASE + MC_VECTOR,       "MC excp" },
2817         { SVM_EXIT_INTR,                        "interrupt" },
2818         { SVM_EXIT_NMI,                         "nmi" },
2819         { SVM_EXIT_SMI,                         "smi" },
2820         { SVM_EXIT_INIT,                        "init" },
2821         { SVM_EXIT_VINTR,                       "vintr" },
2822         { SVM_EXIT_CPUID,                       "cpuid" },
2823         { SVM_EXIT_INVD,                        "invd" },
2824         { SVM_EXIT_HLT,                         "hlt" },
2825         { SVM_EXIT_INVLPG,                      "invlpg" },
2826         { SVM_EXIT_INVLPGA,                     "invlpga" },
2827         { SVM_EXIT_IOIO,                        "io" },
2828         { SVM_EXIT_MSR,                         "msr" },
2829         { SVM_EXIT_TASK_SWITCH,                 "task_switch" },
2830         { SVM_EXIT_SHUTDOWN,                    "shutdown" },
2831         { SVM_EXIT_VMRUN,                       "vmrun" },
2832         { SVM_EXIT_VMMCALL,                     "hypercall" },
2833         { SVM_EXIT_VMLOAD,                      "vmload" },
2834         { SVM_EXIT_VMSAVE,                      "vmsave" },
2835         { SVM_EXIT_STGI,                        "stgi" },
2836         { SVM_EXIT_CLGI,                        "clgi" },
2837         { SVM_EXIT_SKINIT,                      "skinit" },
2838         { SVM_EXIT_WBINVD,                      "wbinvd" },
2839         { SVM_EXIT_MONITOR,                     "monitor" },
2840         { SVM_EXIT_MWAIT,                       "mwait" },
2841         { SVM_EXIT_NPF,                         "npf" },
2842         { -1, NULL }
2843 };
2844
2845 static bool svm_gb_page_enable(void)
2846 {
2847         return true;
2848 }
2849
2850 static struct kvm_x86_ops svm_x86_ops = {
2851         .cpu_has_kvm_support = has_svm,
2852         .disabled_by_bios = is_disabled,
2853         .hardware_setup = svm_hardware_setup,
2854         .hardware_unsetup = svm_hardware_unsetup,
2855         .check_processor_compatibility = svm_check_processor_compat,
2856         .hardware_enable = svm_hardware_enable,
2857         .hardware_disable = svm_hardware_disable,
2858         .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
2859
2860         .vcpu_create = svm_create_vcpu,
2861         .vcpu_free = svm_free_vcpu,
2862         .vcpu_reset = svm_vcpu_reset,
2863
2864         .prepare_guest_switch = svm_prepare_guest_switch,
2865         .vcpu_load = svm_vcpu_load,
2866         .vcpu_put = svm_vcpu_put,
2867
2868         .set_guest_debug = svm_guest_debug,
2869         .get_msr = svm_get_msr,
2870         .set_msr = svm_set_msr,
2871         .get_segment_base = svm_get_segment_base,
2872         .get_segment = svm_get_segment,
2873         .set_segment = svm_set_segment,
2874         .get_cpl = svm_get_cpl,
2875         .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
2876         .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
2877         .set_cr0 = svm_set_cr0,
2878         .set_cr3 = svm_set_cr3,
2879         .set_cr4 = svm_set_cr4,
2880         .set_efer = svm_set_efer,
2881         .get_idt = svm_get_idt,
2882         .set_idt = svm_set_idt,
2883         .get_gdt = svm_get_gdt,
2884         .set_gdt = svm_set_gdt,
2885         .get_dr = svm_get_dr,
2886         .set_dr = svm_set_dr,
2887         .cache_reg = svm_cache_reg,
2888         .get_rflags = svm_get_rflags,
2889         .set_rflags = svm_set_rflags,
2890
2891         .tlb_flush = svm_flush_tlb,
2892
2893         .run = svm_vcpu_run,
2894         .handle_exit = handle_exit,
2895         .skip_emulated_instruction = skip_emulated_instruction,
2896         .set_interrupt_shadow = svm_set_interrupt_shadow,
2897         .get_interrupt_shadow = svm_get_interrupt_shadow,
2898         .patch_hypercall = svm_patch_hypercall,
2899         .set_irq = svm_set_irq,
2900         .set_nmi = svm_inject_nmi,
2901         .queue_exception = svm_queue_exception,
2902         .interrupt_allowed = svm_interrupt_allowed,
2903         .nmi_allowed = svm_nmi_allowed,
2904         .enable_nmi_window = enable_nmi_window,
2905         .enable_irq_window = enable_irq_window,
2906         .update_cr8_intercept = update_cr8_intercept,
2907
2908         .set_tss_addr = svm_set_tss_addr,
2909         .get_tdp_level = get_npt_level,
2910         .get_mt_mask = svm_get_mt_mask,
2911
2912         .exit_reasons_str = svm_exit_reasons_str,
2913         .gb_page_enable = svm_gb_page_enable,
2914 };
2915
2916 static int __init svm_init(void)
2917 {
2918         return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
2919                               THIS_MODULE);
2920 }
2921
2922 static void __exit svm_exit(void)
2923 {
2924         kvm_exit();
2925 }
2926
2927 module_init(svm_init)
2928 module_exit(svm_exit)