171bcea1be219e3ed93be697970f30a282dc993c
[safe/jmp/linux-2.6] / arch / x86 / kvm / mmu.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * MMU support
8  *
9  * Copyright (C) 2006 Qumranet, Inc.
10  *
11  * Authors:
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *   Avi Kivity   <avi@qumranet.com>
14  *
15  * This work is licensed under the terms of the GNU GPL, version 2.  See
16  * the COPYING file in the top-level directory.
17  *
18  */
19
20 #include "vmx.h"
21 #include "mmu.h"
22
23 #include <linux/kvm_host.h>
24 #include <linux/types.h>
25 #include <linux/string.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/module.h>
29 #include <linux/swap.h>
30 #include <linux/hugetlb.h>
31 #include <linux/compiler.h>
32
33 #include <asm/page.h>
34 #include <asm/cmpxchg.h>
35 #include <asm/io.h>
36
37 /*
38  * When setting this variable to true it enables Two-Dimensional-Paging
39  * where the hardware walks 2 page tables:
40  * 1. the guest-virtual to guest-physical
41  * 2. while doing 1. it walks guest-physical to host-physical
42  * If the hardware supports that we don't need to do shadow paging.
43  */
44 bool tdp_enabled = false;
45
46 #undef MMU_DEBUG
47
48 #undef AUDIT
49
50 #ifdef AUDIT
51 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg);
52 #else
53 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg) {}
54 #endif
55
56 #ifdef MMU_DEBUG
57
58 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
59 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
60
61 #else
62
63 #define pgprintk(x...) do { } while (0)
64 #define rmap_printk(x...) do { } while (0)
65
66 #endif
67
68 #if defined(MMU_DEBUG) || defined(AUDIT)
69 static int dbg = 0;
70 module_param(dbg, bool, 0644);
71 #endif
72
73 #ifndef MMU_DEBUG
74 #define ASSERT(x) do { } while (0)
75 #else
76 #define ASSERT(x)                                                       \
77         if (!(x)) {                                                     \
78                 printk(KERN_WARNING "assertion failed %s:%d: %s\n",     \
79                        __FILE__, __LINE__, #x);                         \
80         }
81 #endif
82
83 #define PT_FIRST_AVAIL_BITS_SHIFT 9
84 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
85
86 #define VALID_PAGE(x) ((x) != INVALID_PAGE)
87
88 #define PT64_LEVEL_BITS 9
89
90 #define PT64_LEVEL_SHIFT(level) \
91                 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
92
93 #define PT64_LEVEL_MASK(level) \
94                 (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
95
96 #define PT64_INDEX(address, level)\
97         (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
98
99
100 #define PT32_LEVEL_BITS 10
101
102 #define PT32_LEVEL_SHIFT(level) \
103                 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
104
105 #define PT32_LEVEL_MASK(level) \
106                 (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
107
108 #define PT32_INDEX(address, level)\
109         (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
110
111
112 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
113 #define PT64_DIR_BASE_ADDR_MASK \
114         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
115
116 #define PT32_BASE_ADDR_MASK PAGE_MASK
117 #define PT32_DIR_BASE_ADDR_MASK \
118         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
119
120 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
121                         | PT64_NX_MASK)
122
123 #define PFERR_PRESENT_MASK (1U << 0)
124 #define PFERR_WRITE_MASK (1U << 1)
125 #define PFERR_USER_MASK (1U << 2)
126 #define PFERR_FETCH_MASK (1U << 4)
127
128 #define PT_DIRECTORY_LEVEL 2
129 #define PT_PAGE_TABLE_LEVEL 1
130
131 #define RMAP_EXT 4
132
133 #define ACC_EXEC_MASK    1
134 #define ACC_WRITE_MASK   PT_WRITABLE_MASK
135 #define ACC_USER_MASK    PT_USER_MASK
136 #define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
137
138 struct kvm_rmap_desc {
139         u64 *shadow_ptes[RMAP_EXT];
140         struct kvm_rmap_desc *more;
141 };
142
143 static struct kmem_cache *pte_chain_cache;
144 static struct kmem_cache *rmap_desc_cache;
145 static struct kmem_cache *mmu_page_header_cache;
146
147 static u64 __read_mostly shadow_trap_nonpresent_pte;
148 static u64 __read_mostly shadow_notrap_nonpresent_pte;
149 static u64 __read_mostly shadow_base_present_pte;
150 static u64 __read_mostly shadow_nx_mask;
151 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
152 static u64 __read_mostly shadow_user_mask;
153 static u64 __read_mostly shadow_accessed_mask;
154 static u64 __read_mostly shadow_dirty_mask;
155
156 void kvm_mmu_set_nonpresent_ptes(u64 trap_pte, u64 notrap_pte)
157 {
158         shadow_trap_nonpresent_pte = trap_pte;
159         shadow_notrap_nonpresent_pte = notrap_pte;
160 }
161 EXPORT_SYMBOL_GPL(kvm_mmu_set_nonpresent_ptes);
162
163 void kvm_mmu_set_base_ptes(u64 base_pte)
164 {
165         shadow_base_present_pte = base_pte;
166 }
167 EXPORT_SYMBOL_GPL(kvm_mmu_set_base_ptes);
168
169 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
170                 u64 dirty_mask, u64 nx_mask, u64 x_mask)
171 {
172         shadow_user_mask = user_mask;
173         shadow_accessed_mask = accessed_mask;
174         shadow_dirty_mask = dirty_mask;
175         shadow_nx_mask = nx_mask;
176         shadow_x_mask = x_mask;
177 }
178 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
179
180 static int is_write_protection(struct kvm_vcpu *vcpu)
181 {
182         return vcpu->arch.cr0 & X86_CR0_WP;
183 }
184
185 static int is_cpuid_PSE36(void)
186 {
187         return 1;
188 }
189
190 static int is_nx(struct kvm_vcpu *vcpu)
191 {
192         return vcpu->arch.shadow_efer & EFER_NX;
193 }
194
195 static int is_present_pte(unsigned long pte)
196 {
197         return pte & PT_PRESENT_MASK;
198 }
199
200 static int is_shadow_present_pte(u64 pte)
201 {
202         return pte != shadow_trap_nonpresent_pte
203                 && pte != shadow_notrap_nonpresent_pte;
204 }
205
206 static int is_large_pte(u64 pte)
207 {
208         return pte & PT_PAGE_SIZE_MASK;
209 }
210
211 static int is_writeble_pte(unsigned long pte)
212 {
213         return pte & PT_WRITABLE_MASK;
214 }
215
216 static int is_dirty_pte(unsigned long pte)
217 {
218         return pte & shadow_dirty_mask;
219 }
220
221 static int is_rmap_pte(u64 pte)
222 {
223         return is_shadow_present_pte(pte);
224 }
225
226 static pfn_t spte_to_pfn(u64 pte)
227 {
228         return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
229 }
230
231 static gfn_t pse36_gfn_delta(u32 gpte)
232 {
233         int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
234
235         return (gpte & PT32_DIR_PSE36_MASK) << shift;
236 }
237
238 static void set_shadow_pte(u64 *sptep, u64 spte)
239 {
240 #ifdef CONFIG_X86_64
241         set_64bit((unsigned long *)sptep, spte);
242 #else
243         set_64bit((unsigned long long *)sptep, spte);
244 #endif
245 }
246
247 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
248                                   struct kmem_cache *base_cache, int min)
249 {
250         void *obj;
251
252         if (cache->nobjs >= min)
253                 return 0;
254         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
255                 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
256                 if (!obj)
257                         return -ENOMEM;
258                 cache->objects[cache->nobjs++] = obj;
259         }
260         return 0;
261 }
262
263 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
264 {
265         while (mc->nobjs)
266                 kfree(mc->objects[--mc->nobjs]);
267 }
268
269 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
270                                        int min)
271 {
272         struct page *page;
273
274         if (cache->nobjs >= min)
275                 return 0;
276         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
277                 page = alloc_page(GFP_KERNEL);
278                 if (!page)
279                         return -ENOMEM;
280                 set_page_private(page, 0);
281                 cache->objects[cache->nobjs++] = page_address(page);
282         }
283         return 0;
284 }
285
286 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
287 {
288         while (mc->nobjs)
289                 free_page((unsigned long)mc->objects[--mc->nobjs]);
290 }
291
292 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
293 {
294         int r;
295
296         r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_chain_cache,
297                                    pte_chain_cache, 4);
298         if (r)
299                 goto out;
300         r = mmu_topup_memory_cache(&vcpu->arch.mmu_rmap_desc_cache,
301                                    rmap_desc_cache, 1);
302         if (r)
303                 goto out;
304         r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
305         if (r)
306                 goto out;
307         r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
308                                    mmu_page_header_cache, 4);
309 out:
310         return r;
311 }
312
313 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
314 {
315         mmu_free_memory_cache(&vcpu->arch.mmu_pte_chain_cache);
316         mmu_free_memory_cache(&vcpu->arch.mmu_rmap_desc_cache);
317         mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
318         mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
319 }
320
321 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
322                                     size_t size)
323 {
324         void *p;
325
326         BUG_ON(!mc->nobjs);
327         p = mc->objects[--mc->nobjs];
328         memset(p, 0, size);
329         return p;
330 }
331
332 static struct kvm_pte_chain *mmu_alloc_pte_chain(struct kvm_vcpu *vcpu)
333 {
334         return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_chain_cache,
335                                       sizeof(struct kvm_pte_chain));
336 }
337
338 static void mmu_free_pte_chain(struct kvm_pte_chain *pc)
339 {
340         kfree(pc);
341 }
342
343 static struct kvm_rmap_desc *mmu_alloc_rmap_desc(struct kvm_vcpu *vcpu)
344 {
345         return mmu_memory_cache_alloc(&vcpu->arch.mmu_rmap_desc_cache,
346                                       sizeof(struct kvm_rmap_desc));
347 }
348
349 static void mmu_free_rmap_desc(struct kvm_rmap_desc *rd)
350 {
351         kfree(rd);
352 }
353
354 /*
355  * Return the pointer to the largepage write count for a given
356  * gfn, handling slots that are not large page aligned.
357  */
358 static int *slot_largepage_idx(gfn_t gfn, struct kvm_memory_slot *slot)
359 {
360         unsigned long idx;
361
362         idx = (gfn / KVM_PAGES_PER_HPAGE) -
363               (slot->base_gfn / KVM_PAGES_PER_HPAGE);
364         return &slot->lpage_info[idx].write_count;
365 }
366
367 static void account_shadowed(struct kvm *kvm, gfn_t gfn)
368 {
369         int *write_count;
370
371         write_count = slot_largepage_idx(gfn, gfn_to_memslot(kvm, gfn));
372         *write_count += 1;
373 }
374
375 static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
376 {
377         int *write_count;
378
379         write_count = slot_largepage_idx(gfn, gfn_to_memslot(kvm, gfn));
380         *write_count -= 1;
381         WARN_ON(*write_count < 0);
382 }
383
384 static int has_wrprotected_page(struct kvm *kvm, gfn_t gfn)
385 {
386         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
387         int *largepage_idx;
388
389         if (slot) {
390                 largepage_idx = slot_largepage_idx(gfn, slot);
391                 return *largepage_idx;
392         }
393
394         return 1;
395 }
396
397 static int host_largepage_backed(struct kvm *kvm, gfn_t gfn)
398 {
399         struct vm_area_struct *vma;
400         unsigned long addr;
401
402         addr = gfn_to_hva(kvm, gfn);
403         if (kvm_is_error_hva(addr))
404                 return 0;
405
406         vma = find_vma(current->mm, addr);
407         if (vma && is_vm_hugetlb_page(vma))
408                 return 1;
409
410         return 0;
411 }
412
413 static int is_largepage_backed(struct kvm_vcpu *vcpu, gfn_t large_gfn)
414 {
415         struct kvm_memory_slot *slot;
416
417         if (has_wrprotected_page(vcpu->kvm, large_gfn))
418                 return 0;
419
420         if (!host_largepage_backed(vcpu->kvm, large_gfn))
421                 return 0;
422
423         slot = gfn_to_memslot(vcpu->kvm, large_gfn);
424         if (slot && slot->dirty_bitmap)
425                 return 0;
426
427         return 1;
428 }
429
430 /*
431  * Take gfn and return the reverse mapping to it.
432  * Note: gfn must be unaliased before this function get called
433  */
434
435 static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int lpage)
436 {
437         struct kvm_memory_slot *slot;
438         unsigned long idx;
439
440         slot = gfn_to_memslot(kvm, gfn);
441         if (!lpage)
442                 return &slot->rmap[gfn - slot->base_gfn];
443
444         idx = (gfn / KVM_PAGES_PER_HPAGE) -
445               (slot->base_gfn / KVM_PAGES_PER_HPAGE);
446
447         return &slot->lpage_info[idx].rmap_pde;
448 }
449
450 /*
451  * Reverse mapping data structures:
452  *
453  * If rmapp bit zero is zero, then rmapp point to the shadw page table entry
454  * that points to page_address(page).
455  *
456  * If rmapp bit zero is one, (then rmap & ~1) points to a struct kvm_rmap_desc
457  * containing more mappings.
458  */
459 static void rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn, int lpage)
460 {
461         struct kvm_mmu_page *sp;
462         struct kvm_rmap_desc *desc;
463         unsigned long *rmapp;
464         int i;
465
466         if (!is_rmap_pte(*spte))
467                 return;
468         gfn = unalias_gfn(vcpu->kvm, gfn);
469         sp = page_header(__pa(spte));
470         sp->gfns[spte - sp->spt] = gfn;
471         rmapp = gfn_to_rmap(vcpu->kvm, gfn, lpage);
472         if (!*rmapp) {
473                 rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
474                 *rmapp = (unsigned long)spte;
475         } else if (!(*rmapp & 1)) {
476                 rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
477                 desc = mmu_alloc_rmap_desc(vcpu);
478                 desc->shadow_ptes[0] = (u64 *)*rmapp;
479                 desc->shadow_ptes[1] = spte;
480                 *rmapp = (unsigned long)desc | 1;
481         } else {
482                 rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
483                 desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
484                 while (desc->shadow_ptes[RMAP_EXT-1] && desc->more)
485                         desc = desc->more;
486                 if (desc->shadow_ptes[RMAP_EXT-1]) {
487                         desc->more = mmu_alloc_rmap_desc(vcpu);
488                         desc = desc->more;
489                 }
490                 for (i = 0; desc->shadow_ptes[i]; ++i)
491                         ;
492                 desc->shadow_ptes[i] = spte;
493         }
494 }
495
496 static void rmap_desc_remove_entry(unsigned long *rmapp,
497                                    struct kvm_rmap_desc *desc,
498                                    int i,
499                                    struct kvm_rmap_desc *prev_desc)
500 {
501         int j;
502
503         for (j = RMAP_EXT - 1; !desc->shadow_ptes[j] && j > i; --j)
504                 ;
505         desc->shadow_ptes[i] = desc->shadow_ptes[j];
506         desc->shadow_ptes[j] = NULL;
507         if (j != 0)
508                 return;
509         if (!prev_desc && !desc->more)
510                 *rmapp = (unsigned long)desc->shadow_ptes[0];
511         else
512                 if (prev_desc)
513                         prev_desc->more = desc->more;
514                 else
515                         *rmapp = (unsigned long)desc->more | 1;
516         mmu_free_rmap_desc(desc);
517 }
518
519 static void rmap_remove(struct kvm *kvm, u64 *spte)
520 {
521         struct kvm_rmap_desc *desc;
522         struct kvm_rmap_desc *prev_desc;
523         struct kvm_mmu_page *sp;
524         pfn_t pfn;
525         unsigned long *rmapp;
526         int i;
527
528         if (!is_rmap_pte(*spte))
529                 return;
530         sp = page_header(__pa(spte));
531         pfn = spte_to_pfn(*spte);
532         if (*spte & shadow_accessed_mask)
533                 kvm_set_pfn_accessed(pfn);
534         if (is_writeble_pte(*spte))
535                 kvm_release_pfn_dirty(pfn);
536         else
537                 kvm_release_pfn_clean(pfn);
538         rmapp = gfn_to_rmap(kvm, sp->gfns[spte - sp->spt], is_large_pte(*spte));
539         if (!*rmapp) {
540                 printk(KERN_ERR "rmap_remove: %p %llx 0->BUG\n", spte, *spte);
541                 BUG();
542         } else if (!(*rmapp & 1)) {
543                 rmap_printk("rmap_remove:  %p %llx 1->0\n", spte, *spte);
544                 if ((u64 *)*rmapp != spte) {
545                         printk(KERN_ERR "rmap_remove:  %p %llx 1->BUG\n",
546                                spte, *spte);
547                         BUG();
548                 }
549                 *rmapp = 0;
550         } else {
551                 rmap_printk("rmap_remove:  %p %llx many->many\n", spte, *spte);
552                 desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
553                 prev_desc = NULL;
554                 while (desc) {
555                         for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i)
556                                 if (desc->shadow_ptes[i] == spte) {
557                                         rmap_desc_remove_entry(rmapp,
558                                                                desc, i,
559                                                                prev_desc);
560                                         return;
561                                 }
562                         prev_desc = desc;
563                         desc = desc->more;
564                 }
565                 BUG();
566         }
567 }
568
569 static u64 *rmap_next(struct kvm *kvm, unsigned long *rmapp, u64 *spte)
570 {
571         struct kvm_rmap_desc *desc;
572         struct kvm_rmap_desc *prev_desc;
573         u64 *prev_spte;
574         int i;
575
576         if (!*rmapp)
577                 return NULL;
578         else if (!(*rmapp & 1)) {
579                 if (!spte)
580                         return (u64 *)*rmapp;
581                 return NULL;
582         }
583         desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
584         prev_desc = NULL;
585         prev_spte = NULL;
586         while (desc) {
587                 for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i) {
588                         if (prev_spte == spte)
589                                 return desc->shadow_ptes[i];
590                         prev_spte = desc->shadow_ptes[i];
591                 }
592                 desc = desc->more;
593         }
594         return NULL;
595 }
596
597 static void rmap_write_protect(struct kvm *kvm, u64 gfn)
598 {
599         unsigned long *rmapp;
600         u64 *spte;
601         int write_protected = 0;
602
603         gfn = unalias_gfn(kvm, gfn);
604         rmapp = gfn_to_rmap(kvm, gfn, 0);
605
606         spte = rmap_next(kvm, rmapp, NULL);
607         while (spte) {
608                 BUG_ON(!spte);
609                 BUG_ON(!(*spte & PT_PRESENT_MASK));
610                 rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
611                 if (is_writeble_pte(*spte)) {
612                         set_shadow_pte(spte, *spte & ~PT_WRITABLE_MASK);
613                         write_protected = 1;
614                 }
615                 spte = rmap_next(kvm, rmapp, spte);
616         }
617         if (write_protected) {
618                 pfn_t pfn;
619
620                 spte = rmap_next(kvm, rmapp, NULL);
621                 pfn = spte_to_pfn(*spte);
622                 kvm_set_pfn_dirty(pfn);
623         }
624
625         /* check for huge page mappings */
626         rmapp = gfn_to_rmap(kvm, gfn, 1);
627         spte = rmap_next(kvm, rmapp, NULL);
628         while (spte) {
629                 BUG_ON(!spte);
630                 BUG_ON(!(*spte & PT_PRESENT_MASK));
631                 BUG_ON((*spte & (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK)) != (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK));
632                 pgprintk("rmap_write_protect(large): spte %p %llx %lld\n", spte, *spte, gfn);
633                 if (is_writeble_pte(*spte)) {
634                         rmap_remove(kvm, spte);
635                         --kvm->stat.lpages;
636                         set_shadow_pte(spte, shadow_trap_nonpresent_pte);
637                         spte = NULL;
638                         write_protected = 1;
639                 }
640                 spte = rmap_next(kvm, rmapp, spte);
641         }
642
643         if (write_protected)
644                 kvm_flush_remote_tlbs(kvm);
645
646         account_shadowed(kvm, gfn);
647 }
648
649 static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp)
650 {
651         u64 *spte;
652         int need_tlb_flush = 0;
653
654         while ((spte = rmap_next(kvm, rmapp, NULL))) {
655                 BUG_ON(!(*spte & PT_PRESENT_MASK));
656                 rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", spte, *spte);
657                 rmap_remove(kvm, spte);
658                 set_shadow_pte(spte, shadow_trap_nonpresent_pte);
659                 need_tlb_flush = 1;
660         }
661         return need_tlb_flush;
662 }
663
664 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
665                           int (*handler)(struct kvm *kvm, unsigned long *rmapp))
666 {
667         int i;
668         int retval = 0;
669
670         /*
671          * If mmap_sem isn't taken, we can look the memslots with only
672          * the mmu_lock by skipping over the slots with userspace_addr == 0.
673          */
674         for (i = 0; i < kvm->nmemslots; i++) {
675                 struct kvm_memory_slot *memslot = &kvm->memslots[i];
676                 unsigned long start = memslot->userspace_addr;
677                 unsigned long end;
678
679                 /* mmu_lock protects userspace_addr */
680                 if (!start)
681                         continue;
682
683                 end = start + (memslot->npages << PAGE_SHIFT);
684                 if (hva >= start && hva < end) {
685                         gfn_t gfn_offset = (hva - start) >> PAGE_SHIFT;
686                         retval |= handler(kvm, &memslot->rmap[gfn_offset]);
687                         retval |= handler(kvm,
688                                           &memslot->lpage_info[
689                                                   gfn_offset /
690                                                   KVM_PAGES_PER_HPAGE].rmap_pde);
691                 }
692         }
693
694         return retval;
695 }
696
697 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
698 {
699         return kvm_handle_hva(kvm, hva, kvm_unmap_rmapp);
700 }
701
702 static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp)
703 {
704         u64 *spte;
705         int young = 0;
706
707         /* always return old for EPT */
708         if (!shadow_accessed_mask)
709                 return 0;
710
711         spte = rmap_next(kvm, rmapp, NULL);
712         while (spte) {
713                 int _young;
714                 u64 _spte = *spte;
715                 BUG_ON(!(_spte & PT_PRESENT_MASK));
716                 _young = _spte & PT_ACCESSED_MASK;
717                 if (_young) {
718                         young = 1;
719                         clear_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
720                 }
721                 spte = rmap_next(kvm, rmapp, spte);
722         }
723         return young;
724 }
725
726 int kvm_age_hva(struct kvm *kvm, unsigned long hva)
727 {
728         return kvm_handle_hva(kvm, hva, kvm_age_rmapp);
729 }
730
731 #ifdef MMU_DEBUG
732 static int is_empty_shadow_page(u64 *spt)
733 {
734         u64 *pos;
735         u64 *end;
736
737         for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
738                 if (is_shadow_present_pte(*pos)) {
739                         printk(KERN_ERR "%s: %p %llx\n", __func__,
740                                pos, *pos);
741                         return 0;
742                 }
743         return 1;
744 }
745 #endif
746
747 static void kvm_mmu_free_page(struct kvm *kvm, struct kvm_mmu_page *sp)
748 {
749         ASSERT(is_empty_shadow_page(sp->spt));
750         list_del(&sp->link);
751         __free_page(virt_to_page(sp->spt));
752         __free_page(virt_to_page(sp->gfns));
753         kfree(sp);
754         ++kvm->arch.n_free_mmu_pages;
755 }
756
757 static unsigned kvm_page_table_hashfn(gfn_t gfn)
758 {
759         return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
760 }
761
762 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
763                                                u64 *parent_pte)
764 {
765         struct kvm_mmu_page *sp;
766
767         sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache, sizeof *sp);
768         sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
769         sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
770         set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
771         list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
772         ASSERT(is_empty_shadow_page(sp->spt));
773         sp->slot_bitmap = 0;
774         sp->multimapped = 0;
775         sp->parent_pte = parent_pte;
776         --vcpu->kvm->arch.n_free_mmu_pages;
777         return sp;
778 }
779
780 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
781                                     struct kvm_mmu_page *sp, u64 *parent_pte)
782 {
783         struct kvm_pte_chain *pte_chain;
784         struct hlist_node *node;
785         int i;
786
787         if (!parent_pte)
788                 return;
789         if (!sp->multimapped) {
790                 u64 *old = sp->parent_pte;
791
792                 if (!old) {
793                         sp->parent_pte = parent_pte;
794                         return;
795                 }
796                 sp->multimapped = 1;
797                 pte_chain = mmu_alloc_pte_chain(vcpu);
798                 INIT_HLIST_HEAD(&sp->parent_ptes);
799                 hlist_add_head(&pte_chain->link, &sp->parent_ptes);
800                 pte_chain->parent_ptes[0] = old;
801         }
802         hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link) {
803                 if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1])
804                         continue;
805                 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i)
806                         if (!pte_chain->parent_ptes[i]) {
807                                 pte_chain->parent_ptes[i] = parent_pte;
808                                 return;
809                         }
810         }
811         pte_chain = mmu_alloc_pte_chain(vcpu);
812         BUG_ON(!pte_chain);
813         hlist_add_head(&pte_chain->link, &sp->parent_ptes);
814         pte_chain->parent_ptes[0] = parent_pte;
815 }
816
817 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
818                                        u64 *parent_pte)
819 {
820         struct kvm_pte_chain *pte_chain;
821         struct hlist_node *node;
822         int i;
823
824         if (!sp->multimapped) {
825                 BUG_ON(sp->parent_pte != parent_pte);
826                 sp->parent_pte = NULL;
827                 return;
828         }
829         hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
830                 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
831                         if (!pte_chain->parent_ptes[i])
832                                 break;
833                         if (pte_chain->parent_ptes[i] != parent_pte)
834                                 continue;
835                         while (i + 1 < NR_PTE_CHAIN_ENTRIES
836                                 && pte_chain->parent_ptes[i + 1]) {
837                                 pte_chain->parent_ptes[i]
838                                         = pte_chain->parent_ptes[i + 1];
839                                 ++i;
840                         }
841                         pte_chain->parent_ptes[i] = NULL;
842                         if (i == 0) {
843                                 hlist_del(&pte_chain->link);
844                                 mmu_free_pte_chain(pte_chain);
845                                 if (hlist_empty(&sp->parent_ptes)) {
846                                         sp->multimapped = 0;
847                                         sp->parent_pte = NULL;
848                                 }
849                         }
850                         return;
851                 }
852         BUG();
853 }
854
855 static void nonpaging_prefetch_page(struct kvm_vcpu *vcpu,
856                                     struct kvm_mmu_page *sp)
857 {
858         int i;
859
860         for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
861                 sp->spt[i] = shadow_trap_nonpresent_pte;
862 }
863
864 static struct kvm_mmu_page *kvm_mmu_lookup_page(struct kvm *kvm, gfn_t gfn)
865 {
866         unsigned index;
867         struct hlist_head *bucket;
868         struct kvm_mmu_page *sp;
869         struct hlist_node *node;
870
871         pgprintk("%s: looking for gfn %lx\n", __func__, gfn);
872         index = kvm_page_table_hashfn(gfn);
873         bucket = &kvm->arch.mmu_page_hash[index];
874         hlist_for_each_entry(sp, node, bucket, hash_link)
875                 if (sp->gfn == gfn && !sp->role.metaphysical
876                     && !sp->role.invalid) {
877                         pgprintk("%s: found role %x\n",
878                                  __func__, sp->role.word);
879                         return sp;
880                 }
881         return NULL;
882 }
883
884 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
885                                              gfn_t gfn,
886                                              gva_t gaddr,
887                                              unsigned level,
888                                              int metaphysical,
889                                              unsigned access,
890                                              u64 *parent_pte)
891 {
892         union kvm_mmu_page_role role;
893         unsigned index;
894         unsigned quadrant;
895         struct hlist_head *bucket;
896         struct kvm_mmu_page *sp;
897         struct hlist_node *node;
898
899         role.word = 0;
900         role.glevels = vcpu->arch.mmu.root_level;
901         role.level = level;
902         role.metaphysical = metaphysical;
903         role.access = access;
904         if (vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
905                 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
906                 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
907                 role.quadrant = quadrant;
908         }
909         pgprintk("%s: looking gfn %lx role %x\n", __func__,
910                  gfn, role.word);
911         index = kvm_page_table_hashfn(gfn);
912         bucket = &vcpu->kvm->arch.mmu_page_hash[index];
913         hlist_for_each_entry(sp, node, bucket, hash_link)
914                 if (sp->gfn == gfn && sp->role.word == role.word) {
915                         mmu_page_add_parent_pte(vcpu, sp, parent_pte);
916                         pgprintk("%s: found\n", __func__);
917                         return sp;
918                 }
919         ++vcpu->kvm->stat.mmu_cache_miss;
920         sp = kvm_mmu_alloc_page(vcpu, parent_pte);
921         if (!sp)
922                 return sp;
923         pgprintk("%s: adding gfn %lx role %x\n", __func__, gfn, role.word);
924         sp->gfn = gfn;
925         sp->role = role;
926         hlist_add_head(&sp->hash_link, bucket);
927         if (!metaphysical)
928                 rmap_write_protect(vcpu->kvm, gfn);
929         if (shadow_trap_nonpresent_pte != shadow_notrap_nonpresent_pte)
930                 vcpu->arch.mmu.prefetch_page(vcpu, sp);
931         else
932                 nonpaging_prefetch_page(vcpu, sp);
933         return sp;
934 }
935
936 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
937                                          struct kvm_mmu_page *sp)
938 {
939         unsigned i;
940         u64 *pt;
941         u64 ent;
942
943         pt = sp->spt;
944
945         if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
946                 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
947                         if (is_shadow_present_pte(pt[i]))
948                                 rmap_remove(kvm, &pt[i]);
949                         pt[i] = shadow_trap_nonpresent_pte;
950                 }
951                 return;
952         }
953
954         for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
955                 ent = pt[i];
956
957                 if (is_shadow_present_pte(ent)) {
958                         if (!is_large_pte(ent)) {
959                                 ent &= PT64_BASE_ADDR_MASK;
960                                 mmu_page_remove_parent_pte(page_header(ent),
961                                                            &pt[i]);
962                         } else {
963                                 --kvm->stat.lpages;
964                                 rmap_remove(kvm, &pt[i]);
965                         }
966                 }
967                 pt[i] = shadow_trap_nonpresent_pte;
968         }
969 }
970
971 static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
972 {
973         mmu_page_remove_parent_pte(sp, parent_pte);
974 }
975
976 static void kvm_mmu_reset_last_pte_updated(struct kvm *kvm)
977 {
978         int i;
979
980         for (i = 0; i < KVM_MAX_VCPUS; ++i)
981                 if (kvm->vcpus[i])
982                         kvm->vcpus[i]->arch.last_pte_updated = NULL;
983 }
984
985 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
986 {
987         u64 *parent_pte;
988
989         while (sp->multimapped || sp->parent_pte) {
990                 if (!sp->multimapped)
991                         parent_pte = sp->parent_pte;
992                 else {
993                         struct kvm_pte_chain *chain;
994
995                         chain = container_of(sp->parent_ptes.first,
996                                              struct kvm_pte_chain, link);
997                         parent_pte = chain->parent_ptes[0];
998                 }
999                 BUG_ON(!parent_pte);
1000                 kvm_mmu_put_page(sp, parent_pte);
1001                 set_shadow_pte(parent_pte, shadow_trap_nonpresent_pte);
1002         }
1003 }
1004
1005 static void kvm_mmu_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1006 {
1007         ++kvm->stat.mmu_shadow_zapped;
1008         kvm_mmu_page_unlink_children(kvm, sp);
1009         kvm_mmu_unlink_parents(kvm, sp);
1010         kvm_flush_remote_tlbs(kvm);
1011         if (!sp->role.invalid && !sp->role.metaphysical)
1012                 unaccount_shadowed(kvm, sp->gfn);
1013         if (!sp->root_count) {
1014                 hlist_del(&sp->hash_link);
1015                 kvm_mmu_free_page(kvm, sp);
1016         } else {
1017                 sp->role.invalid = 1;
1018                 list_move(&sp->link, &kvm->arch.active_mmu_pages);
1019                 kvm_reload_remote_mmus(kvm);
1020         }
1021         kvm_mmu_reset_last_pte_updated(kvm);
1022 }
1023
1024 /*
1025  * Changing the number of mmu pages allocated to the vm
1026  * Note: if kvm_nr_mmu_pages is too small, you will get dead lock
1027  */
1028 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int kvm_nr_mmu_pages)
1029 {
1030         /*
1031          * If we set the number of mmu pages to be smaller be than the
1032          * number of actived pages , we must to free some mmu pages before we
1033          * change the value
1034          */
1035
1036         if ((kvm->arch.n_alloc_mmu_pages - kvm->arch.n_free_mmu_pages) >
1037             kvm_nr_mmu_pages) {
1038                 int n_used_mmu_pages = kvm->arch.n_alloc_mmu_pages
1039                                        - kvm->arch.n_free_mmu_pages;
1040
1041                 while (n_used_mmu_pages > kvm_nr_mmu_pages) {
1042                         struct kvm_mmu_page *page;
1043
1044                         page = container_of(kvm->arch.active_mmu_pages.prev,
1045                                             struct kvm_mmu_page, link);
1046                         kvm_mmu_zap_page(kvm, page);
1047                         n_used_mmu_pages--;
1048                 }
1049                 kvm->arch.n_free_mmu_pages = 0;
1050         }
1051         else
1052                 kvm->arch.n_free_mmu_pages += kvm_nr_mmu_pages
1053                                          - kvm->arch.n_alloc_mmu_pages;
1054
1055         kvm->arch.n_alloc_mmu_pages = kvm_nr_mmu_pages;
1056 }
1057
1058 static int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
1059 {
1060         unsigned index;
1061         struct hlist_head *bucket;
1062         struct kvm_mmu_page *sp;
1063         struct hlist_node *node, *n;
1064         int r;
1065
1066         pgprintk("%s: looking for gfn %lx\n", __func__, gfn);
1067         r = 0;
1068         index = kvm_page_table_hashfn(gfn);
1069         bucket = &kvm->arch.mmu_page_hash[index];
1070         hlist_for_each_entry_safe(sp, node, n, bucket, hash_link)
1071                 if (sp->gfn == gfn && !sp->role.metaphysical) {
1072                         pgprintk("%s: gfn %lx role %x\n", __func__, gfn,
1073                                  sp->role.word);
1074                         kvm_mmu_zap_page(kvm, sp);
1075                         r = 1;
1076                 }
1077         return r;
1078 }
1079
1080 static void mmu_unshadow(struct kvm *kvm, gfn_t gfn)
1081 {
1082         struct kvm_mmu_page *sp;
1083
1084         while ((sp = kvm_mmu_lookup_page(kvm, gfn)) != NULL) {
1085                 pgprintk("%s: zap %lx %x\n", __func__, gfn, sp->role.word);
1086                 kvm_mmu_zap_page(kvm, sp);
1087         }
1088 }
1089
1090 static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
1091 {
1092         int slot = memslot_id(kvm, gfn_to_memslot(kvm, gfn));
1093         struct kvm_mmu_page *sp = page_header(__pa(pte));
1094
1095         __set_bit(slot, &sp->slot_bitmap);
1096 }
1097
1098 struct page *gva_to_page(struct kvm_vcpu *vcpu, gva_t gva)
1099 {
1100         struct page *page;
1101
1102         gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gva);
1103
1104         if (gpa == UNMAPPED_GVA)
1105                 return NULL;
1106
1107         down_read(&current->mm->mmap_sem);
1108         page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1109         up_read(&current->mm->mmap_sem);
1110
1111         return page;
1112 }
1113
1114 static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *shadow_pte,
1115                          unsigned pt_access, unsigned pte_access,
1116                          int user_fault, int write_fault, int dirty,
1117                          int *ptwrite, int largepage, gfn_t gfn,
1118                          pfn_t pfn, bool speculative)
1119 {
1120         u64 spte;
1121         int was_rmapped = 0;
1122         int was_writeble = is_writeble_pte(*shadow_pte);
1123
1124         pgprintk("%s: spte %llx access %x write_fault %d"
1125                  " user_fault %d gfn %lx\n",
1126                  __func__, *shadow_pte, pt_access,
1127                  write_fault, user_fault, gfn);
1128
1129         if (is_rmap_pte(*shadow_pte)) {
1130                 /*
1131                  * If we overwrite a PTE page pointer with a 2MB PMD, unlink
1132                  * the parent of the now unreachable PTE.
1133                  */
1134                 if (largepage && !is_large_pte(*shadow_pte)) {
1135                         struct kvm_mmu_page *child;
1136                         u64 pte = *shadow_pte;
1137
1138                         child = page_header(pte & PT64_BASE_ADDR_MASK);
1139                         mmu_page_remove_parent_pte(child, shadow_pte);
1140                 } else if (pfn != spte_to_pfn(*shadow_pte)) {
1141                         pgprintk("hfn old %lx new %lx\n",
1142                                  spte_to_pfn(*shadow_pte), pfn);
1143                         rmap_remove(vcpu->kvm, shadow_pte);
1144                 } else {
1145                         if (largepage)
1146                                 was_rmapped = is_large_pte(*shadow_pte);
1147                         else
1148                                 was_rmapped = 1;
1149                 }
1150         }
1151
1152         /*
1153          * We don't set the accessed bit, since we sometimes want to see
1154          * whether the guest actually used the pte (in order to detect
1155          * demand paging).
1156          */
1157         spte = shadow_base_present_pte | shadow_dirty_mask;
1158         if (!speculative)
1159                 pte_access |= PT_ACCESSED_MASK;
1160         if (!dirty)
1161                 pte_access &= ~ACC_WRITE_MASK;
1162         if (pte_access & ACC_EXEC_MASK)
1163                 spte |= shadow_x_mask;
1164         else
1165                 spte |= shadow_nx_mask;
1166         if (pte_access & ACC_USER_MASK)
1167                 spte |= shadow_user_mask;
1168         if (largepage)
1169                 spte |= PT_PAGE_SIZE_MASK;
1170
1171         spte |= (u64)pfn << PAGE_SHIFT;
1172
1173         if ((pte_access & ACC_WRITE_MASK)
1174             || (write_fault && !is_write_protection(vcpu) && !user_fault)) {
1175                 struct kvm_mmu_page *shadow;
1176
1177                 spte |= PT_WRITABLE_MASK;
1178
1179                 shadow = kvm_mmu_lookup_page(vcpu->kvm, gfn);
1180                 if (shadow ||
1181                    (largepage && has_wrprotected_page(vcpu->kvm, gfn))) {
1182                         pgprintk("%s: found shadow page for %lx, marking ro\n",
1183                                  __func__, gfn);
1184                         pte_access &= ~ACC_WRITE_MASK;
1185                         if (is_writeble_pte(spte)) {
1186                                 spte &= ~PT_WRITABLE_MASK;
1187                                 kvm_x86_ops->tlb_flush(vcpu);
1188                         }
1189                         if (write_fault)
1190                                 *ptwrite = 1;
1191                 }
1192         }
1193
1194         if (pte_access & ACC_WRITE_MASK)
1195                 mark_page_dirty(vcpu->kvm, gfn);
1196
1197         pgprintk("%s: setting spte %llx\n", __func__, spte);
1198         pgprintk("instantiating %s PTE (%s) at %ld (%llx) addr %p\n",
1199                  (spte&PT_PAGE_SIZE_MASK)? "2MB" : "4kB",
1200                  (spte&PT_WRITABLE_MASK)?"RW":"R", gfn, spte, shadow_pte);
1201         set_shadow_pte(shadow_pte, spte);
1202         if (!was_rmapped && (spte & PT_PAGE_SIZE_MASK)
1203             && (spte & PT_PRESENT_MASK))
1204                 ++vcpu->kvm->stat.lpages;
1205
1206         page_header_update_slot(vcpu->kvm, shadow_pte, gfn);
1207         if (!was_rmapped) {
1208                 rmap_add(vcpu, shadow_pte, gfn, largepage);
1209                 if (!is_rmap_pte(*shadow_pte))
1210                         kvm_release_pfn_clean(pfn);
1211         } else {
1212                 if (was_writeble)
1213                         kvm_release_pfn_dirty(pfn);
1214                 else
1215                         kvm_release_pfn_clean(pfn);
1216         }
1217         if (speculative) {
1218                 vcpu->arch.last_pte_updated = shadow_pte;
1219                 vcpu->arch.last_pte_gfn = gfn;
1220         }
1221 }
1222
1223 static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
1224 {
1225 }
1226
1227 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
1228                            int largepage, gfn_t gfn, pfn_t pfn,
1229                            int level)
1230 {
1231         hpa_t table_addr = vcpu->arch.mmu.root_hpa;
1232         int pt_write = 0;
1233
1234         for (; ; level--) {
1235                 u32 index = PT64_INDEX(v, level);
1236                 u64 *table;
1237
1238                 ASSERT(VALID_PAGE(table_addr));
1239                 table = __va(table_addr);
1240
1241                 if (level == 1) {
1242                         mmu_set_spte(vcpu, &table[index], ACC_ALL, ACC_ALL,
1243                                      0, write, 1, &pt_write, 0, gfn, pfn, false);
1244                         return pt_write;
1245                 }
1246
1247                 if (largepage && level == 2) {
1248                         mmu_set_spte(vcpu, &table[index], ACC_ALL, ACC_ALL,
1249                                      0, write, 1, &pt_write, 1, gfn, pfn, false);
1250                         return pt_write;
1251                 }
1252
1253                 if (table[index] == shadow_trap_nonpresent_pte) {
1254                         struct kvm_mmu_page *new_table;
1255                         gfn_t pseudo_gfn;
1256
1257                         pseudo_gfn = (v & PT64_DIR_BASE_ADDR_MASK)
1258                                 >> PAGE_SHIFT;
1259                         new_table = kvm_mmu_get_page(vcpu, pseudo_gfn,
1260                                                      v, level - 1,
1261                                                      1, ACC_ALL, &table[index]);
1262                         if (!new_table) {
1263                                 pgprintk("nonpaging_map: ENOMEM\n");
1264                                 kvm_release_pfn_clean(pfn);
1265                                 return -ENOMEM;
1266                         }
1267
1268                         set_shadow_pte(&table[index],
1269                                        __pa(new_table->spt)
1270                                        | PT_PRESENT_MASK | PT_WRITABLE_MASK
1271                                        | shadow_user_mask | shadow_x_mask);
1272                 }
1273                 table_addr = table[index] & PT64_BASE_ADDR_MASK;
1274         }
1275 }
1276
1277 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn)
1278 {
1279         int r;
1280         int largepage = 0;
1281         pfn_t pfn;
1282         unsigned long mmu_seq;
1283
1284         down_read(&current->mm->mmap_sem);
1285         if (is_largepage_backed(vcpu, gfn & ~(KVM_PAGES_PER_HPAGE-1))) {
1286                 gfn &= ~(KVM_PAGES_PER_HPAGE-1);
1287                 largepage = 1;
1288         }
1289
1290         mmu_seq = vcpu->kvm->mmu_notifier_seq;
1291         /* implicit mb(), we'll read before PT lock is unlocked */
1292         pfn = gfn_to_pfn(vcpu->kvm, gfn);
1293         up_read(&current->mm->mmap_sem);
1294
1295         /* mmio */
1296         if (is_error_pfn(pfn)) {
1297                 kvm_release_pfn_clean(pfn);
1298                 return 1;
1299         }
1300
1301         spin_lock(&vcpu->kvm->mmu_lock);
1302         if (mmu_notifier_retry(vcpu, mmu_seq))
1303                 goto out_unlock;
1304         kvm_mmu_free_some_pages(vcpu);
1305         r = __direct_map(vcpu, v, write, largepage, gfn, pfn,
1306                          PT32E_ROOT_LEVEL);
1307         spin_unlock(&vcpu->kvm->mmu_lock);
1308
1309
1310         return r;
1311
1312 out_unlock:
1313         spin_unlock(&vcpu->kvm->mmu_lock);
1314         kvm_release_pfn_clean(pfn);
1315         return 0;
1316 }
1317
1318
1319 static void mmu_free_roots(struct kvm_vcpu *vcpu)
1320 {
1321         int i;
1322         struct kvm_mmu_page *sp;
1323
1324         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
1325                 return;
1326         spin_lock(&vcpu->kvm->mmu_lock);
1327         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
1328                 hpa_t root = vcpu->arch.mmu.root_hpa;
1329
1330                 sp = page_header(root);
1331                 --sp->root_count;
1332                 if (!sp->root_count && sp->role.invalid)
1333                         kvm_mmu_zap_page(vcpu->kvm, sp);
1334                 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
1335                 spin_unlock(&vcpu->kvm->mmu_lock);
1336                 return;
1337         }
1338         for (i = 0; i < 4; ++i) {
1339                 hpa_t root = vcpu->arch.mmu.pae_root[i];
1340
1341                 if (root) {
1342                         root &= PT64_BASE_ADDR_MASK;
1343                         sp = page_header(root);
1344                         --sp->root_count;
1345                         if (!sp->root_count && sp->role.invalid)
1346                                 kvm_mmu_zap_page(vcpu->kvm, sp);
1347                 }
1348                 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
1349         }
1350         spin_unlock(&vcpu->kvm->mmu_lock);
1351         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
1352 }
1353
1354 static void mmu_alloc_roots(struct kvm_vcpu *vcpu)
1355 {
1356         int i;
1357         gfn_t root_gfn;
1358         struct kvm_mmu_page *sp;
1359         int metaphysical = 0;
1360
1361         root_gfn = vcpu->arch.cr3 >> PAGE_SHIFT;
1362
1363         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
1364                 hpa_t root = vcpu->arch.mmu.root_hpa;
1365
1366                 ASSERT(!VALID_PAGE(root));
1367                 if (tdp_enabled)
1368                         metaphysical = 1;
1369                 sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
1370                                       PT64_ROOT_LEVEL, metaphysical,
1371                                       ACC_ALL, NULL);
1372                 root = __pa(sp->spt);
1373                 ++sp->root_count;
1374                 vcpu->arch.mmu.root_hpa = root;
1375                 return;
1376         }
1377         metaphysical = !is_paging(vcpu);
1378         if (tdp_enabled)
1379                 metaphysical = 1;
1380         for (i = 0; i < 4; ++i) {
1381                 hpa_t root = vcpu->arch.mmu.pae_root[i];
1382
1383                 ASSERT(!VALID_PAGE(root));
1384                 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
1385                         if (!is_present_pte(vcpu->arch.pdptrs[i])) {
1386                                 vcpu->arch.mmu.pae_root[i] = 0;
1387                                 continue;
1388                         }
1389                         root_gfn = vcpu->arch.pdptrs[i] >> PAGE_SHIFT;
1390                 } else if (vcpu->arch.mmu.root_level == 0)
1391                         root_gfn = 0;
1392                 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
1393                                       PT32_ROOT_LEVEL, metaphysical,
1394                                       ACC_ALL, NULL);
1395                 root = __pa(sp->spt);
1396                 ++sp->root_count;
1397                 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
1398         }
1399         vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
1400 }
1401
1402 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr)
1403 {
1404         return vaddr;
1405 }
1406
1407 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
1408                                 u32 error_code)
1409 {
1410         gfn_t gfn;
1411         int r;
1412
1413         pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
1414         r = mmu_topup_memory_caches(vcpu);
1415         if (r)
1416                 return r;
1417
1418         ASSERT(vcpu);
1419         ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
1420
1421         gfn = gva >> PAGE_SHIFT;
1422
1423         return nonpaging_map(vcpu, gva & PAGE_MASK,
1424                              error_code & PFERR_WRITE_MASK, gfn);
1425 }
1426
1427 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa,
1428                                 u32 error_code)
1429 {
1430         pfn_t pfn;
1431         int r;
1432         int largepage = 0;
1433         gfn_t gfn = gpa >> PAGE_SHIFT;
1434         unsigned long mmu_seq;
1435
1436         ASSERT(vcpu);
1437         ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
1438
1439         r = mmu_topup_memory_caches(vcpu);
1440         if (r)
1441                 return r;
1442
1443         down_read(&current->mm->mmap_sem);
1444         if (is_largepage_backed(vcpu, gfn & ~(KVM_PAGES_PER_HPAGE-1))) {
1445                 gfn &= ~(KVM_PAGES_PER_HPAGE-1);
1446                 largepage = 1;
1447         }
1448         mmu_seq = vcpu->kvm->mmu_notifier_seq;
1449         /* implicit mb(), we'll read before PT lock is unlocked */
1450         pfn = gfn_to_pfn(vcpu->kvm, gfn);
1451         up_read(&current->mm->mmap_sem);
1452         if (is_error_pfn(pfn)) {
1453                 kvm_release_pfn_clean(pfn);
1454                 return 1;
1455         }
1456         spin_lock(&vcpu->kvm->mmu_lock);
1457         if (mmu_notifier_retry(vcpu, mmu_seq))
1458                 goto out_unlock;
1459         kvm_mmu_free_some_pages(vcpu);
1460         r = __direct_map(vcpu, gpa, error_code & PFERR_WRITE_MASK,
1461                          largepage, gfn, pfn, kvm_x86_ops->get_tdp_level());
1462         spin_unlock(&vcpu->kvm->mmu_lock);
1463
1464         return r;
1465
1466 out_unlock:
1467         spin_unlock(&vcpu->kvm->mmu_lock);
1468         kvm_release_pfn_clean(pfn);
1469         return 0;
1470 }
1471
1472 static void nonpaging_free(struct kvm_vcpu *vcpu)
1473 {
1474         mmu_free_roots(vcpu);
1475 }
1476
1477 static int nonpaging_init_context(struct kvm_vcpu *vcpu)
1478 {
1479         struct kvm_mmu *context = &vcpu->arch.mmu;
1480
1481         context->new_cr3 = nonpaging_new_cr3;
1482         context->page_fault = nonpaging_page_fault;
1483         context->gva_to_gpa = nonpaging_gva_to_gpa;
1484         context->free = nonpaging_free;
1485         context->prefetch_page = nonpaging_prefetch_page;
1486         context->root_level = 0;
1487         context->shadow_root_level = PT32E_ROOT_LEVEL;
1488         context->root_hpa = INVALID_PAGE;
1489         return 0;
1490 }
1491
1492 void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
1493 {
1494         ++vcpu->stat.tlb_flush;
1495         kvm_x86_ops->tlb_flush(vcpu);
1496 }
1497
1498 static void paging_new_cr3(struct kvm_vcpu *vcpu)
1499 {
1500         pgprintk("%s: cr3 %lx\n", __func__, vcpu->arch.cr3);
1501         mmu_free_roots(vcpu);
1502 }
1503
1504 static void inject_page_fault(struct kvm_vcpu *vcpu,
1505                               u64 addr,
1506                               u32 err_code)
1507 {
1508         kvm_inject_page_fault(vcpu, addr, err_code);
1509 }
1510
1511 static void paging_free(struct kvm_vcpu *vcpu)
1512 {
1513         nonpaging_free(vcpu);
1514 }
1515
1516 #define PTTYPE 64
1517 #include "paging_tmpl.h"
1518 #undef PTTYPE
1519
1520 #define PTTYPE 32
1521 #include "paging_tmpl.h"
1522 #undef PTTYPE
1523
1524 static int paging64_init_context_common(struct kvm_vcpu *vcpu, int level)
1525 {
1526         struct kvm_mmu *context = &vcpu->arch.mmu;
1527
1528         ASSERT(is_pae(vcpu));
1529         context->new_cr3 = paging_new_cr3;
1530         context->page_fault = paging64_page_fault;
1531         context->gva_to_gpa = paging64_gva_to_gpa;
1532         context->prefetch_page = paging64_prefetch_page;
1533         context->free = paging_free;
1534         context->root_level = level;
1535         context->shadow_root_level = level;
1536         context->root_hpa = INVALID_PAGE;
1537         return 0;
1538 }
1539
1540 static int paging64_init_context(struct kvm_vcpu *vcpu)
1541 {
1542         return paging64_init_context_common(vcpu, PT64_ROOT_LEVEL);
1543 }
1544
1545 static int paging32_init_context(struct kvm_vcpu *vcpu)
1546 {
1547         struct kvm_mmu *context = &vcpu->arch.mmu;
1548
1549         context->new_cr3 = paging_new_cr3;
1550         context->page_fault = paging32_page_fault;
1551         context->gva_to_gpa = paging32_gva_to_gpa;
1552         context->free = paging_free;
1553         context->prefetch_page = paging32_prefetch_page;
1554         context->root_level = PT32_ROOT_LEVEL;
1555         context->shadow_root_level = PT32E_ROOT_LEVEL;
1556         context->root_hpa = INVALID_PAGE;
1557         return 0;
1558 }
1559
1560 static int paging32E_init_context(struct kvm_vcpu *vcpu)
1561 {
1562         return paging64_init_context_common(vcpu, PT32E_ROOT_LEVEL);
1563 }
1564
1565 static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
1566 {
1567         struct kvm_mmu *context = &vcpu->arch.mmu;
1568
1569         context->new_cr3 = nonpaging_new_cr3;
1570         context->page_fault = tdp_page_fault;
1571         context->free = nonpaging_free;
1572         context->prefetch_page = nonpaging_prefetch_page;
1573         context->shadow_root_level = kvm_x86_ops->get_tdp_level();
1574         context->root_hpa = INVALID_PAGE;
1575
1576         if (!is_paging(vcpu)) {
1577                 context->gva_to_gpa = nonpaging_gva_to_gpa;
1578                 context->root_level = 0;
1579         } else if (is_long_mode(vcpu)) {
1580                 context->gva_to_gpa = paging64_gva_to_gpa;
1581                 context->root_level = PT64_ROOT_LEVEL;
1582         } else if (is_pae(vcpu)) {
1583                 context->gva_to_gpa = paging64_gva_to_gpa;
1584                 context->root_level = PT32E_ROOT_LEVEL;
1585         } else {
1586                 context->gva_to_gpa = paging32_gva_to_gpa;
1587                 context->root_level = PT32_ROOT_LEVEL;
1588         }
1589
1590         return 0;
1591 }
1592
1593 static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
1594 {
1595         ASSERT(vcpu);
1596         ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
1597
1598         if (!is_paging(vcpu))
1599                 return nonpaging_init_context(vcpu);
1600         else if (is_long_mode(vcpu))
1601                 return paging64_init_context(vcpu);
1602         else if (is_pae(vcpu))
1603                 return paging32E_init_context(vcpu);
1604         else
1605                 return paging32_init_context(vcpu);
1606 }
1607
1608 static int init_kvm_mmu(struct kvm_vcpu *vcpu)
1609 {
1610         vcpu->arch.update_pte.pfn = bad_pfn;
1611
1612         if (tdp_enabled)
1613                 return init_kvm_tdp_mmu(vcpu);
1614         else
1615                 return init_kvm_softmmu(vcpu);
1616 }
1617
1618 static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
1619 {
1620         ASSERT(vcpu);
1621         if (VALID_PAGE(vcpu->arch.mmu.root_hpa)) {
1622                 vcpu->arch.mmu.free(vcpu);
1623                 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
1624         }
1625 }
1626
1627 int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
1628 {
1629         destroy_kvm_mmu(vcpu);
1630         return init_kvm_mmu(vcpu);
1631 }
1632 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
1633
1634 int kvm_mmu_load(struct kvm_vcpu *vcpu)
1635 {
1636         int r;
1637
1638         r = mmu_topup_memory_caches(vcpu);
1639         if (r)
1640                 goto out;
1641         spin_lock(&vcpu->kvm->mmu_lock);
1642         kvm_mmu_free_some_pages(vcpu);
1643         mmu_alloc_roots(vcpu);
1644         spin_unlock(&vcpu->kvm->mmu_lock);
1645         kvm_x86_ops->set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
1646         kvm_mmu_flush_tlb(vcpu);
1647 out:
1648         return r;
1649 }
1650 EXPORT_SYMBOL_GPL(kvm_mmu_load);
1651
1652 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
1653 {
1654         mmu_free_roots(vcpu);
1655 }
1656
1657 static void mmu_pte_write_zap_pte(struct kvm_vcpu *vcpu,
1658                                   struct kvm_mmu_page *sp,
1659                                   u64 *spte)
1660 {
1661         u64 pte;
1662         struct kvm_mmu_page *child;
1663
1664         pte = *spte;
1665         if (is_shadow_present_pte(pte)) {
1666                 if (sp->role.level == PT_PAGE_TABLE_LEVEL ||
1667                     is_large_pte(pte))
1668                         rmap_remove(vcpu->kvm, spte);
1669                 else {
1670                         child = page_header(pte & PT64_BASE_ADDR_MASK);
1671                         mmu_page_remove_parent_pte(child, spte);
1672                 }
1673         }
1674         set_shadow_pte(spte, shadow_trap_nonpresent_pte);
1675         if (is_large_pte(pte))
1676                 --vcpu->kvm->stat.lpages;
1677 }
1678
1679 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
1680                                   struct kvm_mmu_page *sp,
1681                                   u64 *spte,
1682                                   const void *new)
1683 {
1684         if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
1685                 if (!vcpu->arch.update_pte.largepage ||
1686                     sp->role.glevels == PT32_ROOT_LEVEL) {
1687                         ++vcpu->kvm->stat.mmu_pde_zapped;
1688                         return;
1689                 }
1690         }
1691
1692         ++vcpu->kvm->stat.mmu_pte_updated;
1693         if (sp->role.glevels == PT32_ROOT_LEVEL)
1694                 paging32_update_pte(vcpu, sp, spte, new);
1695         else
1696                 paging64_update_pte(vcpu, sp, spte, new);
1697 }
1698
1699 static bool need_remote_flush(u64 old, u64 new)
1700 {
1701         if (!is_shadow_present_pte(old))
1702                 return false;
1703         if (!is_shadow_present_pte(new))
1704                 return true;
1705         if ((old ^ new) & PT64_BASE_ADDR_MASK)
1706                 return true;
1707         old ^= PT64_NX_MASK;
1708         new ^= PT64_NX_MASK;
1709         return (old & ~new & PT64_PERM_MASK) != 0;
1710 }
1711
1712 static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, u64 old, u64 new)
1713 {
1714         if (need_remote_flush(old, new))
1715                 kvm_flush_remote_tlbs(vcpu->kvm);
1716         else
1717                 kvm_mmu_flush_tlb(vcpu);
1718 }
1719
1720 static bool last_updated_pte_accessed(struct kvm_vcpu *vcpu)
1721 {
1722         u64 *spte = vcpu->arch.last_pte_updated;
1723
1724         return !!(spte && (*spte & shadow_accessed_mask));
1725 }
1726
1727 static void mmu_guess_page_from_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
1728                                           const u8 *new, int bytes)
1729 {
1730         gfn_t gfn;
1731         int r;
1732         u64 gpte = 0;
1733         pfn_t pfn;
1734
1735         vcpu->arch.update_pte.largepage = 0;
1736
1737         if (bytes != 4 && bytes != 8)
1738                 return;
1739
1740         /*
1741          * Assume that the pte write on a page table of the same type
1742          * as the current vcpu paging mode.  This is nearly always true
1743          * (might be false while changing modes).  Note it is verified later
1744          * by update_pte().
1745          */
1746         if (is_pae(vcpu)) {
1747                 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
1748                 if ((bytes == 4) && (gpa % 4 == 0)) {
1749                         r = kvm_read_guest(vcpu->kvm, gpa & ~(u64)7, &gpte, 8);
1750                         if (r)
1751                                 return;
1752                         memcpy((void *)&gpte + (gpa % 8), new, 4);
1753                 } else if ((bytes == 8) && (gpa % 8 == 0)) {
1754                         memcpy((void *)&gpte, new, 8);
1755                 }
1756         } else {
1757                 if ((bytes == 4) && (gpa % 4 == 0))
1758                         memcpy((void *)&gpte, new, 4);
1759         }
1760         if (!is_present_pte(gpte))
1761                 return;
1762         gfn = (gpte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
1763
1764         down_read(&current->mm->mmap_sem);
1765         if (is_large_pte(gpte) && is_largepage_backed(vcpu, gfn)) {
1766                 gfn &= ~(KVM_PAGES_PER_HPAGE-1);
1767                 vcpu->arch.update_pte.largepage = 1;
1768         }
1769         vcpu->arch.update_pte.mmu_seq = vcpu->kvm->mmu_notifier_seq;
1770         /* implicit mb(), we'll read before PT lock is unlocked */
1771         pfn = gfn_to_pfn(vcpu->kvm, gfn);
1772         up_read(&current->mm->mmap_sem);
1773
1774         if (is_error_pfn(pfn)) {
1775                 kvm_release_pfn_clean(pfn);
1776                 return;
1777         }
1778         vcpu->arch.update_pte.gfn = gfn;
1779         vcpu->arch.update_pte.pfn = pfn;
1780 }
1781
1782 static void kvm_mmu_access_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1783 {
1784         u64 *spte = vcpu->arch.last_pte_updated;
1785
1786         if (spte
1787             && vcpu->arch.last_pte_gfn == gfn
1788             && shadow_accessed_mask
1789             && !(*spte & shadow_accessed_mask)
1790             && is_shadow_present_pte(*spte))
1791                 set_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
1792 }
1793
1794 void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
1795                        const u8 *new, int bytes)
1796 {
1797         gfn_t gfn = gpa >> PAGE_SHIFT;
1798         struct kvm_mmu_page *sp;
1799         struct hlist_node *node, *n;
1800         struct hlist_head *bucket;
1801         unsigned index;
1802         u64 entry, gentry;
1803         u64 *spte;
1804         unsigned offset = offset_in_page(gpa);
1805         unsigned pte_size;
1806         unsigned page_offset;
1807         unsigned misaligned;
1808         unsigned quadrant;
1809         int level;
1810         int flooded = 0;
1811         int npte;
1812         int r;
1813
1814         pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
1815         mmu_guess_page_from_pte_write(vcpu, gpa, new, bytes);
1816         spin_lock(&vcpu->kvm->mmu_lock);
1817         kvm_mmu_access_page(vcpu, gfn);
1818         kvm_mmu_free_some_pages(vcpu);
1819         ++vcpu->kvm->stat.mmu_pte_write;
1820         kvm_mmu_audit(vcpu, "pre pte write");
1821         if (gfn == vcpu->arch.last_pt_write_gfn
1822             && !last_updated_pte_accessed(vcpu)) {
1823                 ++vcpu->arch.last_pt_write_count;
1824                 if (vcpu->arch.last_pt_write_count >= 3)
1825                         flooded = 1;
1826         } else {
1827                 vcpu->arch.last_pt_write_gfn = gfn;
1828                 vcpu->arch.last_pt_write_count = 1;
1829                 vcpu->arch.last_pte_updated = NULL;
1830         }
1831         index = kvm_page_table_hashfn(gfn);
1832         bucket = &vcpu->kvm->arch.mmu_page_hash[index];
1833         hlist_for_each_entry_safe(sp, node, n, bucket, hash_link) {
1834                 if (sp->gfn != gfn || sp->role.metaphysical || sp->role.invalid)
1835                         continue;
1836                 pte_size = sp->role.glevels == PT32_ROOT_LEVEL ? 4 : 8;
1837                 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
1838                 misaligned |= bytes < 4;
1839                 if (misaligned || flooded) {
1840                         /*
1841                          * Misaligned accesses are too much trouble to fix
1842                          * up; also, they usually indicate a page is not used
1843                          * as a page table.
1844                          *
1845                          * If we're seeing too many writes to a page,
1846                          * it may no longer be a page table, or we may be
1847                          * forking, in which case it is better to unmap the
1848                          * page.
1849                          */
1850                         pgprintk("misaligned: gpa %llx bytes %d role %x\n",
1851                                  gpa, bytes, sp->role.word);
1852                         kvm_mmu_zap_page(vcpu->kvm, sp);
1853                         ++vcpu->kvm->stat.mmu_flooded;
1854                         continue;
1855                 }
1856                 page_offset = offset;
1857                 level = sp->role.level;
1858                 npte = 1;
1859                 if (sp->role.glevels == PT32_ROOT_LEVEL) {
1860                         page_offset <<= 1;      /* 32->64 */
1861                         /*
1862                          * A 32-bit pde maps 4MB while the shadow pdes map
1863                          * only 2MB.  So we need to double the offset again
1864                          * and zap two pdes instead of one.
1865                          */
1866                         if (level == PT32_ROOT_LEVEL) {
1867                                 page_offset &= ~7; /* kill rounding error */
1868                                 page_offset <<= 1;
1869                                 npte = 2;
1870                         }
1871                         quadrant = page_offset >> PAGE_SHIFT;
1872                         page_offset &= ~PAGE_MASK;
1873                         if (quadrant != sp->role.quadrant)
1874                                 continue;
1875                 }
1876                 spte = &sp->spt[page_offset / sizeof(*spte)];
1877                 if ((gpa & (pte_size - 1)) || (bytes < pte_size)) {
1878                         gentry = 0;
1879                         r = kvm_read_guest_atomic(vcpu->kvm,
1880                                                   gpa & ~(u64)(pte_size - 1),
1881                                                   &gentry, pte_size);
1882                         new = (const void *)&gentry;
1883                         if (r < 0)
1884                                 new = NULL;
1885                 }
1886                 while (npte--) {
1887                         entry = *spte;
1888                         mmu_pte_write_zap_pte(vcpu, sp, spte);
1889                         if (new)
1890                                 mmu_pte_write_new_pte(vcpu, sp, spte, new);
1891                         mmu_pte_write_flush_tlb(vcpu, entry, *spte);
1892                         ++spte;
1893                 }
1894         }
1895         kvm_mmu_audit(vcpu, "post pte write");
1896         spin_unlock(&vcpu->kvm->mmu_lock);
1897         if (!is_error_pfn(vcpu->arch.update_pte.pfn)) {
1898                 kvm_release_pfn_clean(vcpu->arch.update_pte.pfn);
1899                 vcpu->arch.update_pte.pfn = bad_pfn;
1900         }
1901 }
1902
1903 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
1904 {
1905         gpa_t gpa;
1906         int r;
1907
1908         gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gva);
1909
1910         spin_lock(&vcpu->kvm->mmu_lock);
1911         r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1912         spin_unlock(&vcpu->kvm->mmu_lock);
1913         return r;
1914 }
1915 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
1916
1917 void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
1918 {
1919         while (vcpu->kvm->arch.n_free_mmu_pages < KVM_REFILL_PAGES) {
1920                 struct kvm_mmu_page *sp;
1921
1922                 sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
1923                                   struct kvm_mmu_page, link);
1924                 kvm_mmu_zap_page(vcpu->kvm, sp);
1925                 ++vcpu->kvm->stat.mmu_recycled;
1926         }
1927 }
1928
1929 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code)
1930 {
1931         int r;
1932         enum emulation_result er;
1933
1934         r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code);
1935         if (r < 0)
1936                 goto out;
1937
1938         if (!r) {
1939                 r = 1;
1940                 goto out;
1941         }
1942
1943         r = mmu_topup_memory_caches(vcpu);
1944         if (r)
1945                 goto out;
1946
1947         er = emulate_instruction(vcpu, vcpu->run, cr2, error_code, 0);
1948
1949         switch (er) {
1950         case EMULATE_DONE:
1951                 return 1;
1952         case EMULATE_DO_MMIO:
1953                 ++vcpu->stat.mmio_exits;
1954                 return 0;
1955         case EMULATE_FAIL:
1956                 kvm_report_emulation_failure(vcpu, "pagetable");
1957                 return 1;
1958         default:
1959                 BUG();
1960         }
1961 out:
1962         return r;
1963 }
1964 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
1965
1966 void kvm_enable_tdp(void)
1967 {
1968         tdp_enabled = true;
1969 }
1970 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
1971
1972 void kvm_disable_tdp(void)
1973 {
1974         tdp_enabled = false;
1975 }
1976 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
1977
1978 static void free_mmu_pages(struct kvm_vcpu *vcpu)
1979 {
1980         struct kvm_mmu_page *sp;
1981
1982         while (!list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
1983                 sp = container_of(vcpu->kvm->arch.active_mmu_pages.next,
1984                                   struct kvm_mmu_page, link);
1985                 kvm_mmu_zap_page(vcpu->kvm, sp);
1986                 cond_resched();
1987         }
1988         free_page((unsigned long)vcpu->arch.mmu.pae_root);
1989 }
1990
1991 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
1992 {
1993         struct page *page;
1994         int i;
1995
1996         ASSERT(vcpu);
1997
1998         if (vcpu->kvm->arch.n_requested_mmu_pages)
1999                 vcpu->kvm->arch.n_free_mmu_pages =
2000                                         vcpu->kvm->arch.n_requested_mmu_pages;
2001         else
2002                 vcpu->kvm->arch.n_free_mmu_pages =
2003                                         vcpu->kvm->arch.n_alloc_mmu_pages;
2004         /*
2005          * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
2006          * Therefore we need to allocate shadow page tables in the first
2007          * 4GB of memory, which happens to fit the DMA32 zone.
2008          */
2009         page = alloc_page(GFP_KERNEL | __GFP_DMA32);
2010         if (!page)
2011                 goto error_1;
2012         vcpu->arch.mmu.pae_root = page_address(page);
2013         for (i = 0; i < 4; ++i)
2014                 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
2015
2016         return 0;
2017
2018 error_1:
2019         free_mmu_pages(vcpu);
2020         return -ENOMEM;
2021 }
2022
2023 int kvm_mmu_create(struct kvm_vcpu *vcpu)
2024 {
2025         ASSERT(vcpu);
2026         ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
2027
2028         return alloc_mmu_pages(vcpu);
2029 }
2030
2031 int kvm_mmu_setup(struct kvm_vcpu *vcpu)
2032 {
2033         ASSERT(vcpu);
2034         ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
2035
2036         return init_kvm_mmu(vcpu);
2037 }
2038
2039 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
2040 {
2041         ASSERT(vcpu);
2042
2043         destroy_kvm_mmu(vcpu);
2044         free_mmu_pages(vcpu);
2045         mmu_free_memory_caches(vcpu);
2046 }
2047
2048 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
2049 {
2050         struct kvm_mmu_page *sp;
2051
2052         list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
2053                 int i;
2054                 u64 *pt;
2055
2056                 if (!test_bit(slot, &sp->slot_bitmap))
2057                         continue;
2058
2059                 pt = sp->spt;
2060                 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2061                         /* avoid RMW */
2062                         if (pt[i] & PT_WRITABLE_MASK)
2063                                 pt[i] &= ~PT_WRITABLE_MASK;
2064         }
2065 }
2066
2067 void kvm_mmu_zap_all(struct kvm *kvm)
2068 {
2069         struct kvm_mmu_page *sp, *node;
2070
2071         spin_lock(&kvm->mmu_lock);
2072         list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
2073                 kvm_mmu_zap_page(kvm, sp);
2074         spin_unlock(&kvm->mmu_lock);
2075
2076         kvm_flush_remote_tlbs(kvm);
2077 }
2078
2079 static void kvm_mmu_remove_one_alloc_mmu_page(struct kvm *kvm)
2080 {
2081         struct kvm_mmu_page *page;
2082
2083         page = container_of(kvm->arch.active_mmu_pages.prev,
2084                             struct kvm_mmu_page, link);
2085         kvm_mmu_zap_page(kvm, page);
2086 }
2087
2088 static int mmu_shrink(int nr_to_scan, gfp_t gfp_mask)
2089 {
2090         struct kvm *kvm;
2091         struct kvm *kvm_freed = NULL;
2092         int cache_count = 0;
2093
2094         spin_lock(&kvm_lock);
2095
2096         list_for_each_entry(kvm, &vm_list, vm_list) {
2097                 int npages;
2098
2099                 if (!down_read_trylock(&kvm->slots_lock))
2100                         continue;
2101                 spin_lock(&kvm->mmu_lock);
2102                 npages = kvm->arch.n_alloc_mmu_pages -
2103                          kvm->arch.n_free_mmu_pages;
2104                 cache_count += npages;
2105                 if (!kvm_freed && nr_to_scan > 0 && npages > 0) {
2106                         kvm_mmu_remove_one_alloc_mmu_page(kvm);
2107                         cache_count--;
2108                         kvm_freed = kvm;
2109                 }
2110                 nr_to_scan--;
2111
2112                 spin_unlock(&kvm->mmu_lock);
2113                 up_read(&kvm->slots_lock);
2114         }
2115         if (kvm_freed)
2116                 list_move_tail(&kvm_freed->vm_list, &vm_list);
2117
2118         spin_unlock(&kvm_lock);
2119
2120         return cache_count;
2121 }
2122
2123 static struct shrinker mmu_shrinker = {
2124         .shrink = mmu_shrink,
2125         .seeks = DEFAULT_SEEKS * 10,
2126 };
2127
2128 static void mmu_destroy_caches(void)
2129 {
2130         if (pte_chain_cache)
2131                 kmem_cache_destroy(pte_chain_cache);
2132         if (rmap_desc_cache)
2133                 kmem_cache_destroy(rmap_desc_cache);
2134         if (mmu_page_header_cache)
2135                 kmem_cache_destroy(mmu_page_header_cache);
2136 }
2137
2138 void kvm_mmu_module_exit(void)
2139 {
2140         mmu_destroy_caches();
2141         unregister_shrinker(&mmu_shrinker);
2142 }
2143
2144 int kvm_mmu_module_init(void)
2145 {
2146         pte_chain_cache = kmem_cache_create("kvm_pte_chain",
2147                                             sizeof(struct kvm_pte_chain),
2148                                             0, 0, NULL);
2149         if (!pte_chain_cache)
2150                 goto nomem;
2151         rmap_desc_cache = kmem_cache_create("kvm_rmap_desc",
2152                                             sizeof(struct kvm_rmap_desc),
2153                                             0, 0, NULL);
2154         if (!rmap_desc_cache)
2155                 goto nomem;
2156
2157         mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
2158                                                   sizeof(struct kvm_mmu_page),
2159                                                   0, 0, NULL);
2160         if (!mmu_page_header_cache)
2161                 goto nomem;
2162
2163         register_shrinker(&mmu_shrinker);
2164
2165         return 0;
2166
2167 nomem:
2168         mmu_destroy_caches();
2169         return -ENOMEM;
2170 }
2171
2172 /*
2173  * Caculate mmu pages needed for kvm.
2174  */
2175 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
2176 {
2177         int i;
2178         unsigned int nr_mmu_pages;
2179         unsigned int  nr_pages = 0;
2180
2181         for (i = 0; i < kvm->nmemslots; i++)
2182                 nr_pages += kvm->memslots[i].npages;
2183
2184         nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
2185         nr_mmu_pages = max(nr_mmu_pages,
2186                         (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
2187
2188         return nr_mmu_pages;
2189 }
2190
2191 static void *pv_mmu_peek_buffer(struct kvm_pv_mmu_op_buffer *buffer,
2192                                 unsigned len)
2193 {
2194         if (len > buffer->len)
2195                 return NULL;
2196         return buffer->ptr;
2197 }
2198
2199 static void *pv_mmu_read_buffer(struct kvm_pv_mmu_op_buffer *buffer,
2200                                 unsigned len)
2201 {
2202         void *ret;
2203
2204         ret = pv_mmu_peek_buffer(buffer, len);
2205         if (!ret)
2206                 return ret;
2207         buffer->ptr += len;
2208         buffer->len -= len;
2209         buffer->processed += len;
2210         return ret;
2211 }
2212
2213 static int kvm_pv_mmu_write(struct kvm_vcpu *vcpu,
2214                              gpa_t addr, gpa_t value)
2215 {
2216         int bytes = 8;
2217         int r;
2218
2219         if (!is_long_mode(vcpu) && !is_pae(vcpu))
2220                 bytes = 4;
2221
2222         r = mmu_topup_memory_caches(vcpu);
2223         if (r)
2224                 return r;
2225
2226         if (!emulator_write_phys(vcpu, addr, &value, bytes))
2227                 return -EFAULT;
2228
2229         return 1;
2230 }
2231
2232 static int kvm_pv_mmu_flush_tlb(struct kvm_vcpu *vcpu)
2233 {
2234         kvm_x86_ops->tlb_flush(vcpu);
2235         return 1;
2236 }
2237
2238 static int kvm_pv_mmu_release_pt(struct kvm_vcpu *vcpu, gpa_t addr)
2239 {
2240         spin_lock(&vcpu->kvm->mmu_lock);
2241         mmu_unshadow(vcpu->kvm, addr >> PAGE_SHIFT);
2242         spin_unlock(&vcpu->kvm->mmu_lock);
2243         return 1;
2244 }
2245
2246 static int kvm_pv_mmu_op_one(struct kvm_vcpu *vcpu,
2247                              struct kvm_pv_mmu_op_buffer *buffer)
2248 {
2249         struct kvm_mmu_op_header *header;
2250
2251         header = pv_mmu_peek_buffer(buffer, sizeof *header);
2252         if (!header)
2253                 return 0;
2254         switch (header->op) {
2255         case KVM_MMU_OP_WRITE_PTE: {
2256                 struct kvm_mmu_op_write_pte *wpte;
2257
2258                 wpte = pv_mmu_read_buffer(buffer, sizeof *wpte);
2259                 if (!wpte)
2260                         return 0;
2261                 return kvm_pv_mmu_write(vcpu, wpte->pte_phys,
2262                                         wpte->pte_val);
2263         }
2264         case KVM_MMU_OP_FLUSH_TLB: {
2265                 struct kvm_mmu_op_flush_tlb *ftlb;
2266
2267                 ftlb = pv_mmu_read_buffer(buffer, sizeof *ftlb);
2268                 if (!ftlb)
2269                         return 0;
2270                 return kvm_pv_mmu_flush_tlb(vcpu);
2271         }
2272         case KVM_MMU_OP_RELEASE_PT: {
2273                 struct kvm_mmu_op_release_pt *rpt;
2274
2275                 rpt = pv_mmu_read_buffer(buffer, sizeof *rpt);
2276                 if (!rpt)
2277                         return 0;
2278                 return kvm_pv_mmu_release_pt(vcpu, rpt->pt_phys);
2279         }
2280         default: return 0;
2281         }
2282 }
2283
2284 int kvm_pv_mmu_op(struct kvm_vcpu *vcpu, unsigned long bytes,
2285                   gpa_t addr, unsigned long *ret)
2286 {
2287         int r;
2288         struct kvm_pv_mmu_op_buffer *buffer = &vcpu->arch.mmu_op_buffer;
2289
2290         buffer->ptr = buffer->buf;
2291         buffer->len = min_t(unsigned long, bytes, sizeof buffer->buf);
2292         buffer->processed = 0;
2293
2294         r = kvm_read_guest(vcpu->kvm, addr, buffer->buf, buffer->len);
2295         if (r)
2296                 goto out;
2297
2298         while (buffer->len) {
2299                 r = kvm_pv_mmu_op_one(vcpu, buffer);
2300                 if (r < 0)
2301                         goto out;
2302                 if (r == 0)
2303                         break;
2304         }
2305
2306         r = 1;
2307 out:
2308         *ret = buffer->processed;
2309         return r;
2310 }
2311
2312 #ifdef AUDIT
2313
2314 static const char *audit_msg;
2315
2316 static gva_t canonicalize(gva_t gva)
2317 {
2318 #ifdef CONFIG_X86_64
2319         gva = (long long)(gva << 16) >> 16;
2320 #endif
2321         return gva;
2322 }
2323
2324 static void audit_mappings_page(struct kvm_vcpu *vcpu, u64 page_pte,
2325                                 gva_t va, int level)
2326 {
2327         u64 *pt = __va(page_pte & PT64_BASE_ADDR_MASK);
2328         int i;
2329         gva_t va_delta = 1ul << (PAGE_SHIFT + 9 * (level - 1));
2330
2331         for (i = 0; i < PT64_ENT_PER_PAGE; ++i, va += va_delta) {
2332                 u64 ent = pt[i];
2333
2334                 if (ent == shadow_trap_nonpresent_pte)
2335                         continue;
2336
2337                 va = canonicalize(va);
2338                 if (level > 1) {
2339                         if (ent == shadow_notrap_nonpresent_pte)
2340                                 printk(KERN_ERR "audit: (%s) nontrapping pte"
2341                                        " in nonleaf level: levels %d gva %lx"
2342                                        " level %d pte %llx\n", audit_msg,
2343                                        vcpu->arch.mmu.root_level, va, level, ent);
2344
2345                         audit_mappings_page(vcpu, ent, va, level - 1);
2346                 } else {
2347                         gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, va);
2348                         hpa_t hpa = (hpa_t)gpa_to_pfn(vcpu, gpa) << PAGE_SHIFT;
2349
2350                         if (is_shadow_present_pte(ent)
2351                             && (ent & PT64_BASE_ADDR_MASK) != hpa)
2352                                 printk(KERN_ERR "xx audit error: (%s) levels %d"
2353                                        " gva %lx gpa %llx hpa %llx ent %llx %d\n",
2354                                        audit_msg, vcpu->arch.mmu.root_level,
2355                                        va, gpa, hpa, ent,
2356                                        is_shadow_present_pte(ent));
2357                         else if (ent == shadow_notrap_nonpresent_pte
2358                                  && !is_error_hpa(hpa))
2359                                 printk(KERN_ERR "audit: (%s) notrap shadow,"
2360                                        " valid guest gva %lx\n", audit_msg, va);
2361                         kvm_release_pfn_clean(pfn);
2362
2363                 }
2364         }
2365 }
2366
2367 static void audit_mappings(struct kvm_vcpu *vcpu)
2368 {
2369         unsigned i;
2370
2371         if (vcpu->arch.mmu.root_level == 4)
2372                 audit_mappings_page(vcpu, vcpu->arch.mmu.root_hpa, 0, 4);
2373         else
2374                 for (i = 0; i < 4; ++i)
2375                         if (vcpu->arch.mmu.pae_root[i] & PT_PRESENT_MASK)
2376                                 audit_mappings_page(vcpu,
2377                                                     vcpu->arch.mmu.pae_root[i],
2378                                                     i << 30,
2379                                                     2);
2380 }
2381
2382 static int count_rmaps(struct kvm_vcpu *vcpu)
2383 {
2384         int nmaps = 0;
2385         int i, j, k;
2386
2387         for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
2388                 struct kvm_memory_slot *m = &vcpu->kvm->memslots[i];
2389                 struct kvm_rmap_desc *d;
2390
2391                 for (j = 0; j < m->npages; ++j) {
2392                         unsigned long *rmapp = &m->rmap[j];
2393
2394                         if (!*rmapp)
2395                                 continue;
2396                         if (!(*rmapp & 1)) {
2397                                 ++nmaps;
2398                                 continue;
2399                         }
2400                         d = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
2401                         while (d) {
2402                                 for (k = 0; k < RMAP_EXT; ++k)
2403                                         if (d->shadow_ptes[k])
2404                                                 ++nmaps;
2405                                         else
2406                                                 break;
2407                                 d = d->more;
2408                         }
2409                 }
2410         }
2411         return nmaps;
2412 }
2413
2414 static int count_writable_mappings(struct kvm_vcpu *vcpu)
2415 {
2416         int nmaps = 0;
2417         struct kvm_mmu_page *sp;
2418         int i;
2419
2420         list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
2421                 u64 *pt = sp->spt;
2422
2423                 if (sp->role.level != PT_PAGE_TABLE_LEVEL)
2424                         continue;
2425
2426                 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
2427                         u64 ent = pt[i];
2428
2429                         if (!(ent & PT_PRESENT_MASK))
2430                                 continue;
2431                         if (!(ent & PT_WRITABLE_MASK))
2432                                 continue;
2433                         ++nmaps;
2434                 }
2435         }
2436         return nmaps;
2437 }
2438
2439 static void audit_rmap(struct kvm_vcpu *vcpu)
2440 {
2441         int n_rmap = count_rmaps(vcpu);
2442         int n_actual = count_writable_mappings(vcpu);
2443
2444         if (n_rmap != n_actual)
2445                 printk(KERN_ERR "%s: (%s) rmap %d actual %d\n",
2446                        __func__, audit_msg, n_rmap, n_actual);
2447 }
2448
2449 static void audit_write_protection(struct kvm_vcpu *vcpu)
2450 {
2451         struct kvm_mmu_page *sp;
2452         struct kvm_memory_slot *slot;
2453         unsigned long *rmapp;
2454         gfn_t gfn;
2455
2456         list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
2457                 if (sp->role.metaphysical)
2458                         continue;
2459
2460                 slot = gfn_to_memslot(vcpu->kvm, sp->gfn);
2461                 gfn = unalias_gfn(vcpu->kvm, sp->gfn);
2462                 rmapp = &slot->rmap[gfn - slot->base_gfn];
2463                 if (*rmapp)
2464                         printk(KERN_ERR "%s: (%s) shadow page has writable"
2465                                " mappings: gfn %lx role %x\n",
2466                                __func__, audit_msg, sp->gfn,
2467                                sp->role.word);
2468         }
2469 }
2470
2471 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg)
2472 {
2473         int olddbg = dbg;
2474
2475         dbg = 0;
2476         audit_msg = msg;
2477         audit_rmap(vcpu);
2478         audit_write_protection(vcpu);
2479         audit_mappings(vcpu);
2480         dbg = olddbg;
2481 }
2482
2483 #endif