x86, SGI UV: TLB shootdown using broadcast assist unit
[safe/jmp/linux-2.6] / arch / x86 / kernel / tlb_uv.c
1 /*
2  *      SGI UltraViolet TLB flush routines.
3  *
4  *      (c) 2008 Cliff Wickman <cpw@sgi.com>, SGI.
5  *
6  *      This code is released under the GNU General Public License version 2 or
7  *      later.
8  */
9 #include <linux/mc146818rtc.h>
10 #include <linux/proc_fs.h>
11 #include <linux/kernel.h>
12
13 #include <asm/mach-bigsmp/mach_apic.h>
14 #include <asm/mmu_context.h>
15 #include <asm/idle.h>
16 #include <asm/genapic.h>
17 #include <asm/uv/uv_hub.h>
18 #include <asm/uv/uv_mmrs.h>
19 #include <asm/uv/uv_bau.h>
20
21 struct bau_control **uv_bau_table_bases;
22 static int uv_bau_retry_limit;
23 static int uv_nshift;           /* position of pnode (which is nasid>>1) */
24 static unsigned long uv_mmask;
25
26 char *status_table[] = {
27         "IDLE",
28         "ACTIVE",
29         "DESTINATION TIMEOUT",
30         "SOURCE TIMEOUT"
31 };
32
33 DEFINE_PER_CPU(struct ptc_stats, ptcstats);
34 DEFINE_PER_CPU(struct bau_control, bau_control);
35
36 /*
37  * Free a software acknowledge hardware resource by clearing its Pending
38  * bit. This will return a reply to the sender.
39  * If the message has timed out, a reply has already been sent by the
40  * hardware but the resource has not been released. In that case our
41  * clear of the Timeout bit (as well) will free the resource. No reply will
42  * be sent (the hardware will only do one reply per message).
43  */
44 static void
45 uv_reply_to_message(int resource,
46                     struct bau_payload_queue_entry *msg,
47                     struct bau_msg_status *msp)
48 {
49         int fw;
50
51         fw = (1 << (resource + UV_SW_ACK_NPENDING)) | (1 << resource);
52         msg->replied_to = 1;
53         msg->sw_ack_vector = 0;
54         if (msp)
55                 msp->seen_by.bits = 0;
56         uv_write_local_mmr(UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE_ALIAS, fw);
57         return;
58 }
59
60 /*
61  * Do all the things a cpu should do for a TLB shootdown message.
62  * Other cpu's may come here at the same time for this message.
63  */
64 static void
65 uv_bau_process_message(struct bau_payload_queue_entry *msg,
66                        int msg_slot, int sw_ack_slot)
67 {
68         int cpu;
69         unsigned long this_cpu_mask;
70         struct bau_msg_status *msp;
71
72         msp = __get_cpu_var(bau_control).msg_statuses + msg_slot;
73         cpu = uv_blade_processor_id();
74         msg->number_of_cpus =
75             uv_blade_nr_online_cpus(uv_node_to_blade_id(numa_node_id()));
76         this_cpu_mask = (unsigned long)1 << cpu;
77         if (msp->seen_by.bits & this_cpu_mask)
78                 return;
79         atomic_or_long(&msp->seen_by.bits, this_cpu_mask);
80
81         if (msg->replied_to == 1)
82                 return;
83
84         if (msg->address == TLB_FLUSH_ALL) {
85                 local_flush_tlb();
86                 __get_cpu_var(ptcstats).alltlb++;
87         } else {
88                 __flush_tlb_one(msg->address);
89                 __get_cpu_var(ptcstats).onetlb++;
90         }
91
92         __get_cpu_var(ptcstats).requestee++;
93
94         atomic_inc_short(&msg->acknowledge_count);
95         if (msg->number_of_cpus == msg->acknowledge_count)
96                 uv_reply_to_message(sw_ack_slot, msg, msp);
97         return;
98 }
99
100 /*
101  * Examine the payload queue on all the distribution nodes to see
102  * which messages have not been seen, and which cpu(s) have not seen them.
103  *
104  * Returns the number of cpu's that have not responded.
105  */
106 static int
107 uv_examine_destinations(struct bau_target_nodemask *distribution)
108 {
109         int sender;
110         int i;
111         int j;
112         int k;
113         int count = 0;
114         struct bau_control *bau_tablesp;
115         struct bau_payload_queue_entry *msg;
116         struct bau_msg_status *msp;
117
118         sender = smp_processor_id();
119         for (i = 0; i < (sizeof(struct bau_target_nodemask) * BITSPERBYTE);
120              i++) {
121                 if (bau_node_isset(i, distribution)) {
122                         bau_tablesp = uv_bau_table_bases[i];
123                         for (msg = bau_tablesp->va_queue_first, j = 0;
124                              j < DESTINATION_PAYLOAD_QUEUE_SIZE; msg++, j++) {
125                                 if ((msg->sending_cpu == sender) &&
126                                     (!msg->replied_to)) {
127                                         msp = bau_tablesp->msg_statuses + j;
128                                         printk(KERN_DEBUG
129                                 "blade %d: address:%#lx %d of %d, not cpu(s): ",
130                                                i, msg->address,
131                                                msg->acknowledge_count,
132                                                msg->number_of_cpus);
133                                         for (k = 0; k < msg->number_of_cpus;
134                                              k++) {
135                                                 if (!((long)1 << k & msp->
136                                                       seen_by.bits)) {
137                                                         count++;
138                                                         printk("%d ", k);
139                                                 }
140                                         }
141                                         printk("\n");
142                                 }
143                         }
144                 }
145         }
146         return count;
147 }
148
149 /**
150  * uv_flush_tlb_others - globally purge translation cache of a virtual
151  * address or all TLB's
152  * @cpumaskp: mask of all cpu's in which the address is to be removed
153  * @mm: mm_struct containing virtual address range
154  * @va: virtual address to be removed (or TLB_FLUSH_ALL for all TLB's on cpu)
155  *
156  * This is the entry point for initiating any UV global TLB shootdown.
157  *
158  * Purges the translation caches of all specified processors of the given
159  * virtual address, or purges all TLB's on specified processors.
160  *
161  * The caller has derived the cpumaskp from the mm_struct and has subtracted
162  * the local cpu from the mask.  This function is called only if there
163  * are bits set in the mask. (e.g. flush_tlb_page())
164  *
165  * The cpumaskp is converted into a nodemask of the nodes containing
166  * the cpus.
167  */
168 int
169 uv_flush_tlb_others(cpumask_t *cpumaskp, struct mm_struct *mm, unsigned long va)
170 {
171         int i;
172         int blade;
173         int cpu;
174         int bit;
175         int right_shift;
176         int this_blade;
177         int exams = 0;
178         int tries = 0;
179         long source_timeouts = 0;
180         long destination_timeouts = 0;
181         unsigned long index;
182         unsigned long mmr_offset;
183         unsigned long descriptor_status;
184         struct bau_activation_descriptor *bau_desc;
185         ktime_t time1, time2;
186
187         cpu = uv_blade_processor_id();
188         this_blade = uv_numa_blade_id();
189         bau_desc = __get_cpu_var(bau_control).descriptor_base;
190         bau_desc += (UV_ITEMS_PER_DESCRIPTOR * cpu);
191
192         bau_nodes_clear(&bau_desc->distribution, UV_DISTRIBUTION_SIZE);
193
194         i = 0;
195         for_each_cpu_mask(bit, *cpumaskp) {
196                 blade = uv_cpu_to_blade_id(bit);
197                 if (blade > (UV_DISTRIBUTION_SIZE - 1))
198                         BUG();
199                 if (blade == this_blade)
200                         continue;
201                 bau_node_set(blade, &bau_desc->distribution);
202                 /* leave the bits for the remote cpu's in the mask until
203                    success; on failure we fall back to the IPI method */
204                 i++;
205         }
206         if (i == 0)
207                 goto none_to_flush;
208         __get_cpu_var(ptcstats).requestor++;
209         __get_cpu_var(ptcstats).ntargeted += i;
210
211         bau_desc->payload.address = va;
212         bau_desc->payload.sending_cpu = smp_processor_id();
213
214         if (cpu < UV_CPUS_PER_ACT_STATUS) {
215                 mmr_offset = UVH_LB_BAU_SB_ACTIVATION_STATUS_0;
216                 right_shift = cpu * UV_ACT_STATUS_SIZE;
217         } else {
218                 mmr_offset = UVH_LB_BAU_SB_ACTIVATION_STATUS_1;
219                 right_shift =
220                     ((cpu - UV_CPUS_PER_ACT_STATUS) * UV_ACT_STATUS_SIZE);
221         }
222         time1 = ktime_get();
223
224 retry:
225         tries++;
226         index = ((unsigned long)
227                  1 << UVH_LB_BAU_SB_ACTIVATION_CONTROL_PUSH_SHFT) | cpu;
228         uv_write_local_mmr(UVH_LB_BAU_SB_ACTIVATION_CONTROL, index);
229
230         while ((descriptor_status = (((unsigned long)
231                                       uv_read_local_mmr(mmr_offset) >>
232                                       right_shift) & UV_ACT_STATUS_MASK)) !=
233                DESC_STATUS_IDLE) {
234                 if (descriptor_status == DESC_STATUS_SOURCE_TIMEOUT) {
235                         source_timeouts++;
236                         if (source_timeouts > SOURCE_TIMEOUT_LIMIT)
237                                 source_timeouts = 0;
238                         __get_cpu_var(ptcstats).s_retry++;
239                         goto retry;
240                 }
241                 /* spin here looking for progress at the destinations */
242                 if (descriptor_status == DESC_STATUS_DESTINATION_TIMEOUT) {
243                         destination_timeouts++;
244                         if (destination_timeouts > DESTINATION_TIMEOUT_LIMIT) {
245                                 /* returns # of cpus not responding */
246                                 if (uv_examine_destinations
247                                     (&bau_desc->distribution) == 0) {
248                                         __get_cpu_var(ptcstats).d_retry++;
249                                         goto retry;
250                                 }
251                                 exams++;
252                                 if (exams >= uv_bau_retry_limit) {
253                                         printk(KERN_DEBUG
254                                                "uv_flush_tlb_others");
255                                         printk("giving up on cpu %d\n",
256                                                smp_processor_id());
257                                         goto unsuccessful;
258                                 }
259                                 /* delays can hang up the simulator
260                                    udelay(1000);
261                                  */
262                                 destination_timeouts = 0;
263                         }
264                 }
265         }
266         if (tries > 1)
267                 __get_cpu_var(ptcstats).retriesok++;
268         /* on success, clear the remote cpu's from the mask so we don't
269            use the IPI method of shootdown on them */
270         for_each_cpu_mask(bit, *cpumaskp) {
271                 blade = uv_cpu_to_blade_id(bit);
272                 if (blade == this_blade)
273                         continue;
274                 cpu_clear(bit, *cpumaskp);
275         }
276
277 unsuccessful:
278         time2 = ktime_get();
279         __get_cpu_var(ptcstats).sflush_ns += (time2.tv64 - time1.tv64);
280
281 none_to_flush:
282         if (cpus_empty(*cpumaskp))
283                 return 1;
284
285         /* Cause the caller to do an IPI-style TLB shootdown on
286            the cpu's still in the mask */
287         __get_cpu_var(ptcstats).ptc_i++;
288         return 0;
289 }
290
291 /*
292  * The BAU message interrupt comes here. (registered by set_intr_gate)
293  * See entry_64.S
294  *
295  * We received a broadcast assist message.
296  *
297  * Interrupts may have been disabled; this interrupt could represent
298  * the receipt of several messages.
299  *
300  * All cores/threads on this node get this interrupt.
301  * The last one to see it does the s/w ack.
302  * (the resource will not be freed until noninterruptable cpus see this
303  *  interrupt; hardware will timeout the s/w ack and reply ERROR)
304  */
305 void
306 uv_bau_message_interrupt(struct pt_regs *regs)
307 {
308         struct bau_payload_queue_entry *pqp;
309         struct bau_payload_queue_entry *msg;
310         struct pt_regs *old_regs = set_irq_regs(regs);
311         ktime_t time1, time2;
312         int msg_slot;
313         int sw_ack_slot;
314         int fw;
315         int count = 0;
316         unsigned long local_pnode;
317
318         ack_APIC_irq();
319         exit_idle();
320         irq_enter();
321
322         time1 = ktime_get();
323
324         local_pnode = uv_blade_to_pnode(uv_numa_blade_id());
325
326         pqp = __get_cpu_var(bau_control).va_queue_first;
327         msg = __get_cpu_var(bau_control).bau_msg_head;
328         while (msg->sw_ack_vector) {
329                 count++;
330                 fw = msg->sw_ack_vector;
331                 msg_slot = msg - pqp;
332                 sw_ack_slot = ffs(fw) - 1;
333
334                 uv_bau_process_message(msg, msg_slot, sw_ack_slot);
335
336                 msg++;
337                 if (msg > __get_cpu_var(bau_control).va_queue_last)
338                         msg = __get_cpu_var(bau_control).va_queue_first;
339                 __get_cpu_var(bau_control).bau_msg_head = msg;
340         }
341         if (!count)
342                 __get_cpu_var(ptcstats).nomsg++;
343         else if (count > 1)
344                 __get_cpu_var(ptcstats).multmsg++;
345
346         time2 = ktime_get();
347         __get_cpu_var(ptcstats).dflush_ns += (time2.tv64 - time1.tv64);
348
349         irq_exit();
350         set_irq_regs(old_regs);
351         return;
352 }
353
354 static void
355 uv_enable_timeouts(void)
356 {
357         int i;
358         int blade;
359         int last_blade;
360         int pnode;
361         int cur_cpu = 0;
362         unsigned long apicid;
363
364         /* better if we had each_online_blade */
365         last_blade = -1;
366         for_each_online_node(i) {
367                 blade = uv_node_to_blade_id(i);
368                 if (blade == last_blade)
369                         continue;
370                 last_blade = blade;
371                 apicid = per_cpu(x86_cpu_to_apicid, cur_cpu);
372                 pnode = uv_blade_to_pnode(blade);
373                 cur_cpu += uv_blade_nr_possible_cpus(i);
374         }
375         return;
376 }
377
378 static void *
379 uv_ptc_seq_start(struct seq_file *file, loff_t *offset)
380 {
381         if (*offset < num_possible_cpus())
382                 return offset;
383         return NULL;
384 }
385
386 static void *
387 uv_ptc_seq_next(struct seq_file *file, void *data, loff_t *offset)
388 {
389         (*offset)++;
390         if (*offset < num_possible_cpus())
391                 return offset;
392         return NULL;
393 }
394
395 static void
396 uv_ptc_seq_stop(struct seq_file *file, void *data)
397 {
398 }
399
400 /*
401  * Display the statistics thru /proc
402  * data points to the cpu number
403  */
404 static int
405 uv_ptc_seq_show(struct seq_file *file, void *data)
406 {
407         struct ptc_stats *stat;
408         int cpu;
409
410         cpu = *(loff_t *)data;
411
412         if (!cpu) {
413                 seq_printf(file,
414                 "# cpu requestor requestee one all sretry dretry ptc_i ");
415                 seq_printf(file,
416                 "sw_ack sflush_us dflush_us sok dnomsg dmult starget\n");
417         }
418         if (cpu < num_possible_cpus() && cpu_online(cpu)) {
419                 stat = &per_cpu(ptcstats, cpu);
420                 seq_printf(file, "cpu %d %ld %ld %ld %ld %ld %ld %ld ",
421                            cpu, stat->requestor,
422                            stat->requestee, stat->onetlb, stat->alltlb,
423                            stat->s_retry, stat->d_retry, stat->ptc_i);
424                 seq_printf(file, "%lx %ld %ld %ld %ld %ld %ld\n",
425                            uv_read_global_mmr64(uv_blade_to_pnode
426                                         (uv_cpu_to_blade_id(cpu)),
427                                         UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE),
428                            stat->sflush_ns / 1000, stat->dflush_ns / 1000,
429                            stat->retriesok, stat->nomsg,
430                            stat->multmsg, stat->ntargeted);
431         }
432
433         return 0;
434 }
435
436 /*
437  *  0: display meaning of the statistics
438  * >0: retry limit
439  */
440 static ssize_t
441 uv_ptc_proc_write(struct file *file, const char __user *user,
442                   size_t count, loff_t *data)
443 {
444         long newmode;
445         char optstr[64];
446
447         if (copy_from_user(optstr, user, count))
448                 return -EFAULT;
449         optstr[count - 1] = '\0';
450         if (strict_strtoul(optstr, 10, &newmode) < 0) {
451                 printk(KERN_DEBUG "%s is invalid\n", optstr);
452                 return -EINVAL;
453         }
454
455         if (newmode == 0) {
456                 printk(KERN_DEBUG "# cpu:      cpu number\n");
457                 printk(KERN_DEBUG
458                 "requestor:  times this cpu was the flush requestor\n");
459                 printk(KERN_DEBUG
460                 "requestee:  times this cpu was requested to flush its TLBs\n");
461                 printk(KERN_DEBUG
462                 "one:        times requested to flush a single address\n");
463                 printk(KERN_DEBUG
464                 "all:        times requested to flush all TLB's\n");
465                 printk(KERN_DEBUG
466                 "sretry:     number of retries of source-side timeouts\n");
467                 printk(KERN_DEBUG
468                 "dretry:     number of retries of destination-side timeouts\n");
469                 printk(KERN_DEBUG
470                 "ptc_i:      times UV fell through to IPI-style flushes\n");
471                 printk(KERN_DEBUG
472                 "sw_ack:     image of UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE\n");
473                 printk(KERN_DEBUG
474                 "sflush_us:  microseconds spent in uv_flush_tlb_others()\n");
475                 printk(KERN_DEBUG
476                 "dflush_us:  microseconds spent in handling flush requests\n");
477                 printk(KERN_DEBUG "sok:        successes on retry\n");
478                 printk(KERN_DEBUG "dnomsg:     interrupts with no message\n");
479                 printk(KERN_DEBUG
480                 "dmult:      interrupts with multiple messages\n");
481                 printk(KERN_DEBUG "starget:    nodes targeted\n");
482         } else {
483                 uv_bau_retry_limit = newmode;
484                 printk(KERN_DEBUG "timeout retry limit:%d\n",
485                        uv_bau_retry_limit);
486         }
487
488         return count;
489 }
490
491 static const struct seq_operations uv_ptc_seq_ops = {
492         .start = uv_ptc_seq_start,
493         .next = uv_ptc_seq_next,
494         .stop = uv_ptc_seq_stop,
495         .show = uv_ptc_seq_show
496 };
497
498 static int
499 uv_ptc_proc_open(struct inode *inode, struct file *file)
500 {
501         return seq_open(file, &uv_ptc_seq_ops);
502 }
503
504 static const struct file_operations proc_uv_ptc_operations = {
505         .open = uv_ptc_proc_open,
506         .read = seq_read,
507         .write = uv_ptc_proc_write,
508         .llseek = seq_lseek,
509         .release = seq_release,
510 };
511
512 static struct proc_dir_entry *proc_uv_ptc;
513
514 static int __init
515 uv_ptc_init(void)
516 {
517         static struct proc_dir_entry *sgi_proc_dir;
518
519         sgi_proc_dir = NULL;
520
521         if (!is_uv_system())
522                 return 0;
523
524         sgi_proc_dir = proc_mkdir("sgi_uv", NULL);
525         if (!sgi_proc_dir)
526                 return -EINVAL;
527
528         proc_uv_ptc = create_proc_entry(UV_PTC_BASENAME, 0444, NULL);
529         if (!proc_uv_ptc) {
530                 printk(KERN_ERR "unable to create %s proc entry\n",
531                        UV_PTC_BASENAME);
532                 return -EINVAL;
533         }
534         proc_uv_ptc->proc_fops = &proc_uv_ptc_operations;
535         return 0;
536 }
537
538 static void __exit
539 uv_ptc_exit(void)
540 {
541         remove_proc_entry(UV_PTC_BASENAME, NULL);
542 }
543
544 module_init(uv_ptc_init);
545 module_exit(uv_ptc_exit);
546
547 /*
548  * Initialization of BAU-related structures
549  */
550 int __init
551 uv_bau_init(void)
552 {
553         int i;
554         int j;
555         int blade;
556         int nblades;
557         int *ip;
558         int pnode;
559         int last_blade;
560         int cur_cpu = 0;
561         unsigned long pa;
562         unsigned long n;
563         unsigned long m;
564         unsigned long mmr_image;
565         unsigned long apicid;
566         char *cp;
567         struct bau_control *bau_tablesp;
568         struct bau_activation_descriptor *adp, *ad2;
569         struct bau_payload_queue_entry *pqp;
570         struct bau_msg_status *msp;
571         struct bau_control *bcp;
572
573         if (!is_uv_system())
574                 return 0;
575
576         uv_bau_retry_limit = 1;
577
578         if ((sizeof(struct bau_local_cpumask) * BITSPERBYTE) <
579             MAX_CPUS_PER_NODE) {
580                 printk(KERN_ERR
581                         "uv_bau_init: bau_local_cpumask.bits too small\n");
582                 BUG();
583         }
584
585         uv_nshift = uv_hub_info->n_val;
586         uv_mmask = ((unsigned long)1 << uv_hub_info->n_val) - 1;
587         nblades = 0;
588         last_blade = -1;
589         for_each_online_node(i) {
590                 blade = uv_node_to_blade_id(i);
591                 if (blade == last_blade)
592                         continue;
593                 last_blade = blade;
594                 nblades++;
595         }
596
597         uv_bau_table_bases = (struct bau_control **)
598             kmalloc(nblades * sizeof(struct bau_control *), GFP_KERNEL);
599         if (!uv_bau_table_bases)
600                 BUG();
601
602         /* better if we had each_online_blade */
603         last_blade = -1;
604         for_each_online_node(i) {
605                 blade = uv_node_to_blade_id(i);
606                 if (blade == last_blade)
607                         continue;
608                 last_blade = blade;
609
610                 bau_tablesp =
611                     kmalloc_node(sizeof(struct bau_control), GFP_KERNEL, i);
612                 if (!bau_tablesp)
613                         BUG();
614
615                 bau_tablesp->msg_statuses =
616                     kmalloc_node(sizeof(struct bau_msg_status) *
617                                  DESTINATION_PAYLOAD_QUEUE_SIZE, GFP_KERNEL, i);
618                 if (!bau_tablesp->msg_statuses)
619                         BUG();
620                 for (j = 0, msp = bau_tablesp->msg_statuses;
621                      j < DESTINATION_PAYLOAD_QUEUE_SIZE; j++, msp++) {
622                         bau_cpubits_clear(&msp->seen_by, (int)
623                                           uv_blade_nr_possible_cpus(blade));
624                 }
625
626                 bau_tablesp->watching =
627                     kmalloc_node(sizeof(int) * DESTINATION_NUM_RESOURCES,
628                                  GFP_KERNEL, i);
629                 if (!bau_tablesp->watching)
630                         BUG();
631                 for (j = 0, ip = bau_tablesp->watching;
632                      j < DESTINATION_PAYLOAD_QUEUE_SIZE; j++, ip++) {
633                         *ip = 0;
634                 }
635
636                 uv_bau_table_bases[i] = bau_tablesp;
637
638                 pnode = uv_blade_to_pnode(blade);
639
640                 if (sizeof(struct bau_activation_descriptor) != 64)
641                         BUG();
642
643                 adp = (struct bau_activation_descriptor *)
644                     kmalloc_node(16384, GFP_KERNEL, i);
645                 if (!adp)
646                         BUG();
647                 if ((unsigned long)adp & 0xfff)
648                         BUG();
649                 pa = __pa((unsigned long)adp);
650                 n = pa >> uv_nshift;
651                 m = pa & uv_mmask;
652
653                 mmr_image = uv_read_global_mmr64(pnode,
654                                                  UVH_LB_BAU_SB_DESCRIPTOR_BASE);
655                 if (mmr_image)
656                         uv_write_global_mmr64(pnode, (unsigned long)
657                                               UVH_LB_BAU_SB_DESCRIPTOR_BASE,
658                                               (n << UV_DESC_BASE_PNODE_SHIFT |
659                                                m));
660                 for (j = 0, ad2 = adp; j < UV_ACTIVATION_DESCRIPTOR_SIZE;
661                      j++, ad2++) {
662                         memset(ad2, 0,
663                                sizeof(struct bau_activation_descriptor));
664                         ad2->header.sw_ack_flag = 1;
665                         ad2->header.base_dest_nodeid =
666                             uv_blade_to_pnode(uv_cpu_to_blade_id(0));
667                         ad2->header.command = UV_NET_ENDPOINT_INTD;
668                         ad2->header.int_both = 1;
669                         /* all others need to be set to zero:
670                            fairness chaining multilevel count replied_to */
671                 }
672
673                 pqp = (struct bau_payload_queue_entry *)
674                     kmalloc_node((DESTINATION_PAYLOAD_QUEUE_SIZE + 1) *
675                                  sizeof(struct bau_payload_queue_entry),
676                                  GFP_KERNEL, i);
677                 if (!pqp)
678                         BUG();
679                 if (sizeof(struct bau_payload_queue_entry) != 32)
680                         BUG();
681                 if ((unsigned long)(&((struct bau_payload_queue_entry *)0)->
682                                     sw_ack_vector) != 15)
683                         BUG();
684
685                 cp = (char *)pqp + 31;
686                 pqp = (struct bau_payload_queue_entry *)
687                     (((unsigned long)cp >> 5) << 5);
688                 bau_tablesp->va_queue_first = pqp;
689                 uv_write_global_mmr64(pnode,
690                                       UVH_LB_BAU_INTD_PAYLOAD_QUEUE_FIRST,
691                                       ((unsigned long)pnode <<
692                                        UV_PAYLOADQ_PNODE_SHIFT) |
693                                       uv_physnodeaddr(pqp));
694                 uv_write_global_mmr64(pnode, UVH_LB_BAU_INTD_PAYLOAD_QUEUE_TAIL,
695                                       uv_physnodeaddr(pqp));
696                 bau_tablesp->va_queue_last =
697                     pqp + (DESTINATION_PAYLOAD_QUEUE_SIZE - 1);
698                 uv_write_global_mmr64(pnode, UVH_LB_BAU_INTD_PAYLOAD_QUEUE_LAST,
699                                       (unsigned long)
700                                       uv_physnodeaddr(bau_tablesp->
701                                                       va_queue_last));
702                 memset(pqp, 0, sizeof(struct bau_payload_queue_entry) *
703                        DESTINATION_PAYLOAD_QUEUE_SIZE);
704
705                 /* this initialization can't be in firmware because the
706                    messaging IRQ will be determined by the OS */
707                 apicid = per_cpu(x86_cpu_to_apicid, cur_cpu);
708                 pa = uv_read_global_mmr64(pnode, UVH_BAU_DATA_CONFIG);
709                 if ((pa & 0xff) != UV_BAU_MESSAGE) {
710                         uv_write_global_mmr64(pnode, UVH_BAU_DATA_CONFIG,
711                                               ((apicid << 32) |
712                                                UV_BAU_MESSAGE));
713                 }
714
715                 for (j = cur_cpu; j < (cur_cpu + uv_blade_nr_possible_cpus(i));
716                      j++) {
717                         bcp = (struct bau_control *)&per_cpu(bau_control, j);
718                         bcp->bau_msg_head = bau_tablesp->va_queue_first;
719                         bcp->va_queue_first = bau_tablesp->va_queue_first;
720
721                         bcp->va_queue_last = bau_tablesp->va_queue_last;
722                         bcp->watching = bau_tablesp->watching;
723                         bcp->msg_statuses = bau_tablesp->msg_statuses;
724                         bcp->descriptor_base = adp;
725                 }
726                 cur_cpu += uv_blade_nr_possible_cpus(i);
727         }
728
729         set_intr_gate(UV_BAU_MESSAGE, uv_bau_message_intr1);
730
731         uv_enable_timeouts();
732
733         return 0;
734 }
735
736 __initcall(uv_bau_init);