e0d0fd7ab514212b13b9c3809e4e6b50d2665d69
[safe/jmp/linux-2.6] / arch / x86 / kernel / process.c
1 #include <linux/errno.h>
2 #include <linux/kernel.h>
3 #include <linux/mm.h>
4 #include <asm/idle.h>
5 #include <linux/smp.h>
6 #include <linux/slab.h>
7 #include <linux/sched.h>
8 #include <linux/module.h>
9 #include <linux/pm.h>
10 #include <linux/clockchips.h>
11 #include <trace/power.h>
12 #include <asm/system.h>
13 #include <asm/apic.h>
14
15 unsigned long idle_halt;
16 EXPORT_SYMBOL(idle_halt);
17 unsigned long idle_nomwait;
18 EXPORT_SYMBOL(idle_nomwait);
19
20 struct kmem_cache *task_xstate_cachep;
21
22 DEFINE_TRACE(power_start);
23 DEFINE_TRACE(power_end);
24
25 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
26 {
27         *dst = *src;
28         if (src->thread.xstate) {
29                 dst->thread.xstate = kmem_cache_alloc(task_xstate_cachep,
30                                                       GFP_KERNEL);
31                 if (!dst->thread.xstate)
32                         return -ENOMEM;
33                 WARN_ON((unsigned long)dst->thread.xstate & 15);
34                 memcpy(dst->thread.xstate, src->thread.xstate, xstate_size);
35         }
36         return 0;
37 }
38
39 void free_thread_xstate(struct task_struct *tsk)
40 {
41         if (tsk->thread.xstate) {
42                 kmem_cache_free(task_xstate_cachep, tsk->thread.xstate);
43                 tsk->thread.xstate = NULL;
44         }
45 }
46
47 void free_thread_info(struct thread_info *ti)
48 {
49         free_thread_xstate(ti->task);
50         free_pages((unsigned long)ti, get_order(THREAD_SIZE));
51 }
52
53 void arch_task_cache_init(void)
54 {
55         task_xstate_cachep =
56                 kmem_cache_create("task_xstate", xstate_size,
57                                   __alignof__(union thread_xstate),
58                                   SLAB_PANIC, NULL);
59 }
60
61 /*
62  * Idle related variables and functions
63  */
64 unsigned long boot_option_idle_override = 0;
65 EXPORT_SYMBOL(boot_option_idle_override);
66
67 /*
68  * Powermanagement idle function, if any..
69  */
70 void (*pm_idle)(void);
71 EXPORT_SYMBOL(pm_idle);
72
73 #ifdef CONFIG_X86_32
74 /*
75  * This halt magic was a workaround for ancient floppy DMA
76  * wreckage. It should be safe to remove.
77  */
78 static int hlt_counter;
79 void disable_hlt(void)
80 {
81         hlt_counter++;
82 }
83 EXPORT_SYMBOL(disable_hlt);
84
85 void enable_hlt(void)
86 {
87         hlt_counter--;
88 }
89 EXPORT_SYMBOL(enable_hlt);
90
91 static inline int hlt_use_halt(void)
92 {
93         return (!hlt_counter && boot_cpu_data.hlt_works_ok);
94 }
95 #else
96 static inline int hlt_use_halt(void)
97 {
98         return 1;
99 }
100 #endif
101
102 /*
103  * We use this if we don't have any better
104  * idle routine..
105  */
106 void default_idle(void)
107 {
108         if (hlt_use_halt()) {
109                 struct power_trace it;
110
111                 trace_power_start(&it, POWER_CSTATE, 1);
112                 current_thread_info()->status &= ~TS_POLLING;
113                 /*
114                  * TS_POLLING-cleared state must be visible before we
115                  * test NEED_RESCHED:
116                  */
117                 smp_mb();
118
119                 if (!need_resched())
120                         safe_halt();    /* enables interrupts racelessly */
121                 else
122                         local_irq_enable();
123                 current_thread_info()->status |= TS_POLLING;
124                 trace_power_end(&it);
125         } else {
126                 local_irq_enable();
127                 /* loop is done by the caller */
128                 cpu_relax();
129         }
130 }
131 #ifdef CONFIG_APM_MODULE
132 EXPORT_SYMBOL(default_idle);
133 #endif
134
135 void stop_this_cpu(void *dummy)
136 {
137         local_irq_disable();
138         /*
139          * Remove this CPU:
140          */
141         cpu_clear(smp_processor_id(), cpu_online_map);
142         disable_local_APIC();
143
144         for (;;) {
145                 if (hlt_works(smp_processor_id()))
146                         halt();
147         }
148 }
149
150 static void do_nothing(void *unused)
151 {
152 }
153
154 /*
155  * cpu_idle_wait - Used to ensure that all the CPUs discard old value of
156  * pm_idle and update to new pm_idle value. Required while changing pm_idle
157  * handler on SMP systems.
158  *
159  * Caller must have changed pm_idle to the new value before the call. Old
160  * pm_idle value will not be used by any CPU after the return of this function.
161  */
162 void cpu_idle_wait(void)
163 {
164         smp_mb();
165         /* kick all the CPUs so that they exit out of pm_idle */
166         smp_call_function(do_nothing, NULL, 1);
167 }
168 EXPORT_SYMBOL_GPL(cpu_idle_wait);
169
170 /*
171  * This uses new MONITOR/MWAIT instructions on P4 processors with PNI,
172  * which can obviate IPI to trigger checking of need_resched.
173  * We execute MONITOR against need_resched and enter optimized wait state
174  * through MWAIT. Whenever someone changes need_resched, we would be woken
175  * up from MWAIT (without an IPI).
176  *
177  * New with Core Duo processors, MWAIT can take some hints based on CPU
178  * capability.
179  */
180 void mwait_idle_with_hints(unsigned long ax, unsigned long cx)
181 {
182         struct power_trace it;
183
184         trace_power_start(&it, POWER_CSTATE, (ax>>4)+1);
185         if (!need_resched()) {
186                 __monitor((void *)&current_thread_info()->flags, 0, 0);
187                 smp_mb();
188                 if (!need_resched())
189                         __mwait(ax, cx);
190         }
191         trace_power_end(&it);
192 }
193
194 /* Default MONITOR/MWAIT with no hints, used for default C1 state */
195 static void mwait_idle(void)
196 {
197         struct power_trace it;
198         if (!need_resched()) {
199                 trace_power_start(&it, POWER_CSTATE, 1);
200                 __monitor((void *)&current_thread_info()->flags, 0, 0);
201                 smp_mb();
202                 if (!need_resched())
203                         __sti_mwait(0, 0);
204                 else
205                         local_irq_enable();
206                 trace_power_end(&it);
207         } else
208                 local_irq_enable();
209 }
210
211 /*
212  * On SMP it's slightly faster (but much more power-consuming!)
213  * to poll the ->work.need_resched flag instead of waiting for the
214  * cross-CPU IPI to arrive. Use this option with caution.
215  */
216 static void poll_idle(void)
217 {
218         struct power_trace it;
219
220         trace_power_start(&it, POWER_CSTATE, 0);
221         local_irq_enable();
222         while (!need_resched())
223                 cpu_relax();
224         trace_power_end(&it);
225 }
226
227 /*
228  * mwait selection logic:
229  *
230  * It depends on the CPU. For AMD CPUs that support MWAIT this is
231  * wrong. Family 0x10 and 0x11 CPUs will enter C1 on HLT. Powersavings
232  * then depend on a clock divisor and current Pstate of the core. If
233  * all cores of a processor are in halt state (C1) the processor can
234  * enter the C1E (C1 enhanced) state. If mwait is used this will never
235  * happen.
236  *
237  * idle=mwait overrides this decision and forces the usage of mwait.
238  */
239 static int __cpuinitdata force_mwait;
240
241 #define MWAIT_INFO                      0x05
242 #define MWAIT_ECX_EXTENDED_INFO         0x01
243 #define MWAIT_EDX_C1                    0xf0
244
245 static int __cpuinit mwait_usable(const struct cpuinfo_x86 *c)
246 {
247         u32 eax, ebx, ecx, edx;
248
249         if (force_mwait)
250                 return 1;
251
252         if (c->cpuid_level < MWAIT_INFO)
253                 return 0;
254
255         cpuid(MWAIT_INFO, &eax, &ebx, &ecx, &edx);
256         /* Check, whether EDX has extended info about MWAIT */
257         if (!(ecx & MWAIT_ECX_EXTENDED_INFO))
258                 return 1;
259
260         /*
261          * edx enumeratios MONITOR/MWAIT extensions. Check, whether
262          * C1  supports MWAIT
263          */
264         return (edx & MWAIT_EDX_C1);
265 }
266
267 /*
268  * Check for AMD CPUs, which have potentially C1E support
269  */
270 static int __cpuinit check_c1e_idle(const struct cpuinfo_x86 *c)
271 {
272         if (c->x86_vendor != X86_VENDOR_AMD)
273                 return 0;
274
275         if (c->x86 < 0x0F)
276                 return 0;
277
278         /* Family 0x0f models < rev F do not have C1E */
279         if (c->x86 == 0x0f && c->x86_model < 0x40)
280                 return 0;
281
282         return 1;
283 }
284
285 static cpumask_t c1e_mask = CPU_MASK_NONE;
286 static int c1e_detected;
287
288 void c1e_remove_cpu(int cpu)
289 {
290         cpu_clear(cpu, c1e_mask);
291 }
292
293 /*
294  * C1E aware idle routine. We check for C1E active in the interrupt
295  * pending message MSR. If we detect C1E, then we handle it the same
296  * way as C3 power states (local apic timer and TSC stop)
297  */
298 static void c1e_idle(void)
299 {
300         if (need_resched())
301                 return;
302
303         if (!c1e_detected) {
304                 u32 lo, hi;
305
306                 rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
307                 if (lo & K8_INTP_C1E_ACTIVE_MASK) {
308                         c1e_detected = 1;
309                         if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
310                                 mark_tsc_unstable("TSC halt in AMD C1E");
311                         printk(KERN_INFO "System has AMD C1E enabled\n");
312                         set_cpu_cap(&boot_cpu_data, X86_FEATURE_AMDC1E);
313                 }
314         }
315
316         if (c1e_detected) {
317                 int cpu = smp_processor_id();
318
319                 if (!cpu_isset(cpu, c1e_mask)) {
320                         cpu_set(cpu, c1e_mask);
321                         /*
322                          * Force broadcast so ACPI can not interfere. Needs
323                          * to run with interrupts enabled as it uses
324                          * smp_function_call.
325                          */
326                         local_irq_enable();
327                         clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_FORCE,
328                                            &cpu);
329                         printk(KERN_INFO "Switch to broadcast mode on CPU%d\n",
330                                cpu);
331                         local_irq_disable();
332                 }
333                 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER, &cpu);
334
335                 default_idle();
336
337                 /*
338                  * The switch back from broadcast mode needs to be
339                  * called with interrupts disabled.
340                  */
341                  local_irq_disable();
342                  clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_EXIT, &cpu);
343                  local_irq_enable();
344         } else
345                 default_idle();
346 }
347
348 void __cpuinit select_idle_routine(const struct cpuinfo_x86 *c)
349 {
350 #ifdef CONFIG_X86_SMP
351         if (pm_idle == poll_idle && smp_num_siblings > 1) {
352                 printk(KERN_WARNING "WARNING: polling idle and HT enabled,"
353                         " performance may degrade.\n");
354         }
355 #endif
356         if (pm_idle)
357                 return;
358
359         if (cpu_has(c, X86_FEATURE_MWAIT) && mwait_usable(c)) {
360                 /*
361                  * One CPU supports mwait => All CPUs supports mwait
362                  */
363                 printk(KERN_INFO "using mwait in idle threads.\n");
364                 pm_idle = mwait_idle;
365         } else if (check_c1e_idle(c)) {
366                 printk(KERN_INFO "using C1E aware idle routine\n");
367                 pm_idle = c1e_idle;
368         } else
369                 pm_idle = default_idle;
370 }
371
372 static int __init idle_setup(char *str)
373 {
374         if (!str)
375                 return -EINVAL;
376
377         if (!strcmp(str, "poll")) {
378                 printk("using polling idle threads.\n");
379                 pm_idle = poll_idle;
380         } else if (!strcmp(str, "mwait"))
381                 force_mwait = 1;
382         else if (!strcmp(str, "halt")) {
383                 /*
384                  * When the boot option of idle=halt is added, halt is
385                  * forced to be used for CPU idle. In such case CPU C2/C3
386                  * won't be used again.
387                  * To continue to load the CPU idle driver, don't touch
388                  * the boot_option_idle_override.
389                  */
390                 pm_idle = default_idle;
391                 idle_halt = 1;
392                 return 0;
393         } else if (!strcmp(str, "nomwait")) {
394                 /*
395                  * If the boot option of "idle=nomwait" is added,
396                  * it means that mwait will be disabled for CPU C2/C3
397                  * states. In such case it won't touch the variable
398                  * of boot_option_idle_override.
399                  */
400                 idle_nomwait = 1;
401                 return 0;
402         } else
403                 return -1;
404
405         boot_option_idle_override = 1;
406         return 0;
407 }
408 early_param("idle", idle_setup);
409