x86: hpet: provide separate functions to stop and start the counter
[safe/jmp/linux-2.6] / arch / x86 / kernel / hpet.c
1 #include <linux/clocksource.h>
2 #include <linux/clockchips.h>
3 #include <linux/interrupt.h>
4 #include <linux/sysdev.h>
5 #include <linux/delay.h>
6 #include <linux/errno.h>
7 #include <linux/hpet.h>
8 #include <linux/init.h>
9 #include <linux/cpu.h>
10 #include <linux/pm.h>
11 #include <linux/io.h>
12
13 #include <asm/fixmap.h>
14 #include <asm/i8253.h>
15 #include <asm/hpet.h>
16
17 #define HPET_MASK                       CLOCKSOURCE_MASK(32)
18 #define HPET_SHIFT                      22
19
20 /* FSEC = 10^-15
21    NSEC = 10^-9 */
22 #define FSEC_PER_NSEC                   1000000L
23
24 #define HPET_DEV_USED_BIT               2
25 #define HPET_DEV_USED                   (1 << HPET_DEV_USED_BIT)
26 #define HPET_DEV_VALID                  0x8
27 #define HPET_DEV_FSB_CAP                0x1000
28 #define HPET_DEV_PERI_CAP               0x2000
29
30 #define EVT_TO_HPET_DEV(evt) container_of(evt, struct hpet_dev, evt)
31
32 /*
33  * HPET address is set in acpi/boot.c, when an ACPI entry exists
34  */
35 unsigned long                           hpet_address;
36 #ifdef CONFIG_PCI_MSI
37 static unsigned long                    hpet_num_timers;
38 #endif
39 static void __iomem                     *hpet_virt_address;
40
41 struct hpet_dev {
42         struct clock_event_device       evt;
43         unsigned int                    num;
44         int                             cpu;
45         unsigned int                    irq;
46         unsigned int                    flags;
47         char                            name[10];
48 };
49
50 unsigned long hpet_readl(unsigned long a)
51 {
52         return readl(hpet_virt_address + a);
53 }
54
55 static inline void hpet_writel(unsigned long d, unsigned long a)
56 {
57         writel(d, hpet_virt_address + a);
58 }
59
60 #ifdef CONFIG_X86_64
61 #include <asm/pgtable.h>
62 #endif
63
64 static inline void hpet_set_mapping(void)
65 {
66         hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE);
67 #ifdef CONFIG_X86_64
68         __set_fixmap(VSYSCALL_HPET, hpet_address, PAGE_KERNEL_VSYSCALL_NOCACHE);
69 #endif
70 }
71
72 static inline void hpet_clear_mapping(void)
73 {
74         iounmap(hpet_virt_address);
75         hpet_virt_address = NULL;
76 }
77
78 /*
79  * HPET command line enable / disable
80  */
81 static int boot_hpet_disable;
82 int hpet_force_user;
83 static int hpet_verbose;
84
85 static int __init hpet_setup(char *str)
86 {
87         if (str) {
88                 if (!strncmp("disable", str, 7))
89                         boot_hpet_disable = 1;
90                 if (!strncmp("force", str, 5))
91                         hpet_force_user = 1;
92                 if (!strncmp("verbose", str, 7))
93                         hpet_verbose = 1;
94         }
95         return 1;
96 }
97 __setup("hpet=", hpet_setup);
98
99 static int __init disable_hpet(char *str)
100 {
101         boot_hpet_disable = 1;
102         return 1;
103 }
104 __setup("nohpet", disable_hpet);
105
106 static inline int is_hpet_capable(void)
107 {
108         return !boot_hpet_disable && hpet_address;
109 }
110
111 /*
112  * HPET timer interrupt enable / disable
113  */
114 static int hpet_legacy_int_enabled;
115
116 /**
117  * is_hpet_enabled - check whether the hpet timer interrupt is enabled
118  */
119 int is_hpet_enabled(void)
120 {
121         return is_hpet_capable() && hpet_legacy_int_enabled;
122 }
123 EXPORT_SYMBOL_GPL(is_hpet_enabled);
124
125 static void _hpet_print_config(const char *function, int line)
126 {
127         u32 i, timers, l, h;
128         printk(KERN_INFO "hpet: %s(%d):\n", function, line);
129         l = hpet_readl(HPET_ID);
130         h = hpet_readl(HPET_PERIOD);
131         timers = ((l & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
132         printk(KERN_INFO "hpet: ID: 0x%x, PERIOD: 0x%x\n", l, h);
133         l = hpet_readl(HPET_CFG);
134         h = hpet_readl(HPET_STATUS);
135         printk(KERN_INFO "hpet: CFG: 0x%x, STATUS: 0x%x\n", l, h);
136         l = hpet_readl(HPET_COUNTER);
137         h = hpet_readl(HPET_COUNTER+4);
138         printk(KERN_INFO "hpet: COUNTER_l: 0x%x, COUNTER_h: 0x%x\n", l, h);
139
140         for (i = 0; i < timers; i++) {
141                 l = hpet_readl(HPET_Tn_CFG(i));
142                 h = hpet_readl(HPET_Tn_CFG(i)+4);
143                 printk(KERN_INFO "hpet: T%d: CFG_l: 0x%x, CFG_h: 0x%x\n",
144                        i, l, h);
145                 l = hpet_readl(HPET_Tn_CMP(i));
146                 h = hpet_readl(HPET_Tn_CMP(i)+4);
147                 printk(KERN_INFO "hpet: T%d: CMP_l: 0x%x, CMP_h: 0x%x\n",
148                        i, l, h);
149                 l = hpet_readl(HPET_Tn_ROUTE(i));
150                 h = hpet_readl(HPET_Tn_ROUTE(i)+4);
151                 printk(KERN_INFO "hpet: T%d ROUTE_l: 0x%x, ROUTE_h: 0x%x\n",
152                        i, l, h);
153         }
154 }
155
156 #define hpet_print_config()                                     \
157 do {                                                            \
158         if (hpet_verbose)                                       \
159                 _hpet_print_config(__FUNCTION__, __LINE__);     \
160 } while (0)
161
162 /*
163  * When the hpet driver (/dev/hpet) is enabled, we need to reserve
164  * timer 0 and timer 1 in case of RTC emulation.
165  */
166 #ifdef CONFIG_HPET
167
168 static void hpet_reserve_msi_timers(struct hpet_data *hd);
169
170 static void hpet_reserve_platform_timers(unsigned long id)
171 {
172         struct hpet __iomem *hpet = hpet_virt_address;
173         struct hpet_timer __iomem *timer = &hpet->hpet_timers[2];
174         unsigned int nrtimers, i;
175         struct hpet_data hd;
176
177         nrtimers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
178
179         memset(&hd, 0, sizeof(hd));
180         hd.hd_phys_address      = hpet_address;
181         hd.hd_address           = hpet;
182         hd.hd_nirqs             = nrtimers;
183         hpet_reserve_timer(&hd, 0);
184
185 #ifdef CONFIG_HPET_EMULATE_RTC
186         hpet_reserve_timer(&hd, 1);
187 #endif
188
189         /*
190          * NOTE that hd_irq[] reflects IOAPIC input pins (LEGACY_8254
191          * is wrong for i8259!) not the output IRQ.  Many BIOS writers
192          * don't bother configuring *any* comparator interrupts.
193          */
194         hd.hd_irq[0] = HPET_LEGACY_8254;
195         hd.hd_irq[1] = HPET_LEGACY_RTC;
196
197         for (i = 2; i < nrtimers; timer++, i++) {
198                 hd.hd_irq[i] = (readl(&timer->hpet_config) &
199                         Tn_INT_ROUTE_CNF_MASK) >> Tn_INT_ROUTE_CNF_SHIFT;
200         }
201
202         hpet_reserve_msi_timers(&hd);
203
204         hpet_alloc(&hd);
205
206 }
207 #else
208 static void hpet_reserve_platform_timers(unsigned long id) { }
209 #endif
210
211 /*
212  * Common hpet info
213  */
214 static unsigned long hpet_period;
215
216 static void hpet_legacy_set_mode(enum clock_event_mode mode,
217                           struct clock_event_device *evt);
218 static int hpet_legacy_next_event(unsigned long delta,
219                            struct clock_event_device *evt);
220
221 /*
222  * The hpet clock event device
223  */
224 static struct clock_event_device hpet_clockevent = {
225         .name           = "hpet",
226         .features       = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
227         .set_mode       = hpet_legacy_set_mode,
228         .set_next_event = hpet_legacy_next_event,
229         .shift          = 32,
230         .irq            = 0,
231         .rating         = 50,
232 };
233
234 static void hpet_stop_counter(void)
235 {
236         unsigned long cfg = hpet_readl(HPET_CFG);
237         cfg &= ~HPET_CFG_ENABLE;
238         hpet_writel(cfg, HPET_CFG);
239         hpet_writel(0, HPET_COUNTER);
240         hpet_writel(0, HPET_COUNTER + 4);
241 }
242
243 static void hpet_start_counter(void)
244 {
245         unsigned long cfg = hpet_readl(HPET_CFG);
246         cfg |= HPET_CFG_ENABLE;
247         hpet_writel(cfg, HPET_CFG);
248 }
249
250 static void hpet_restart_counter(void)
251 {
252         hpet_stop_counter();
253         hpet_start_counter();
254 }
255
256 static void hpet_resume_device(void)
257 {
258         force_hpet_resume();
259 }
260
261 static void hpet_resume_counter(void)
262 {
263         hpet_resume_device();
264         hpet_restart_counter();
265 }
266
267 static void hpet_enable_legacy_int(void)
268 {
269         unsigned long cfg = hpet_readl(HPET_CFG);
270
271         cfg |= HPET_CFG_LEGACY;
272         hpet_writel(cfg, HPET_CFG);
273         hpet_legacy_int_enabled = 1;
274 }
275
276 static void hpet_legacy_clockevent_register(void)
277 {
278         /* Start HPET legacy interrupts */
279         hpet_enable_legacy_int();
280
281         /*
282          * The mult factor is defined as (include/linux/clockchips.h)
283          *  mult/2^shift = cyc/ns (in contrast to ns/cyc in clocksource.h)
284          * hpet_period is in units of femtoseconds (per cycle), so
285          *  mult/2^shift = cyc/ns = 10^6/hpet_period
286          *  mult = (10^6 * 2^shift)/hpet_period
287          *  mult = (FSEC_PER_NSEC << hpet_clockevent.shift)/hpet_period
288          */
289         hpet_clockevent.mult = div_sc((unsigned long) FSEC_PER_NSEC,
290                                       hpet_period, hpet_clockevent.shift);
291         /* Calculate the min / max delta */
292         hpet_clockevent.max_delta_ns = clockevent_delta2ns(0x7FFFFFFF,
293                                                            &hpet_clockevent);
294         /* 5 usec minimum reprogramming delta. */
295         hpet_clockevent.min_delta_ns = 5000;
296
297         /*
298          * Start hpet with the boot cpu mask and make it
299          * global after the IO_APIC has been initialized.
300          */
301         hpet_clockevent.cpumask = cpumask_of(smp_processor_id());
302         clockevents_register_device(&hpet_clockevent);
303         global_clock_event = &hpet_clockevent;
304         printk(KERN_DEBUG "hpet clockevent registered\n");
305 }
306
307 static int hpet_setup_msi_irq(unsigned int irq);
308
309 static void hpet_set_mode(enum clock_event_mode mode,
310                           struct clock_event_device *evt, int timer)
311 {
312         unsigned long cfg, cmp, now;
313         uint64_t delta;
314
315         switch (mode) {
316         case CLOCK_EVT_MODE_PERIODIC:
317                 delta = ((uint64_t)(NSEC_PER_SEC/HZ)) * evt->mult;
318                 delta >>= evt->shift;
319                 now = hpet_readl(HPET_COUNTER);
320                 cmp = now + (unsigned long) delta;
321                 cfg = hpet_readl(HPET_Tn_CFG(timer));
322                 /* Make sure we use edge triggered interrupts */
323                 cfg &= ~HPET_TN_LEVEL;
324                 cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC |
325                        HPET_TN_SETVAL | HPET_TN_32BIT;
326                 hpet_writel(cfg, HPET_Tn_CFG(timer));
327                 /*
328                  * The first write after writing TN_SETVAL to the
329                  * config register sets the counter value, the second
330                  * write sets the period.
331                  */
332                 hpet_writel(cmp, HPET_Tn_CMP(timer));
333                 udelay(1);
334                 hpet_writel((unsigned long) delta, HPET_Tn_CMP(timer));
335                 hpet_print_config();
336                 break;
337
338         case CLOCK_EVT_MODE_ONESHOT:
339                 cfg = hpet_readl(HPET_Tn_CFG(timer));
340                 cfg &= ~HPET_TN_PERIODIC;
341                 cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
342                 hpet_writel(cfg, HPET_Tn_CFG(timer));
343                 break;
344
345         case CLOCK_EVT_MODE_UNUSED:
346         case CLOCK_EVT_MODE_SHUTDOWN:
347                 cfg = hpet_readl(HPET_Tn_CFG(timer));
348                 cfg &= ~HPET_TN_ENABLE;
349                 hpet_writel(cfg, HPET_Tn_CFG(timer));
350                 break;
351
352         case CLOCK_EVT_MODE_RESUME:
353                 if (timer == 0) {
354                         hpet_enable_legacy_int();
355                 } else {
356                         struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
357                         hpet_setup_msi_irq(hdev->irq);
358                         disable_irq(hdev->irq);
359                         irq_set_affinity(hdev->irq, cpumask_of(hdev->cpu));
360                         enable_irq(hdev->irq);
361                 }
362                 hpet_print_config();
363                 break;
364         }
365 }
366
367 static int hpet_next_event(unsigned long delta,
368                            struct clock_event_device *evt, int timer)
369 {
370         u32 cnt;
371
372         cnt = hpet_readl(HPET_COUNTER);
373         cnt += (u32) delta;
374         hpet_writel(cnt, HPET_Tn_CMP(timer));
375
376         /*
377          * We need to read back the CMP register to make sure that
378          * what we wrote hit the chip before we compare it to the
379          * counter.
380          */
381         WARN_ON_ONCE((u32)hpet_readl(HPET_Tn_CMP(timer)) != cnt);
382
383         return (s32)((u32)hpet_readl(HPET_COUNTER) - cnt) >= 0 ? -ETIME : 0;
384 }
385
386 static void hpet_legacy_set_mode(enum clock_event_mode mode,
387                         struct clock_event_device *evt)
388 {
389         hpet_set_mode(mode, evt, 0);
390 }
391
392 static int hpet_legacy_next_event(unsigned long delta,
393                         struct clock_event_device *evt)
394 {
395         return hpet_next_event(delta, evt, 0);
396 }
397
398 /*
399  * HPET MSI Support
400  */
401 #ifdef CONFIG_PCI_MSI
402
403 static DEFINE_PER_CPU(struct hpet_dev *, cpu_hpet_dev);
404 static struct hpet_dev  *hpet_devs;
405
406 void hpet_msi_unmask(unsigned int irq)
407 {
408         struct hpet_dev *hdev = get_irq_data(irq);
409         unsigned long cfg;
410
411         /* unmask it */
412         cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
413         cfg |= HPET_TN_FSB;
414         hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
415 }
416
417 void hpet_msi_mask(unsigned int irq)
418 {
419         unsigned long cfg;
420         struct hpet_dev *hdev = get_irq_data(irq);
421
422         /* mask it */
423         cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
424         cfg &= ~HPET_TN_FSB;
425         hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
426 }
427
428 void hpet_msi_write(unsigned int irq, struct msi_msg *msg)
429 {
430         struct hpet_dev *hdev = get_irq_data(irq);
431
432         hpet_writel(msg->data, HPET_Tn_ROUTE(hdev->num));
433         hpet_writel(msg->address_lo, HPET_Tn_ROUTE(hdev->num) + 4);
434 }
435
436 void hpet_msi_read(unsigned int irq, struct msi_msg *msg)
437 {
438         struct hpet_dev *hdev = get_irq_data(irq);
439
440         msg->data = hpet_readl(HPET_Tn_ROUTE(hdev->num));
441         msg->address_lo = hpet_readl(HPET_Tn_ROUTE(hdev->num) + 4);
442         msg->address_hi = 0;
443 }
444
445 static void hpet_msi_set_mode(enum clock_event_mode mode,
446                                 struct clock_event_device *evt)
447 {
448         struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
449         hpet_set_mode(mode, evt, hdev->num);
450 }
451
452 static int hpet_msi_next_event(unsigned long delta,
453                                 struct clock_event_device *evt)
454 {
455         struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
456         return hpet_next_event(delta, evt, hdev->num);
457 }
458
459 static int hpet_setup_msi_irq(unsigned int irq)
460 {
461         if (arch_setup_hpet_msi(irq)) {
462                 destroy_irq(irq);
463                 return -EINVAL;
464         }
465         return 0;
466 }
467
468 static int hpet_assign_irq(struct hpet_dev *dev)
469 {
470         unsigned int irq;
471
472         irq = create_irq();
473         if (!irq)
474                 return -EINVAL;
475
476         set_irq_data(irq, dev);
477
478         if (hpet_setup_msi_irq(irq))
479                 return -EINVAL;
480
481         dev->irq = irq;
482         return 0;
483 }
484
485 static irqreturn_t hpet_interrupt_handler(int irq, void *data)
486 {
487         struct hpet_dev *dev = (struct hpet_dev *)data;
488         struct clock_event_device *hevt = &dev->evt;
489
490         if (!hevt->event_handler) {
491                 printk(KERN_INFO "Spurious HPET timer interrupt on HPET timer %d\n",
492                                 dev->num);
493                 return IRQ_HANDLED;
494         }
495
496         hevt->event_handler(hevt);
497         return IRQ_HANDLED;
498 }
499
500 static int hpet_setup_irq(struct hpet_dev *dev)
501 {
502
503         if (request_irq(dev->irq, hpet_interrupt_handler,
504                         IRQF_DISABLED|IRQF_NOBALANCING, dev->name, dev))
505                 return -1;
506
507         disable_irq(dev->irq);
508         irq_set_affinity(dev->irq, cpumask_of(dev->cpu));
509         enable_irq(dev->irq);
510
511         printk(KERN_DEBUG "hpet: %s irq %d for MSI\n",
512                          dev->name, dev->irq);
513
514         return 0;
515 }
516
517 /* This should be called in specific @cpu */
518 static void init_one_hpet_msi_clockevent(struct hpet_dev *hdev, int cpu)
519 {
520         struct clock_event_device *evt = &hdev->evt;
521         uint64_t hpet_freq;
522
523         WARN_ON(cpu != smp_processor_id());
524         if (!(hdev->flags & HPET_DEV_VALID))
525                 return;
526
527         if (hpet_setup_msi_irq(hdev->irq))
528                 return;
529
530         hdev->cpu = cpu;
531         per_cpu(cpu_hpet_dev, cpu) = hdev;
532         evt->name = hdev->name;
533         hpet_setup_irq(hdev);
534         evt->irq = hdev->irq;
535
536         evt->rating = 110;
537         evt->features = CLOCK_EVT_FEAT_ONESHOT;
538         if (hdev->flags & HPET_DEV_PERI_CAP)
539                 evt->features |= CLOCK_EVT_FEAT_PERIODIC;
540
541         evt->set_mode = hpet_msi_set_mode;
542         evt->set_next_event = hpet_msi_next_event;
543         evt->shift = 32;
544
545         /*
546          * The period is a femto seconds value. We need to calculate the
547          * scaled math multiplication factor for nanosecond to hpet tick
548          * conversion.
549          */
550         hpet_freq = 1000000000000000ULL;
551         do_div(hpet_freq, hpet_period);
552         evt->mult = div_sc((unsigned long) hpet_freq,
553                                       NSEC_PER_SEC, evt->shift);
554         /* Calculate the max delta */
555         evt->max_delta_ns = clockevent_delta2ns(0x7FFFFFFF, evt);
556         /* 5 usec minimum reprogramming delta. */
557         evt->min_delta_ns = 5000;
558
559         evt->cpumask = cpumask_of(hdev->cpu);
560         clockevents_register_device(evt);
561 }
562
563 #ifdef CONFIG_HPET
564 /* Reserve at least one timer for userspace (/dev/hpet) */
565 #define RESERVE_TIMERS 1
566 #else
567 #define RESERVE_TIMERS 0
568 #endif
569
570 static void hpet_msi_capability_lookup(unsigned int start_timer)
571 {
572         unsigned int id;
573         unsigned int num_timers;
574         unsigned int num_timers_used = 0;
575         int i;
576
577         id = hpet_readl(HPET_ID);
578
579         num_timers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT);
580         num_timers++; /* Value read out starts from 0 */
581         hpet_print_config();
582
583         hpet_devs = kzalloc(sizeof(struct hpet_dev) * num_timers, GFP_KERNEL);
584         if (!hpet_devs)
585                 return;
586
587         hpet_num_timers = num_timers;
588
589         for (i = start_timer; i < num_timers - RESERVE_TIMERS; i++) {
590                 struct hpet_dev *hdev = &hpet_devs[num_timers_used];
591                 unsigned long cfg = hpet_readl(HPET_Tn_CFG(i));
592
593                 /* Only consider HPET timer with MSI support */
594                 if (!(cfg & HPET_TN_FSB_CAP))
595                         continue;
596
597                 hdev->flags = 0;
598                 if (cfg & HPET_TN_PERIODIC_CAP)
599                         hdev->flags |= HPET_DEV_PERI_CAP;
600                 hdev->num = i;
601
602                 sprintf(hdev->name, "hpet%d", i);
603                 if (hpet_assign_irq(hdev))
604                         continue;
605
606                 hdev->flags |= HPET_DEV_FSB_CAP;
607                 hdev->flags |= HPET_DEV_VALID;
608                 num_timers_used++;
609                 if (num_timers_used == num_possible_cpus())
610                         break;
611         }
612
613         printk(KERN_INFO "HPET: %d timers in total, %d timers will be used for per-cpu timer\n",
614                 num_timers, num_timers_used);
615 }
616
617 #ifdef CONFIG_HPET
618 static void hpet_reserve_msi_timers(struct hpet_data *hd)
619 {
620         int i;
621
622         if (!hpet_devs)
623                 return;
624
625         for (i = 0; i < hpet_num_timers; i++) {
626                 struct hpet_dev *hdev = &hpet_devs[i];
627
628                 if (!(hdev->flags & HPET_DEV_VALID))
629                         continue;
630
631                 hd->hd_irq[hdev->num] = hdev->irq;
632                 hpet_reserve_timer(hd, hdev->num);
633         }
634 }
635 #endif
636
637 static struct hpet_dev *hpet_get_unused_timer(void)
638 {
639         int i;
640
641         if (!hpet_devs)
642                 return NULL;
643
644         for (i = 0; i < hpet_num_timers; i++) {
645                 struct hpet_dev *hdev = &hpet_devs[i];
646
647                 if (!(hdev->flags & HPET_DEV_VALID))
648                         continue;
649                 if (test_and_set_bit(HPET_DEV_USED_BIT,
650                         (unsigned long *)&hdev->flags))
651                         continue;
652                 return hdev;
653         }
654         return NULL;
655 }
656
657 struct hpet_work_struct {
658         struct delayed_work work;
659         struct completion complete;
660 };
661
662 static void hpet_work(struct work_struct *w)
663 {
664         struct hpet_dev *hdev;
665         int cpu = smp_processor_id();
666         struct hpet_work_struct *hpet_work;
667
668         hpet_work = container_of(w, struct hpet_work_struct, work.work);
669
670         hdev = hpet_get_unused_timer();
671         if (hdev)
672                 init_one_hpet_msi_clockevent(hdev, cpu);
673
674         complete(&hpet_work->complete);
675 }
676
677 static int hpet_cpuhp_notify(struct notifier_block *n,
678                 unsigned long action, void *hcpu)
679 {
680         unsigned long cpu = (unsigned long)hcpu;
681         struct hpet_work_struct work;
682         struct hpet_dev *hdev = per_cpu(cpu_hpet_dev, cpu);
683
684         switch (action & 0xf) {
685         case CPU_ONLINE:
686                 INIT_DELAYED_WORK_ON_STACK(&work.work, hpet_work);
687                 init_completion(&work.complete);
688                 /* FIXME: add schedule_work_on() */
689                 schedule_delayed_work_on(cpu, &work.work, 0);
690                 wait_for_completion(&work.complete);
691                 destroy_timer_on_stack(&work.work.timer);
692                 break;
693         case CPU_DEAD:
694                 if (hdev) {
695                         free_irq(hdev->irq, hdev);
696                         hdev->flags &= ~HPET_DEV_USED;
697                         per_cpu(cpu_hpet_dev, cpu) = NULL;
698                 }
699                 break;
700         }
701         return NOTIFY_OK;
702 }
703 #else
704
705 static int hpet_setup_msi_irq(unsigned int irq)
706 {
707         return 0;
708 }
709 static void hpet_msi_capability_lookup(unsigned int start_timer)
710 {
711         return;
712 }
713
714 #ifdef CONFIG_HPET
715 static void hpet_reserve_msi_timers(struct hpet_data *hd)
716 {
717         return;
718 }
719 #endif
720
721 static int hpet_cpuhp_notify(struct notifier_block *n,
722                 unsigned long action, void *hcpu)
723 {
724         return NOTIFY_OK;
725 }
726
727 #endif
728
729 /*
730  * Clock source related code
731  */
732 static cycle_t read_hpet(void)
733 {
734         return (cycle_t)hpet_readl(HPET_COUNTER);
735 }
736
737 #ifdef CONFIG_X86_64
738 static cycle_t __vsyscall_fn vread_hpet(void)
739 {
740         return readl((const void __iomem *)fix_to_virt(VSYSCALL_HPET) + 0xf0);
741 }
742 #endif
743
744 static struct clocksource clocksource_hpet = {
745         .name           = "hpet",
746         .rating         = 250,
747         .read           = read_hpet,
748         .mask           = HPET_MASK,
749         .shift          = HPET_SHIFT,
750         .flags          = CLOCK_SOURCE_IS_CONTINUOUS,
751         .resume         = hpet_resume_counter,
752 #ifdef CONFIG_X86_64
753         .vread          = vread_hpet,
754 #endif
755 };
756
757 static int hpet_clocksource_register(void)
758 {
759         u64 start, now;
760         cycle_t t1;
761
762         /* Start the counter */
763         hpet_restart_counter();
764
765         /* Verify whether hpet counter works */
766         t1 = read_hpet();
767         rdtscll(start);
768
769         /*
770          * We don't know the TSC frequency yet, but waiting for
771          * 200000 TSC cycles is safe:
772          * 4 GHz == 50us
773          * 1 GHz == 200us
774          */
775         do {
776                 rep_nop();
777                 rdtscll(now);
778         } while ((now - start) < 200000UL);
779
780         if (t1 == read_hpet()) {
781                 printk(KERN_WARNING
782                        "HPET counter not counting. HPET disabled\n");
783                 return -ENODEV;
784         }
785
786         /*
787          * The definition of mult is (include/linux/clocksource.h)
788          * mult/2^shift = ns/cyc and hpet_period is in units of fsec/cyc
789          * so we first need to convert hpet_period to ns/cyc units:
790          *  mult/2^shift = ns/cyc = hpet_period/10^6
791          *  mult = (hpet_period * 2^shift)/10^6
792          *  mult = (hpet_period << shift)/FSEC_PER_NSEC
793          */
794         clocksource_hpet.mult = div_sc(hpet_period, FSEC_PER_NSEC, HPET_SHIFT);
795
796         clocksource_register(&clocksource_hpet);
797
798         return 0;
799 }
800
801 /**
802  * hpet_enable - Try to setup the HPET timer. Returns 1 on success.
803  */
804 int __init hpet_enable(void)
805 {
806         unsigned long id;
807         int i;
808
809         if (!is_hpet_capable())
810                 return 0;
811
812         hpet_set_mapping();
813
814         /*
815          * Read the period and check for a sane value:
816          */
817         hpet_period = hpet_readl(HPET_PERIOD);
818
819         /*
820          * AMD SB700 based systems with spread spectrum enabled use a
821          * SMM based HPET emulation to provide proper frequency
822          * setting. The SMM code is initialized with the first HPET
823          * register access and takes some time to complete. During
824          * this time the config register reads 0xffffffff. We check
825          * for max. 1000 loops whether the config register reads a non
826          * 0xffffffff value to make sure that HPET is up and running
827          * before we go further. A counting loop is safe, as the HPET
828          * access takes thousands of CPU cycles. On non SB700 based
829          * machines this check is only done once and has no side
830          * effects.
831          */
832         for (i = 0; hpet_readl(HPET_CFG) == 0xFFFFFFFF; i++) {
833                 if (i == 1000) {
834                         printk(KERN_WARNING
835                                "HPET config register value = 0xFFFFFFFF. "
836                                "Disabling HPET\n");
837                         goto out_nohpet;
838                 }
839         }
840
841         if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD)
842                 goto out_nohpet;
843
844         /*
845          * Read the HPET ID register to retrieve the IRQ routing
846          * information and the number of channels
847          */
848         id = hpet_readl(HPET_ID);
849         hpet_print_config();
850
851 #ifdef CONFIG_HPET_EMULATE_RTC
852         /*
853          * The legacy routing mode needs at least two channels, tick timer
854          * and the rtc emulation channel.
855          */
856         if (!(id & HPET_ID_NUMBER))
857                 goto out_nohpet;
858 #endif
859
860         if (hpet_clocksource_register())
861                 goto out_nohpet;
862
863         if (id & HPET_ID_LEGSUP) {
864                 hpet_legacy_clockevent_register();
865                 hpet_msi_capability_lookup(2);
866                 return 1;
867         }
868         hpet_msi_capability_lookup(0);
869         return 0;
870
871 out_nohpet:
872         hpet_clear_mapping();
873         hpet_address = 0;
874         return 0;
875 }
876
877 /*
878  * Needs to be late, as the reserve_timer code calls kalloc !
879  *
880  * Not a problem on i386 as hpet_enable is called from late_time_init,
881  * but on x86_64 it is necessary !
882  */
883 static __init int hpet_late_init(void)
884 {
885         int cpu;
886
887         if (boot_hpet_disable)
888                 return -ENODEV;
889
890         if (!hpet_address) {
891                 if (!force_hpet_address)
892                         return -ENODEV;
893
894                 hpet_address = force_hpet_address;
895                 hpet_enable();
896         }
897
898         if (!hpet_virt_address)
899                 return -ENODEV;
900
901         hpet_reserve_platform_timers(hpet_readl(HPET_ID));
902         hpet_print_config();
903
904         for_each_online_cpu(cpu) {
905                 hpet_cpuhp_notify(NULL, CPU_ONLINE, (void *)(long)cpu);
906         }
907
908         /* This notifier should be called after workqueue is ready */
909         hotcpu_notifier(hpet_cpuhp_notify, -20);
910
911         return 0;
912 }
913 fs_initcall(hpet_late_init);
914
915 void hpet_disable(void)
916 {
917         if (is_hpet_capable()) {
918                 unsigned long cfg = hpet_readl(HPET_CFG);
919
920                 if (hpet_legacy_int_enabled) {
921                         cfg &= ~HPET_CFG_LEGACY;
922                         hpet_legacy_int_enabled = 0;
923                 }
924                 cfg &= ~HPET_CFG_ENABLE;
925                 hpet_writel(cfg, HPET_CFG);
926         }
927 }
928
929 #ifdef CONFIG_HPET_EMULATE_RTC
930
931 /* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
932  * is enabled, we support RTC interrupt functionality in software.
933  * RTC has 3 kinds of interrupts:
934  * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
935  *    is updated
936  * 2) Alarm Interrupt - generate an interrupt at a specific time of day
937  * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
938  *    2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
939  * (1) and (2) above are implemented using polling at a frequency of
940  * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
941  * overhead. (DEFAULT_RTC_INT_FREQ)
942  * For (3), we use interrupts at 64Hz or user specified periodic
943  * frequency, whichever is higher.
944  */
945 #include <linux/mc146818rtc.h>
946 #include <linux/rtc.h>
947 #include <asm/rtc.h>
948
949 #define DEFAULT_RTC_INT_FREQ    64
950 #define DEFAULT_RTC_SHIFT       6
951 #define RTC_NUM_INTS            1
952
953 static unsigned long hpet_rtc_flags;
954 static int hpet_prev_update_sec;
955 static struct rtc_time hpet_alarm_time;
956 static unsigned long hpet_pie_count;
957 static u32 hpet_t1_cmp;
958 static unsigned long hpet_default_delta;
959 static unsigned long hpet_pie_delta;
960 static unsigned long hpet_pie_limit;
961
962 static rtc_irq_handler irq_handler;
963
964 /*
965  * Check that the hpet counter c1 is ahead of the c2
966  */
967 static inline int hpet_cnt_ahead(u32 c1, u32 c2)
968 {
969         return (s32)(c2 - c1) < 0;
970 }
971
972 /*
973  * Registers a IRQ handler.
974  */
975 int hpet_register_irq_handler(rtc_irq_handler handler)
976 {
977         if (!is_hpet_enabled())
978                 return -ENODEV;
979         if (irq_handler)
980                 return -EBUSY;
981
982         irq_handler = handler;
983
984         return 0;
985 }
986 EXPORT_SYMBOL_GPL(hpet_register_irq_handler);
987
988 /*
989  * Deregisters the IRQ handler registered with hpet_register_irq_handler()
990  * and does cleanup.
991  */
992 void hpet_unregister_irq_handler(rtc_irq_handler handler)
993 {
994         if (!is_hpet_enabled())
995                 return;
996
997         irq_handler = NULL;
998         hpet_rtc_flags = 0;
999 }
1000 EXPORT_SYMBOL_GPL(hpet_unregister_irq_handler);
1001
1002 /*
1003  * Timer 1 for RTC emulation. We use one shot mode, as periodic mode
1004  * is not supported by all HPET implementations for timer 1.
1005  *
1006  * hpet_rtc_timer_init() is called when the rtc is initialized.
1007  */
1008 int hpet_rtc_timer_init(void)
1009 {
1010         unsigned long cfg, cnt, delta, flags;
1011
1012         if (!is_hpet_enabled())
1013                 return 0;
1014
1015         if (!hpet_default_delta) {
1016                 uint64_t clc;
1017
1018                 clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1019                 clc >>= hpet_clockevent.shift + DEFAULT_RTC_SHIFT;
1020                 hpet_default_delta = (unsigned long) clc;
1021         }
1022
1023         if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1024                 delta = hpet_default_delta;
1025         else
1026                 delta = hpet_pie_delta;
1027
1028         local_irq_save(flags);
1029
1030         cnt = delta + hpet_readl(HPET_COUNTER);
1031         hpet_writel(cnt, HPET_T1_CMP);
1032         hpet_t1_cmp = cnt;
1033
1034         cfg = hpet_readl(HPET_T1_CFG);
1035         cfg &= ~HPET_TN_PERIODIC;
1036         cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
1037         hpet_writel(cfg, HPET_T1_CFG);
1038
1039         local_irq_restore(flags);
1040
1041         return 1;
1042 }
1043 EXPORT_SYMBOL_GPL(hpet_rtc_timer_init);
1044
1045 /*
1046  * The functions below are called from rtc driver.
1047  * Return 0 if HPET is not being used.
1048  * Otherwise do the necessary changes and return 1.
1049  */
1050 int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
1051 {
1052         if (!is_hpet_enabled())
1053                 return 0;
1054
1055         hpet_rtc_flags &= ~bit_mask;
1056         return 1;
1057 }
1058 EXPORT_SYMBOL_GPL(hpet_mask_rtc_irq_bit);
1059
1060 int hpet_set_rtc_irq_bit(unsigned long bit_mask)
1061 {
1062         unsigned long oldbits = hpet_rtc_flags;
1063
1064         if (!is_hpet_enabled())
1065                 return 0;
1066
1067         hpet_rtc_flags |= bit_mask;
1068
1069         if ((bit_mask & RTC_UIE) && !(oldbits & RTC_UIE))
1070                 hpet_prev_update_sec = -1;
1071
1072         if (!oldbits)
1073                 hpet_rtc_timer_init();
1074
1075         return 1;
1076 }
1077 EXPORT_SYMBOL_GPL(hpet_set_rtc_irq_bit);
1078
1079 int hpet_set_alarm_time(unsigned char hrs, unsigned char min,
1080                         unsigned char sec)
1081 {
1082         if (!is_hpet_enabled())
1083                 return 0;
1084
1085         hpet_alarm_time.tm_hour = hrs;
1086         hpet_alarm_time.tm_min = min;
1087         hpet_alarm_time.tm_sec = sec;
1088
1089         return 1;
1090 }
1091 EXPORT_SYMBOL_GPL(hpet_set_alarm_time);
1092
1093 int hpet_set_periodic_freq(unsigned long freq)
1094 {
1095         uint64_t clc;
1096
1097         if (!is_hpet_enabled())
1098                 return 0;
1099
1100         if (freq <= DEFAULT_RTC_INT_FREQ)
1101                 hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq;
1102         else {
1103                 clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1104                 do_div(clc, freq);
1105                 clc >>= hpet_clockevent.shift;
1106                 hpet_pie_delta = (unsigned long) clc;
1107         }
1108         return 1;
1109 }
1110 EXPORT_SYMBOL_GPL(hpet_set_periodic_freq);
1111
1112 int hpet_rtc_dropped_irq(void)
1113 {
1114         return is_hpet_enabled();
1115 }
1116 EXPORT_SYMBOL_GPL(hpet_rtc_dropped_irq);
1117
1118 static void hpet_rtc_timer_reinit(void)
1119 {
1120         unsigned long cfg, delta;
1121         int lost_ints = -1;
1122
1123         if (unlikely(!hpet_rtc_flags)) {
1124                 cfg = hpet_readl(HPET_T1_CFG);
1125                 cfg &= ~HPET_TN_ENABLE;
1126                 hpet_writel(cfg, HPET_T1_CFG);
1127                 return;
1128         }
1129
1130         if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1131                 delta = hpet_default_delta;
1132         else
1133                 delta = hpet_pie_delta;
1134
1135         /*
1136          * Increment the comparator value until we are ahead of the
1137          * current count.
1138          */
1139         do {
1140                 hpet_t1_cmp += delta;
1141                 hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
1142                 lost_ints++;
1143         } while (!hpet_cnt_ahead(hpet_t1_cmp, hpet_readl(HPET_COUNTER)));
1144
1145         if (lost_ints) {
1146                 if (hpet_rtc_flags & RTC_PIE)
1147                         hpet_pie_count += lost_ints;
1148                 if (printk_ratelimit())
1149                         printk(KERN_WARNING "hpet1: lost %d rtc interrupts\n",
1150                                 lost_ints);
1151         }
1152 }
1153
1154 irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
1155 {
1156         struct rtc_time curr_time;
1157         unsigned long rtc_int_flag = 0;
1158
1159         hpet_rtc_timer_reinit();
1160         memset(&curr_time, 0, sizeof(struct rtc_time));
1161
1162         if (hpet_rtc_flags & (RTC_UIE | RTC_AIE))
1163                 get_rtc_time(&curr_time);
1164
1165         if (hpet_rtc_flags & RTC_UIE &&
1166             curr_time.tm_sec != hpet_prev_update_sec) {
1167                 if (hpet_prev_update_sec >= 0)
1168                         rtc_int_flag = RTC_UF;
1169                 hpet_prev_update_sec = curr_time.tm_sec;
1170         }
1171
1172         if (hpet_rtc_flags & RTC_PIE &&
1173             ++hpet_pie_count >= hpet_pie_limit) {
1174                 rtc_int_flag |= RTC_PF;
1175                 hpet_pie_count = 0;
1176         }
1177
1178         if (hpet_rtc_flags & RTC_AIE &&
1179             (curr_time.tm_sec == hpet_alarm_time.tm_sec) &&
1180             (curr_time.tm_min == hpet_alarm_time.tm_min) &&
1181             (curr_time.tm_hour == hpet_alarm_time.tm_hour))
1182                         rtc_int_flag |= RTC_AF;
1183
1184         if (rtc_int_flag) {
1185                 rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
1186                 if (irq_handler)
1187                         irq_handler(rtc_int_flag, dev_id);
1188         }
1189         return IRQ_HANDLED;
1190 }
1191 EXPORT_SYMBOL_GPL(hpet_rtc_interrupt);
1192 #endif