x86: using HPET in MSI mode and setting up per CPU HPET timers, fix
[safe/jmp/linux-2.6] / arch / x86 / kernel / hpet.c
1 #include <linux/clocksource.h>
2 #include <linux/clockchips.h>
3 #include <linux/interrupt.h>
4 #include <linux/sysdev.h>
5 #include <linux/delay.h>
6 #include <linux/errno.h>
7 #include <linux/hpet.h>
8 #include <linux/init.h>
9 #include <linux/cpu.h>
10 #include <linux/pm.h>
11 #include <linux/io.h>
12
13 #include <asm/fixmap.h>
14 #include <asm/i8253.h>
15 #include <asm/hpet.h>
16
17 #define HPET_MASK                       CLOCKSOURCE_MASK(32)
18 #define HPET_SHIFT                      22
19
20 /* FSEC = 10^-15
21    NSEC = 10^-9 */
22 #define FSEC_PER_NSEC                   1000000L
23
24 #define HPET_DEV_USED_BIT               2
25 #define HPET_DEV_USED                   (1 << HPET_DEV_USED_BIT)
26 #define HPET_DEV_VALID                  0x8
27 #define HPET_DEV_FSB_CAP                0x1000
28 #define HPET_DEV_PERI_CAP               0x2000
29
30 #define EVT_TO_HPET_DEV(evt) container_of(evt, struct hpet_dev, evt)
31
32 /*
33  * HPET address is set in acpi/boot.c, when an ACPI entry exists
34  */
35 unsigned long                           hpet_address;
36 unsigned long                           hpet_num_timers;
37 static void __iomem                     *hpet_virt_address;
38
39 struct hpet_dev {
40         struct clock_event_device       evt;
41         unsigned int                    num;
42         int                             cpu;
43         unsigned int                    irq;
44         unsigned int                    flags;
45         char                            name[10];
46 };
47
48 static struct hpet_dev                  *hpet_devs;
49
50 static DEFINE_PER_CPU(struct hpet_dev *, cpu_hpet_dev);
51
52 unsigned long hpet_readl(unsigned long a)
53 {
54         return readl(hpet_virt_address + a);
55 }
56
57 static inline void hpet_writel(unsigned long d, unsigned long a)
58 {
59         writel(d, hpet_virt_address + a);
60 }
61
62 #ifdef CONFIG_X86_64
63 #include <asm/pgtable.h>
64 #endif
65
66 static inline void hpet_set_mapping(void)
67 {
68         hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE);
69 #ifdef CONFIG_X86_64
70         __set_fixmap(VSYSCALL_HPET, hpet_address, PAGE_KERNEL_VSYSCALL_NOCACHE);
71 #endif
72 }
73
74 static inline void hpet_clear_mapping(void)
75 {
76         iounmap(hpet_virt_address);
77         hpet_virt_address = NULL;
78 }
79
80 /*
81  * HPET command line enable / disable
82  */
83 static int boot_hpet_disable;
84 int hpet_force_user;
85
86 static int __init hpet_setup(char *str)
87 {
88         if (str) {
89                 if (!strncmp("disable", str, 7))
90                         boot_hpet_disable = 1;
91                 if (!strncmp("force", str, 5))
92                         hpet_force_user = 1;
93         }
94         return 1;
95 }
96 __setup("hpet=", hpet_setup);
97
98 static int __init disable_hpet(char *str)
99 {
100         boot_hpet_disable = 1;
101         return 1;
102 }
103 __setup("nohpet", disable_hpet);
104
105 static inline int is_hpet_capable(void)
106 {
107         return !boot_hpet_disable && hpet_address;
108 }
109
110 /*
111  * HPET timer interrupt enable / disable
112  */
113 static int hpet_legacy_int_enabled;
114
115 /**
116  * is_hpet_enabled - check whether the hpet timer interrupt is enabled
117  */
118 int is_hpet_enabled(void)
119 {
120         return is_hpet_capable() && hpet_legacy_int_enabled;
121 }
122 EXPORT_SYMBOL_GPL(is_hpet_enabled);
123
124 /*
125  * When the hpet driver (/dev/hpet) is enabled, we need to reserve
126  * timer 0 and timer 1 in case of RTC emulation.
127  */
128 #ifdef CONFIG_HPET
129 static void hpet_reserve_msi_timers(struct hpet_data *hd)
130 {
131         int i;
132
133         if (!hpet_devs)
134                 return;
135
136         for (i = 0; i < hpet_num_timers; i++) {
137                 struct hpet_dev *hdev = &hpet_devs[i];
138
139                 if (!(hdev->flags & HPET_DEV_VALID))
140                         continue;
141
142                 hd->hd_irq[hdev->num] = hdev->irq;
143                 hpet_reserve_timer(hd, hdev->num);
144         }
145 }
146
147 static void hpet_reserve_platform_timers(unsigned long id)
148 {
149         struct hpet __iomem *hpet = hpet_virt_address;
150         struct hpet_timer __iomem *timer = &hpet->hpet_timers[2];
151         unsigned int nrtimers, i;
152         struct hpet_data hd;
153
154         nrtimers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
155
156         memset(&hd, 0, sizeof(hd));
157         hd.hd_phys_address      = hpet_address;
158         hd.hd_address           = hpet;
159         hd.hd_nirqs             = nrtimers;
160         hpet_reserve_timer(&hd, 0);
161
162 #ifdef CONFIG_HPET_EMULATE_RTC
163         hpet_reserve_timer(&hd, 1);
164 #endif
165
166         /*
167          * NOTE that hd_irq[] reflects IOAPIC input pins (LEGACY_8254
168          * is wrong for i8259!) not the output IRQ.  Many BIOS writers
169          * don't bother configuring *any* comparator interrupts.
170          */
171         hd.hd_irq[0] = HPET_LEGACY_8254;
172         hd.hd_irq[1] = HPET_LEGACY_RTC;
173
174         for (i = 2; i < nrtimers; timer++, i++) {
175                 hd.hd_irq[i] = (readl(&timer->hpet_config) &
176                         Tn_INT_ROUTE_CNF_MASK) >> Tn_INT_ROUTE_CNF_SHIFT;
177         }
178
179         hpet_reserve_msi_timers(&hd);
180
181         hpet_alloc(&hd);
182
183 }
184 #else
185 static void hpet_reserve_platform_timers(unsigned long id) { }
186 #endif
187
188 /*
189  * Common hpet info
190  */
191 static unsigned long hpet_period;
192
193 static void hpet_legacy_set_mode(enum clock_event_mode mode,
194                           struct clock_event_device *evt);
195 static int hpet_legacy_next_event(unsigned long delta,
196                            struct clock_event_device *evt);
197
198 /*
199  * The hpet clock event device
200  */
201 static struct clock_event_device hpet_clockevent = {
202         .name           = "hpet",
203         .features       = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
204         .set_mode       = hpet_legacy_set_mode,
205         .set_next_event = hpet_legacy_next_event,
206         .shift          = 32,
207         .irq            = 0,
208         .rating         = 50,
209 };
210
211 static void hpet_start_counter(void)
212 {
213         unsigned long cfg = hpet_readl(HPET_CFG);
214
215         cfg &= ~HPET_CFG_ENABLE;
216         hpet_writel(cfg, HPET_CFG);
217         hpet_writel(0, HPET_COUNTER);
218         hpet_writel(0, HPET_COUNTER + 4);
219         cfg |= HPET_CFG_ENABLE;
220         hpet_writel(cfg, HPET_CFG);
221 }
222
223 static void hpet_resume_device(void)
224 {
225         force_hpet_resume();
226 }
227
228 static void hpet_restart_counter(void)
229 {
230         hpet_resume_device();
231         hpet_start_counter();
232 }
233
234 static void hpet_enable_legacy_int(void)
235 {
236         unsigned long cfg = hpet_readl(HPET_CFG);
237
238         cfg |= HPET_CFG_LEGACY;
239         hpet_writel(cfg, HPET_CFG);
240         hpet_legacy_int_enabled = 1;
241 }
242
243 static void hpet_legacy_clockevent_register(void)
244 {
245         /* Start HPET legacy interrupts */
246         hpet_enable_legacy_int();
247
248         /*
249          * The mult factor is defined as (include/linux/clockchips.h)
250          *  mult/2^shift = cyc/ns (in contrast to ns/cyc in clocksource.h)
251          * hpet_period is in units of femtoseconds (per cycle), so
252          *  mult/2^shift = cyc/ns = 10^6/hpet_period
253          *  mult = (10^6 * 2^shift)/hpet_period
254          *  mult = (FSEC_PER_NSEC << hpet_clockevent.shift)/hpet_period
255          */
256         hpet_clockevent.mult = div_sc((unsigned long) FSEC_PER_NSEC,
257                                       hpet_period, hpet_clockevent.shift);
258         /* Calculate the min / max delta */
259         hpet_clockevent.max_delta_ns = clockevent_delta2ns(0x7FFFFFFF,
260                                                            &hpet_clockevent);
261         /* 5 usec minimum reprogramming delta. */
262         hpet_clockevent.min_delta_ns = 5000;
263
264         /*
265          * Start hpet with the boot cpu mask and make it
266          * global after the IO_APIC has been initialized.
267          */
268         hpet_clockevent.cpumask = cpumask_of_cpu(smp_processor_id());
269         clockevents_register_device(&hpet_clockevent);
270         global_clock_event = &hpet_clockevent;
271         printk(KERN_DEBUG "hpet clockevent registered\n");
272 }
273
274 static int hpet_setup_msi_irq(unsigned int irq);
275
276 static void hpet_set_mode(enum clock_event_mode mode,
277                           struct clock_event_device *evt, int timer)
278 {
279         unsigned long cfg, cmp, now;
280         uint64_t delta;
281
282         switch (mode) {
283         case CLOCK_EVT_MODE_PERIODIC:
284                 delta = ((uint64_t)(NSEC_PER_SEC/HZ)) * evt->mult;
285                 delta >>= evt->shift;
286                 now = hpet_readl(HPET_COUNTER);
287                 cmp = now + (unsigned long) delta;
288                 cfg = hpet_readl(HPET_Tn_CFG(timer));
289                 cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC |
290                        HPET_TN_SETVAL | HPET_TN_32BIT;
291                 hpet_writel(cfg, HPET_Tn_CFG(timer));
292                 /*
293                  * The first write after writing TN_SETVAL to the
294                  * config register sets the counter value, the second
295                  * write sets the period.
296                  */
297                 hpet_writel(cmp, HPET_Tn_CMP(timer));
298                 udelay(1);
299                 hpet_writel((unsigned long) delta, HPET_Tn_CMP(timer));
300                 break;
301
302         case CLOCK_EVT_MODE_ONESHOT:
303                 cfg = hpet_readl(HPET_Tn_CFG(timer));
304                 cfg &= ~HPET_TN_PERIODIC;
305                 cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
306                 hpet_writel(cfg, HPET_Tn_CFG(timer));
307                 break;
308
309         case CLOCK_EVT_MODE_UNUSED:
310         case CLOCK_EVT_MODE_SHUTDOWN:
311                 cfg = hpet_readl(HPET_Tn_CFG(timer));
312                 cfg &= ~HPET_TN_ENABLE;
313                 hpet_writel(cfg, HPET_Tn_CFG(timer));
314                 break;
315
316         case CLOCK_EVT_MODE_RESUME:
317                 if (timer == 0) {
318                         hpet_enable_legacy_int();
319                 } else {
320                         struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
321                         hpet_setup_msi_irq(hdev->irq);
322                         disable_irq(hdev->irq);
323                         irq_set_affinity(hdev->irq, cpumask_of_cpu(hdev->cpu));
324                         enable_irq(hdev->irq);
325                 }
326                 break;
327         }
328 }
329
330 static int hpet_next_event(unsigned long delta,
331                            struct clock_event_device *evt, int timer)
332 {
333         u32 cnt;
334
335         cnt = hpet_readl(HPET_COUNTER);
336         cnt += (u32) delta;
337         hpet_writel(cnt, HPET_Tn_CMP(timer));
338
339         /*
340          * We need to read back the CMP register to make sure that
341          * what we wrote hit the chip before we compare it to the
342          * counter.
343          */
344         WARN_ON((u32)hpet_readl(HPET_T0_CMP) != cnt);
345
346         return (s32)((u32)hpet_readl(HPET_COUNTER) - cnt) >= 0 ? -ETIME : 0;
347 }
348
349 static void hpet_legacy_set_mode(enum clock_event_mode mode,
350                         struct clock_event_device *evt)
351 {
352         hpet_set_mode(mode, evt, 0);
353 }
354
355 static int hpet_legacy_next_event(unsigned long delta,
356                         struct clock_event_device *evt)
357 {
358         return hpet_next_event(delta, evt, 0);
359 }
360
361 /*
362  * HPET MSI Support
363  */
364 #ifdef CONFIG_PCI_MSI
365 void hpet_msi_unmask(unsigned int irq)
366 {
367         struct hpet_dev *hdev = get_irq_data(irq);
368         unsigned long cfg;
369
370         /* unmask it */
371         cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
372         cfg |= HPET_TN_FSB;
373         hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
374 }
375
376 void hpet_msi_mask(unsigned int irq)
377 {
378         unsigned long cfg;
379         struct hpet_dev *hdev = get_irq_data(irq);
380
381         /* mask it */
382         cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
383         cfg &= ~HPET_TN_FSB;
384         hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
385 }
386
387 void hpet_msi_write(unsigned int irq, struct msi_msg *msg)
388 {
389         struct hpet_dev *hdev = get_irq_data(irq);
390
391         hpet_writel(msg->data, HPET_Tn_ROUTE(hdev->num));
392         hpet_writel(msg->address_lo, HPET_Tn_ROUTE(hdev->num) + 4);
393 }
394
395 void hpet_msi_read(unsigned int irq, struct msi_msg *msg)
396 {
397         struct hpet_dev *hdev = get_irq_data(irq);
398
399         msg->data = hpet_readl(HPET_Tn_ROUTE(hdev->num));
400         msg->address_lo = hpet_readl(HPET_Tn_ROUTE(hdev->num) + 4);
401         msg->address_hi = 0;
402 }
403
404 static void hpet_msi_set_mode(enum clock_event_mode mode,
405                                 struct clock_event_device *evt)
406 {
407         struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
408         hpet_set_mode(mode, evt, hdev->num);
409 }
410
411 static int hpet_msi_next_event(unsigned long delta,
412                                 struct clock_event_device *evt)
413 {
414         struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
415         return hpet_next_event(delta, evt, hdev->num);
416 }
417
418 static int hpet_setup_msi_irq(unsigned int irq)
419 {
420         if (arch_setup_hpet_msi(irq)) {
421                 destroy_irq(irq);
422                 return -EINVAL;
423         }
424         return 0;
425 }
426
427 static int hpet_assign_irq(struct hpet_dev *dev)
428 {
429         unsigned int irq;
430
431         irq = create_irq();
432         if (!irq)
433                 return -EINVAL;
434
435         set_irq_data(irq, dev);
436
437         if (hpet_setup_msi_irq(irq))
438                 return -EINVAL;
439
440         dev->irq = irq;
441         return 0;
442 }
443
444 static irqreturn_t hpet_interrupt_handler(int irq, void *data)
445 {
446         struct hpet_dev *dev = (struct hpet_dev *)data;
447         struct clock_event_device *hevt = &dev->evt;
448
449         if (!hevt->event_handler) {
450                 printk(KERN_INFO "Spurious HPET timer interrupt on HPET timer %d\n",
451                                 dev->num);
452                 return IRQ_HANDLED;
453         }
454
455         hevt->event_handler(hevt);
456         return IRQ_HANDLED;
457 }
458
459 static int hpet_setup_irq(struct hpet_dev *dev)
460 {
461
462         if (request_irq(dev->irq, hpet_interrupt_handler,
463                         IRQF_SHARED|IRQF_NOBALANCING, dev->name, dev))
464                 return -1;
465
466         disable_irq(dev->irq);
467         irq_set_affinity(dev->irq, cpumask_of_cpu(dev->cpu));
468         enable_irq(dev->irq);
469
470         return 0;
471 }
472
473 /* This should be called in specific @cpu */
474 static void init_one_hpet_msi_clockevent(struct hpet_dev *hdev, int cpu)
475 {
476         struct clock_event_device *evt = &hdev->evt;
477         uint64_t hpet_freq;
478
479         WARN_ON(cpu != smp_processor_id());
480         if (!(hdev->flags & HPET_DEV_VALID))
481                 return;
482
483         if (hpet_setup_msi_irq(hdev->irq))
484                 return;
485
486         hdev->cpu = cpu;
487         per_cpu(cpu_hpet_dev, cpu) = hdev;
488         evt->name = hdev->name;
489         hpet_setup_irq(hdev);
490         evt->irq = hdev->irq;
491
492         evt->rating = 110;
493         evt->features = CLOCK_EVT_FEAT_ONESHOT;
494         if (hdev->flags & HPET_DEV_PERI_CAP)
495                 evt->features |= CLOCK_EVT_FEAT_PERIODIC;
496
497         evt->set_mode = hpet_msi_set_mode;
498         evt->set_next_event = hpet_msi_next_event;
499         evt->shift = 32;
500
501         /*
502          * The period is a femto seconds value. We need to calculate the
503          * scaled math multiplication factor for nanosecond to hpet tick
504          * conversion.
505          */
506         hpet_freq = 1000000000000000ULL;
507         do_div(hpet_freq, hpet_period);
508         evt->mult = div_sc((unsigned long) hpet_freq,
509                                       NSEC_PER_SEC, evt->shift);
510         /* Calculate the max delta */
511         evt->max_delta_ns = clockevent_delta2ns(0x7FFFFFFF, evt);
512         /* 5 usec minimum reprogramming delta. */
513         evt->min_delta_ns = 5000;
514
515         evt->cpumask = cpumask_of_cpu(hdev->cpu);
516         clockevents_register_device(evt);
517 }
518
519 #ifdef CONFIG_HPET
520 /* Reserve at least one timer for userspace (/dev/hpet) */
521 #define RESERVE_TIMERS 1
522 #else
523 #define RESERVE_TIMERS 0
524 #endif
525 void hpet_msi_capability_lookup(unsigned int start_timer)
526 {
527         unsigned int id;
528         unsigned int num_timers;
529         unsigned int num_timers_used = 0;
530         int i;
531
532         id = hpet_readl(HPET_ID);
533
534         num_timers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT);
535         num_timers++; /* Value read out starts from 0 */
536
537         hpet_devs = kzalloc(sizeof(struct hpet_dev) * num_timers, GFP_KERNEL);
538         if (!hpet_devs)
539                 return;
540
541         hpet_num_timers = num_timers;
542
543         for (i = start_timer; i < num_timers - RESERVE_TIMERS; i++) {
544                 struct hpet_dev *hdev = &hpet_devs[num_timers_used];
545                 unsigned long cfg = hpet_readl(HPET_Tn_CFG(i));
546
547                 /* Only consider HPET timer with MSI support */
548                 if (!(cfg & HPET_TN_FSB_CAP))
549                         continue;
550
551                 hdev->flags = 0;
552                 if (cfg & HPET_TN_PERIODIC_CAP)
553                         hdev->flags |= HPET_DEV_PERI_CAP;
554                 hdev->num = i;
555
556                 sprintf(hdev->name, "hpet%d", i);
557                 if (hpet_assign_irq(hdev))
558                         continue;
559
560                 hdev->flags |= HPET_DEV_FSB_CAP;
561                 hdev->flags |= HPET_DEV_VALID;
562                 num_timers_used++;
563                 if (num_timers_used == num_possible_cpus())
564                         break;
565         }
566
567         printk(KERN_INFO "HPET: %d timers in total, %d timers will be used for per-cpu timer\n",
568                 num_timers, num_timers_used);
569 }
570
571 static struct hpet_dev *hpet_get_unused_timer(void)
572 {
573         int i;
574
575         if (!hpet_devs)
576                 return NULL;
577
578         for (i = 0; i < hpet_num_timers; i++) {
579                 struct hpet_dev *hdev = &hpet_devs[i];
580
581                 if (!(hdev->flags & HPET_DEV_VALID))
582                         continue;
583                 if (test_and_set_bit(HPET_DEV_USED_BIT,
584                         (unsigned long *)&hdev->flags))
585                         continue;
586                 return hdev;
587         }
588         return NULL;
589 }
590
591 struct hpet_work_struct {
592         struct delayed_work work;
593         struct completion complete;
594 };
595
596 static void hpet_work(struct work_struct *w)
597 {
598         struct hpet_dev *hdev;
599         int cpu = smp_processor_id();
600         struct hpet_work_struct *hpet_work;
601
602         hpet_work = container_of(w, struct hpet_work_struct, work.work);
603
604         hdev = hpet_get_unused_timer();
605         if (hdev)
606                 init_one_hpet_msi_clockevent(hdev, cpu);
607
608         complete(&hpet_work->complete);
609 }
610
611 static int hpet_cpuhp_notify(struct notifier_block *n,
612                 unsigned long action, void *hcpu)
613 {
614         unsigned long cpu = (unsigned long)hcpu;
615         struct hpet_work_struct work;
616         struct hpet_dev *hdev = per_cpu(cpu_hpet_dev, cpu);
617
618         switch (action & 0xf) {
619         case CPU_ONLINE:
620                 INIT_DELAYED_WORK(&work.work, hpet_work);
621                 init_completion(&work.complete);
622                 /* FIXME: add schedule_work_on() */
623                 schedule_delayed_work_on(cpu, &work.work, 0);
624                 wait_for_completion(&work.complete);
625                 break;
626         case CPU_DEAD:
627                 if (hdev) {
628                         free_irq(hdev->irq, hdev);
629                         hdev->flags &= ~HPET_DEV_USED;
630                         per_cpu(cpu_hpet_dev, cpu) = NULL;
631                 }
632                 break;
633         }
634         return NOTIFY_OK;
635 }
636 #else
637
638 void hpet_msi_capability_lookup(unsigned int start_timer)
639 {
640         return;
641 }
642
643 static int hpet_cpuhp_notify(struct notifier_block *n,
644                 unsigned long action, void *hcpu)
645 {
646         return NOTIFY_OK;
647 }
648
649 #endif
650
651 /*
652  * Clock source related code
653  */
654 static cycle_t read_hpet(void)
655 {
656         return (cycle_t)hpet_readl(HPET_COUNTER);
657 }
658
659 #ifdef CONFIG_X86_64
660 static cycle_t __vsyscall_fn vread_hpet(void)
661 {
662         return readl((const void __iomem *)fix_to_virt(VSYSCALL_HPET) + 0xf0);
663 }
664 #endif
665
666 static struct clocksource clocksource_hpet = {
667         .name           = "hpet",
668         .rating         = 250,
669         .read           = read_hpet,
670         .mask           = HPET_MASK,
671         .shift          = HPET_SHIFT,
672         .flags          = CLOCK_SOURCE_IS_CONTINUOUS,
673         .resume         = hpet_restart_counter,
674 #ifdef CONFIG_X86_64
675         .vread          = vread_hpet,
676 #endif
677 };
678
679 static int hpet_clocksource_register(void)
680 {
681         u64 start, now;
682         cycle_t t1;
683
684         /* Start the counter */
685         hpet_start_counter();
686
687         /* Verify whether hpet counter works */
688         t1 = read_hpet();
689         rdtscll(start);
690
691         /*
692          * We don't know the TSC frequency yet, but waiting for
693          * 200000 TSC cycles is safe:
694          * 4 GHz == 50us
695          * 1 GHz == 200us
696          */
697         do {
698                 rep_nop();
699                 rdtscll(now);
700         } while ((now - start) < 200000UL);
701
702         if (t1 == read_hpet()) {
703                 printk(KERN_WARNING
704                        "HPET counter not counting. HPET disabled\n");
705                 return -ENODEV;
706         }
707
708         /*
709          * The definition of mult is (include/linux/clocksource.h)
710          * mult/2^shift = ns/cyc and hpet_period is in units of fsec/cyc
711          * so we first need to convert hpet_period to ns/cyc units:
712          *  mult/2^shift = ns/cyc = hpet_period/10^6
713          *  mult = (hpet_period * 2^shift)/10^6
714          *  mult = (hpet_period << shift)/FSEC_PER_NSEC
715          */
716         clocksource_hpet.mult = div_sc(hpet_period, FSEC_PER_NSEC, HPET_SHIFT);
717
718         clocksource_register(&clocksource_hpet);
719
720         return 0;
721 }
722
723 /**
724  * hpet_enable - Try to setup the HPET timer. Returns 1 on success.
725  */
726 int __init hpet_enable(void)
727 {
728         unsigned long id;
729         int i;
730
731         if (!is_hpet_capable())
732                 return 0;
733
734         hpet_set_mapping();
735
736         /*
737          * Read the period and check for a sane value:
738          */
739         hpet_period = hpet_readl(HPET_PERIOD);
740
741         /*
742          * AMD SB700 based systems with spread spectrum enabled use a
743          * SMM based HPET emulation to provide proper frequency
744          * setting. The SMM code is initialized with the first HPET
745          * register access and takes some time to complete. During
746          * this time the config register reads 0xffffffff. We check
747          * for max. 1000 loops whether the config register reads a non
748          * 0xffffffff value to make sure that HPET is up and running
749          * before we go further. A counting loop is safe, as the HPET
750          * access takes thousands of CPU cycles. On non SB700 based
751          * machines this check is only done once and has no side
752          * effects.
753          */
754         for (i = 0; hpet_readl(HPET_CFG) == 0xFFFFFFFF; i++) {
755                 if (i == 1000) {
756                         printk(KERN_WARNING
757                                "HPET config register value = 0xFFFFFFFF. "
758                                "Disabling HPET\n");
759                         goto out_nohpet;
760                 }
761         }
762
763         if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD)
764                 goto out_nohpet;
765
766         /*
767          * Read the HPET ID register to retrieve the IRQ routing
768          * information and the number of channels
769          */
770         id = hpet_readl(HPET_ID);
771
772 #ifdef CONFIG_HPET_EMULATE_RTC
773         /*
774          * The legacy routing mode needs at least two channels, tick timer
775          * and the rtc emulation channel.
776          */
777         if (!(id & HPET_ID_NUMBER))
778                 goto out_nohpet;
779 #endif
780
781         if (hpet_clocksource_register())
782                 goto out_nohpet;
783
784         if (id & HPET_ID_LEGSUP) {
785                 hpet_legacy_clockevent_register();
786                 hpet_msi_capability_lookup(2);
787                 return 1;
788         }
789         hpet_msi_capability_lookup(0);
790         return 0;
791
792 out_nohpet:
793         hpet_clear_mapping();
794         boot_hpet_disable = 1;
795         return 0;
796 }
797
798 /*
799  * Needs to be late, as the reserve_timer code calls kalloc !
800  *
801  * Not a problem on i386 as hpet_enable is called from late_time_init,
802  * but on x86_64 it is necessary !
803  */
804 static __init int hpet_late_init(void)
805 {
806         int cpu;
807
808         if (boot_hpet_disable)
809                 return -ENODEV;
810
811         if (!hpet_address) {
812                 if (!force_hpet_address)
813                         return -ENODEV;
814
815                 hpet_address = force_hpet_address;
816                 hpet_enable();
817                 if (!hpet_virt_address)
818                         return -ENODEV;
819         }
820
821         hpet_reserve_platform_timers(hpet_readl(HPET_ID));
822
823         for_each_online_cpu(cpu) {
824                 hpet_cpuhp_notify(NULL, CPU_ONLINE, (void *)(long)cpu);
825         }
826
827         /* This notifier should be called after workqueue is ready */
828         hotcpu_notifier(hpet_cpuhp_notify, -20);
829
830         return 0;
831 }
832 fs_initcall(hpet_late_init);
833
834 void hpet_disable(void)
835 {
836         if (is_hpet_capable()) {
837                 unsigned long cfg = hpet_readl(HPET_CFG);
838
839                 if (hpet_legacy_int_enabled) {
840                         cfg &= ~HPET_CFG_LEGACY;
841                         hpet_legacy_int_enabled = 0;
842                 }
843                 cfg &= ~HPET_CFG_ENABLE;
844                 hpet_writel(cfg, HPET_CFG);
845         }
846 }
847
848 #ifdef CONFIG_HPET_EMULATE_RTC
849
850 /* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
851  * is enabled, we support RTC interrupt functionality in software.
852  * RTC has 3 kinds of interrupts:
853  * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
854  *    is updated
855  * 2) Alarm Interrupt - generate an interrupt at a specific time of day
856  * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
857  *    2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
858  * (1) and (2) above are implemented using polling at a frequency of
859  * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
860  * overhead. (DEFAULT_RTC_INT_FREQ)
861  * For (3), we use interrupts at 64Hz or user specified periodic
862  * frequency, whichever is higher.
863  */
864 #include <linux/mc146818rtc.h>
865 #include <linux/rtc.h>
866 #include <asm/rtc.h>
867
868 #define DEFAULT_RTC_INT_FREQ    64
869 #define DEFAULT_RTC_SHIFT       6
870 #define RTC_NUM_INTS            1
871
872 static unsigned long hpet_rtc_flags;
873 static int hpet_prev_update_sec;
874 static struct rtc_time hpet_alarm_time;
875 static unsigned long hpet_pie_count;
876 static unsigned long hpet_t1_cmp;
877 static unsigned long hpet_default_delta;
878 static unsigned long hpet_pie_delta;
879 static unsigned long hpet_pie_limit;
880
881 static rtc_irq_handler irq_handler;
882
883 /*
884  * Registers a IRQ handler.
885  */
886 int hpet_register_irq_handler(rtc_irq_handler handler)
887 {
888         if (!is_hpet_enabled())
889                 return -ENODEV;
890         if (irq_handler)
891                 return -EBUSY;
892
893         irq_handler = handler;
894
895         return 0;
896 }
897 EXPORT_SYMBOL_GPL(hpet_register_irq_handler);
898
899 /*
900  * Deregisters the IRQ handler registered with hpet_register_irq_handler()
901  * and does cleanup.
902  */
903 void hpet_unregister_irq_handler(rtc_irq_handler handler)
904 {
905         if (!is_hpet_enabled())
906                 return;
907
908         irq_handler = NULL;
909         hpet_rtc_flags = 0;
910 }
911 EXPORT_SYMBOL_GPL(hpet_unregister_irq_handler);
912
913 /*
914  * Timer 1 for RTC emulation. We use one shot mode, as periodic mode
915  * is not supported by all HPET implementations for timer 1.
916  *
917  * hpet_rtc_timer_init() is called when the rtc is initialized.
918  */
919 int hpet_rtc_timer_init(void)
920 {
921         unsigned long cfg, cnt, delta, flags;
922
923         if (!is_hpet_enabled())
924                 return 0;
925
926         if (!hpet_default_delta) {
927                 uint64_t clc;
928
929                 clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
930                 clc >>= hpet_clockevent.shift + DEFAULT_RTC_SHIFT;
931                 hpet_default_delta = (unsigned long) clc;
932         }
933
934         if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
935                 delta = hpet_default_delta;
936         else
937                 delta = hpet_pie_delta;
938
939         local_irq_save(flags);
940
941         cnt = delta + hpet_readl(HPET_COUNTER);
942         hpet_writel(cnt, HPET_T1_CMP);
943         hpet_t1_cmp = cnt;
944
945         cfg = hpet_readl(HPET_T1_CFG);
946         cfg &= ~HPET_TN_PERIODIC;
947         cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
948         hpet_writel(cfg, HPET_T1_CFG);
949
950         local_irq_restore(flags);
951
952         return 1;
953 }
954 EXPORT_SYMBOL_GPL(hpet_rtc_timer_init);
955
956 /*
957  * The functions below are called from rtc driver.
958  * Return 0 if HPET is not being used.
959  * Otherwise do the necessary changes and return 1.
960  */
961 int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
962 {
963         if (!is_hpet_enabled())
964                 return 0;
965
966         hpet_rtc_flags &= ~bit_mask;
967         return 1;
968 }
969 EXPORT_SYMBOL_GPL(hpet_mask_rtc_irq_bit);
970
971 int hpet_set_rtc_irq_bit(unsigned long bit_mask)
972 {
973         unsigned long oldbits = hpet_rtc_flags;
974
975         if (!is_hpet_enabled())
976                 return 0;
977
978         hpet_rtc_flags |= bit_mask;
979
980         if ((bit_mask & RTC_UIE) && !(oldbits & RTC_UIE))
981                 hpet_prev_update_sec = -1;
982
983         if (!oldbits)
984                 hpet_rtc_timer_init();
985
986         return 1;
987 }
988 EXPORT_SYMBOL_GPL(hpet_set_rtc_irq_bit);
989
990 int hpet_set_alarm_time(unsigned char hrs, unsigned char min,
991                         unsigned char sec)
992 {
993         if (!is_hpet_enabled())
994                 return 0;
995
996         hpet_alarm_time.tm_hour = hrs;
997         hpet_alarm_time.tm_min = min;
998         hpet_alarm_time.tm_sec = sec;
999
1000         return 1;
1001 }
1002 EXPORT_SYMBOL_GPL(hpet_set_alarm_time);
1003
1004 int hpet_set_periodic_freq(unsigned long freq)
1005 {
1006         uint64_t clc;
1007
1008         if (!is_hpet_enabled())
1009                 return 0;
1010
1011         if (freq <= DEFAULT_RTC_INT_FREQ)
1012                 hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq;
1013         else {
1014                 clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1015                 do_div(clc, freq);
1016                 clc >>= hpet_clockevent.shift;
1017                 hpet_pie_delta = (unsigned long) clc;
1018         }
1019         return 1;
1020 }
1021 EXPORT_SYMBOL_GPL(hpet_set_periodic_freq);
1022
1023 int hpet_rtc_dropped_irq(void)
1024 {
1025         return is_hpet_enabled();
1026 }
1027 EXPORT_SYMBOL_GPL(hpet_rtc_dropped_irq);
1028
1029 static void hpet_rtc_timer_reinit(void)
1030 {
1031         unsigned long cfg, delta;
1032         int lost_ints = -1;
1033
1034         if (unlikely(!hpet_rtc_flags)) {
1035                 cfg = hpet_readl(HPET_T1_CFG);
1036                 cfg &= ~HPET_TN_ENABLE;
1037                 hpet_writel(cfg, HPET_T1_CFG);
1038                 return;
1039         }
1040
1041         if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1042                 delta = hpet_default_delta;
1043         else
1044                 delta = hpet_pie_delta;
1045
1046         /*
1047          * Increment the comparator value until we are ahead of the
1048          * current count.
1049          */
1050         do {
1051                 hpet_t1_cmp += delta;
1052                 hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
1053                 lost_ints++;
1054         } while ((long)(hpet_readl(HPET_COUNTER) - hpet_t1_cmp) > 0);
1055
1056         if (lost_ints) {
1057                 if (hpet_rtc_flags & RTC_PIE)
1058                         hpet_pie_count += lost_ints;
1059                 if (printk_ratelimit())
1060                         printk(KERN_WARNING "hpet1: lost %d rtc interrupts\n",
1061                                 lost_ints);
1062         }
1063 }
1064
1065 irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
1066 {
1067         struct rtc_time curr_time;
1068         unsigned long rtc_int_flag = 0;
1069
1070         hpet_rtc_timer_reinit();
1071         memset(&curr_time, 0, sizeof(struct rtc_time));
1072
1073         if (hpet_rtc_flags & (RTC_UIE | RTC_AIE))
1074                 get_rtc_time(&curr_time);
1075
1076         if (hpet_rtc_flags & RTC_UIE &&
1077             curr_time.tm_sec != hpet_prev_update_sec) {
1078                 if (hpet_prev_update_sec >= 0)
1079                         rtc_int_flag = RTC_UF;
1080                 hpet_prev_update_sec = curr_time.tm_sec;
1081         }
1082
1083         if (hpet_rtc_flags & RTC_PIE &&
1084             ++hpet_pie_count >= hpet_pie_limit) {
1085                 rtc_int_flag |= RTC_PF;
1086                 hpet_pie_count = 0;
1087         }
1088
1089         if (hpet_rtc_flags & RTC_AIE &&
1090             (curr_time.tm_sec == hpet_alarm_time.tm_sec) &&
1091             (curr_time.tm_min == hpet_alarm_time.tm_min) &&
1092             (curr_time.tm_hour == hpet_alarm_time.tm_hour))
1093                         rtc_int_flag |= RTC_AF;
1094
1095         if (rtc_int_flag) {
1096                 rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
1097                 if (irq_handler)
1098                         irq_handler(rtc_int_flag, dev_id);
1099         }
1100         return IRQ_HANDLED;
1101 }
1102 EXPORT_SYMBOL_GPL(hpet_rtc_interrupt);
1103 #endif