x86: make lazy %gs optional on x86_32
[safe/jmp/linux-2.6] / arch / x86 / include / asm / system.h
1 #ifndef _ASM_X86_SYSTEM_H
2 #define _ASM_X86_SYSTEM_H
3
4 #include <asm/asm.h>
5 #include <asm/segment.h>
6 #include <asm/cpufeature.h>
7 #include <asm/cmpxchg.h>
8 #include <asm/nops.h>
9
10 #include <linux/kernel.h>
11 #include <linux/irqflags.h>
12
13 /* entries in ARCH_DLINFO: */
14 #ifdef CONFIG_IA32_EMULATION
15 # define AT_VECTOR_SIZE_ARCH 2
16 #else
17 # define AT_VECTOR_SIZE_ARCH 1
18 #endif
19
20 struct task_struct; /* one of the stranger aspects of C forward declarations */
21 struct task_struct *__switch_to(struct task_struct *prev,
22                                 struct task_struct *next);
23
24 #ifdef CONFIG_X86_32
25
26 /*
27  * Saving eflags is important. It switches not only IOPL between tasks,
28  * it also protects other tasks from NT leaking through sysenter etc.
29  */
30 #define switch_to(prev, next, last)                                     \
31 do {                                                                    \
32         /*                                                              \
33          * Context-switching clobbers all registers, so we clobber      \
34          * them explicitly, via unused output variables.                \
35          * (EAX and EBP is not listed because EBP is saved/restored     \
36          * explicitly for wchan access and EAX is the return value of   \
37          * __switch_to())                                               \
38          */                                                             \
39         unsigned long ebx, ecx, edx, esi, edi;                          \
40                                                                         \
41         asm volatile("pushfl\n\t"               /* save    flags */     \
42                      "pushl %%ebp\n\t"          /* save    EBP   */     \
43                      "movl %%esp,%[prev_sp]\n\t"        /* save    ESP   */ \
44                      "movl %[next_sp],%%esp\n\t"        /* restore ESP   */ \
45                      "movl $1f,%[prev_ip]\n\t"  /* save    EIP   */     \
46                      "pushl %[next_ip]\n\t"     /* restore EIP   */     \
47                      "jmp __switch_to\n"        /* regparm call  */     \
48                      "1:\t"                                             \
49                      "popl %%ebp\n\t"           /* restore EBP   */     \
50                      "popfl\n"                  /* restore flags */     \
51                                                                         \
52                      /* output parameters */                            \
53                      : [prev_sp] "=m" (prev->thread.sp),                \
54                        [prev_ip] "=m" (prev->thread.ip),                \
55                        "=a" (last),                                     \
56                                                                         \
57                        /* clobbered output registers: */                \
58                        "=b" (ebx), "=c" (ecx), "=d" (edx),              \
59                        "=S" (esi), "=D" (edi)                           \
60                                                                         \
61                        /* input parameters: */                          \
62                      : [next_sp]  "m" (next->thread.sp),                \
63                        [next_ip]  "m" (next->thread.ip),                \
64                                                                         \
65                        /* regparm parameters for __switch_to(): */      \
66                        [prev]     "a" (prev),                           \
67                        [next]     "d" (next)                            \
68                                                                         \
69                      : /* reloaded segment registers */                 \
70                         "memory");                                      \
71 } while (0)
72
73 /*
74  * disable hlt during certain critical i/o operations
75  */
76 #define HAVE_DISABLE_HLT
77 #else
78 #define __SAVE(reg, offset) "movq %%" #reg ",(14-" #offset ")*8(%%rsp)\n\t"
79 #define __RESTORE(reg, offset) "movq (14-" #offset ")*8(%%rsp),%%" #reg "\n\t"
80
81 /* frame pointer must be last for get_wchan */
82 #define SAVE_CONTEXT    "pushf ; pushq %%rbp ; movq %%rsi,%%rbp\n\t"
83 #define RESTORE_CONTEXT "movq %%rbp,%%rsi ; popq %%rbp ; popf\t"
84
85 #define __EXTRA_CLOBBER  \
86         , "rcx", "rbx", "rdx", "r8", "r9", "r10", "r11", \
87           "r12", "r13", "r14", "r15"
88
89 #ifdef CONFIG_CC_STACKPROTECTOR
90 #define __switch_canary                                                   \
91         "movq %P[task_canary](%%rsi),%%r8\n\t"                            \
92         "movq %%r8,"__percpu_arg([gs_canary])"\n\t"
93 #define __switch_canary_oparam                                            \
94         , [gs_canary] "=m" (per_cpu_var(irq_stack_union.stack_canary))
95 #define __switch_canary_iparam                                            \
96         , [task_canary] "i" (offsetof(struct task_struct, stack_canary))
97 #else   /* CC_STACKPROTECTOR */
98 #define __switch_canary
99 #define __switch_canary_oparam
100 #define __switch_canary_iparam
101 #endif  /* CC_STACKPROTECTOR */
102
103 /* Save restore flags to clear handle leaking NT */
104 #define switch_to(prev, next, last) \
105         asm volatile(SAVE_CONTEXT                                         \
106              "movq %%rsp,%P[threadrsp](%[prev])\n\t" /* save RSP */       \
107              "movq %P[threadrsp](%[next]),%%rsp\n\t" /* restore RSP */    \
108              "call __switch_to\n\t"                                       \
109              ".globl thread_return\n"                                     \
110              "thread_return:\n\t"                                         \
111              "movq "__percpu_arg([current_task])",%%rsi\n\t"              \
112              __switch_canary                                              \
113              "movq %P[thread_info](%%rsi),%%r8\n\t"                       \
114              LOCK_PREFIX "btr  %[tif_fork],%P[ti_flags](%%r8)\n\t"        \
115              "movq %%rax,%%rdi\n\t"                                       \
116              "jc   ret_from_fork\n\t"                                     \
117              RESTORE_CONTEXT                                              \
118              : "=a" (last)                                                \
119                __switch_canary_oparam                                     \
120              : [next] "S" (next), [prev] "D" (prev),                      \
121                [threadrsp] "i" (offsetof(struct task_struct, thread.sp)), \
122                [ti_flags] "i" (offsetof(struct thread_info, flags)),      \
123                [tif_fork] "i" (TIF_FORK),                                 \
124                [thread_info] "i" (offsetof(struct task_struct, stack)),   \
125                [current_task] "m" (per_cpu_var(current_task))             \
126                __switch_canary_iparam                                     \
127              : "memory", "cc" __EXTRA_CLOBBER)
128 #endif
129
130 #ifdef __KERNEL__
131 #define _set_base(addr, base) do { unsigned long __pr; \
132 __asm__ __volatile__ ("movw %%dx,%1\n\t" \
133         "rorl $16,%%edx\n\t" \
134         "movb %%dl,%2\n\t" \
135         "movb %%dh,%3" \
136         :"=&d" (__pr) \
137         :"m" (*((addr)+2)), \
138          "m" (*((addr)+4)), \
139          "m" (*((addr)+7)), \
140          "0" (base) \
141         ); } while (0)
142
143 #define _set_limit(addr, limit) do { unsigned long __lr; \
144 __asm__ __volatile__ ("movw %%dx,%1\n\t" \
145         "rorl $16,%%edx\n\t" \
146         "movb %2,%%dh\n\t" \
147         "andb $0xf0,%%dh\n\t" \
148         "orb %%dh,%%dl\n\t" \
149         "movb %%dl,%2" \
150         :"=&d" (__lr) \
151         :"m" (*(addr)), \
152          "m" (*((addr)+6)), \
153          "0" (limit) \
154         ); } while (0)
155
156 #define set_base(ldt, base) _set_base(((char *)&(ldt)) , (base))
157 #define set_limit(ldt, limit) _set_limit(((char *)&(ldt)) , ((limit)-1))
158
159 extern void native_load_gs_index(unsigned);
160
161 /*
162  * Load a segment. Fall back on loading the zero
163  * segment if something goes wrong..
164  */
165 #define loadsegment(seg, value)                 \
166         asm volatile("\n"                       \
167                      "1:\t"                     \
168                      "movl %k0,%%" #seg "\n"    \
169                      "2:\n"                     \
170                      ".section .fixup,\"ax\"\n" \
171                      "3:\t"                     \
172                      "movl %k1, %%" #seg "\n\t" \
173                      "jmp 2b\n"                 \
174                      ".previous\n"              \
175                      _ASM_EXTABLE(1b,3b)        \
176                      : :"r" (value), "r" (0) : "memory")
177
178
179 /*
180  * Save a segment register away
181  */
182 #define savesegment(seg, value)                         \
183         asm("mov %%" #seg ",%0":"=r" (value) : : "memory")
184
185 /*
186  * x86_32 user gs accessors.
187  */
188 #ifdef CONFIG_X86_32
189 #ifdef CONFIG_X86_32_LAZY_GS
190 #define get_user_gs(regs)       (u16)({unsigned long v; savesegment(gs, v); v;})
191 #define set_user_gs(regs, v)    loadsegment(gs, (unsigned long)(v))
192 #define task_user_gs(tsk)       ((tsk)->thread.gs)
193 #define lazy_save_gs(v)         savesegment(gs, (v))
194 #define lazy_load_gs(v)         loadsegment(gs, (v))
195 #else   /* X86_32_LAZY_GS */
196 #define get_user_gs(regs)       (u16)((regs)->gs)
197 #define set_user_gs(regs, v)    do { (regs)->gs = (v); } while (0)
198 #define task_user_gs(tsk)       (task_pt_regs(tsk)->gs)
199 #define lazy_save_gs(v)         do { } while (0)
200 #define lazy_load_gs(v)         do { } while (0)
201 #endif  /* X86_32_LAZY_GS */
202 #endif  /* X86_32 */
203
204 static inline unsigned long get_limit(unsigned long segment)
205 {
206         unsigned long __limit;
207         asm("lsll %1,%0" : "=r" (__limit) : "r" (segment));
208         return __limit + 1;
209 }
210
211 static inline void native_clts(void)
212 {
213         asm volatile("clts");
214 }
215
216 /*
217  * Volatile isn't enough to prevent the compiler from reordering the
218  * read/write functions for the control registers and messing everything up.
219  * A memory clobber would solve the problem, but would prevent reordering of
220  * all loads stores around it, which can hurt performance. Solution is to
221  * use a variable and mimic reads and writes to it to enforce serialization
222  */
223 static unsigned long __force_order;
224
225 static inline unsigned long native_read_cr0(void)
226 {
227         unsigned long val;
228         asm volatile("mov %%cr0,%0\n\t" : "=r" (val), "=m" (__force_order));
229         return val;
230 }
231
232 static inline void native_write_cr0(unsigned long val)
233 {
234         asm volatile("mov %0,%%cr0": : "r" (val), "m" (__force_order));
235 }
236
237 static inline unsigned long native_read_cr2(void)
238 {
239         unsigned long val;
240         asm volatile("mov %%cr2,%0\n\t" : "=r" (val), "=m" (__force_order));
241         return val;
242 }
243
244 static inline void native_write_cr2(unsigned long val)
245 {
246         asm volatile("mov %0,%%cr2": : "r" (val), "m" (__force_order));
247 }
248
249 static inline unsigned long native_read_cr3(void)
250 {
251         unsigned long val;
252         asm volatile("mov %%cr3,%0\n\t" : "=r" (val), "=m" (__force_order));
253         return val;
254 }
255
256 static inline void native_write_cr3(unsigned long val)
257 {
258         asm volatile("mov %0,%%cr3": : "r" (val), "m" (__force_order));
259 }
260
261 static inline unsigned long native_read_cr4(void)
262 {
263         unsigned long val;
264         asm volatile("mov %%cr4,%0\n\t" : "=r" (val), "=m" (__force_order));
265         return val;
266 }
267
268 static inline unsigned long native_read_cr4_safe(void)
269 {
270         unsigned long val;
271         /* This could fault if %cr4 does not exist. In x86_64, a cr4 always
272          * exists, so it will never fail. */
273 #ifdef CONFIG_X86_32
274         asm volatile("1: mov %%cr4, %0\n"
275                      "2:\n"
276                      _ASM_EXTABLE(1b, 2b)
277                      : "=r" (val), "=m" (__force_order) : "0" (0));
278 #else
279         val = native_read_cr4();
280 #endif
281         return val;
282 }
283
284 static inline void native_write_cr4(unsigned long val)
285 {
286         asm volatile("mov %0,%%cr4": : "r" (val), "m" (__force_order));
287 }
288
289 #ifdef CONFIG_X86_64
290 static inline unsigned long native_read_cr8(void)
291 {
292         unsigned long cr8;
293         asm volatile("movq %%cr8,%0" : "=r" (cr8));
294         return cr8;
295 }
296
297 static inline void native_write_cr8(unsigned long val)
298 {
299         asm volatile("movq %0,%%cr8" :: "r" (val) : "memory");
300 }
301 #endif
302
303 static inline void native_wbinvd(void)
304 {
305         asm volatile("wbinvd": : :"memory");
306 }
307
308 #ifdef CONFIG_PARAVIRT
309 #include <asm/paravirt.h>
310 #else
311 #define read_cr0()      (native_read_cr0())
312 #define write_cr0(x)    (native_write_cr0(x))
313 #define read_cr2()      (native_read_cr2())
314 #define write_cr2(x)    (native_write_cr2(x))
315 #define read_cr3()      (native_read_cr3())
316 #define write_cr3(x)    (native_write_cr3(x))
317 #define read_cr4()      (native_read_cr4())
318 #define read_cr4_safe() (native_read_cr4_safe())
319 #define write_cr4(x)    (native_write_cr4(x))
320 #define wbinvd()        (native_wbinvd())
321 #ifdef CONFIG_X86_64
322 #define read_cr8()      (native_read_cr8())
323 #define write_cr8(x)    (native_write_cr8(x))
324 #define load_gs_index   native_load_gs_index
325 #endif
326
327 /* Clear the 'TS' bit */
328 #define clts()          (native_clts())
329
330 #endif/* CONFIG_PARAVIRT */
331
332 #define stts() write_cr0(read_cr0() | X86_CR0_TS)
333
334 #endif /* __KERNEL__ */
335
336 static inline void clflush(volatile void *__p)
337 {
338         asm volatile("clflush %0" : "+m" (*(volatile char __force *)__p));
339 }
340
341 #define nop() asm volatile ("nop")
342
343 void disable_hlt(void);
344 void enable_hlt(void);
345
346 void cpu_idle_wait(void);
347
348 extern unsigned long arch_align_stack(unsigned long sp);
349 extern void free_init_pages(char *what, unsigned long begin, unsigned long end);
350
351 void default_idle(void);
352
353 void stop_this_cpu(void *dummy);
354
355 /*
356  * Force strict CPU ordering.
357  * And yes, this is required on UP too when we're talking
358  * to devices.
359  */
360 #ifdef CONFIG_X86_32
361 /*
362  * Some non-Intel clones support out of order store. wmb() ceases to be a
363  * nop for these.
364  */
365 #define mb() alternative("lock; addl $0,0(%%esp)", "mfence", X86_FEATURE_XMM2)
366 #define rmb() alternative("lock; addl $0,0(%%esp)", "lfence", X86_FEATURE_XMM2)
367 #define wmb() alternative("lock; addl $0,0(%%esp)", "sfence", X86_FEATURE_XMM)
368 #else
369 #define mb()    asm volatile("mfence":::"memory")
370 #define rmb()   asm volatile("lfence":::"memory")
371 #define wmb()   asm volatile("sfence" ::: "memory")
372 #endif
373
374 /**
375  * read_barrier_depends - Flush all pending reads that subsequents reads
376  * depend on.
377  *
378  * No data-dependent reads from memory-like regions are ever reordered
379  * over this barrier.  All reads preceding this primitive are guaranteed
380  * to access memory (but not necessarily other CPUs' caches) before any
381  * reads following this primitive that depend on the data return by
382  * any of the preceding reads.  This primitive is much lighter weight than
383  * rmb() on most CPUs, and is never heavier weight than is
384  * rmb().
385  *
386  * These ordering constraints are respected by both the local CPU
387  * and the compiler.
388  *
389  * Ordering is not guaranteed by anything other than these primitives,
390  * not even by data dependencies.  See the documentation for
391  * memory_barrier() for examples and URLs to more information.
392  *
393  * For example, the following code would force ordering (the initial
394  * value of "a" is zero, "b" is one, and "p" is "&a"):
395  *
396  * <programlisting>
397  *      CPU 0                           CPU 1
398  *
399  *      b = 2;
400  *      memory_barrier();
401  *      p = &b;                         q = p;
402  *                                      read_barrier_depends();
403  *                                      d = *q;
404  * </programlisting>
405  *
406  * because the read of "*q" depends on the read of "p" and these
407  * two reads are separated by a read_barrier_depends().  However,
408  * the following code, with the same initial values for "a" and "b":
409  *
410  * <programlisting>
411  *      CPU 0                           CPU 1
412  *
413  *      a = 2;
414  *      memory_barrier();
415  *      b = 3;                          y = b;
416  *                                      read_barrier_depends();
417  *                                      x = a;
418  * </programlisting>
419  *
420  * does not enforce ordering, since there is no data dependency between
421  * the read of "a" and the read of "b".  Therefore, on some CPUs, such
422  * as Alpha, "y" could be set to 3 and "x" to 0.  Use rmb()
423  * in cases like this where there are no data dependencies.
424  **/
425
426 #define read_barrier_depends()  do { } while (0)
427
428 #ifdef CONFIG_SMP
429 #define smp_mb()        mb()
430 #ifdef CONFIG_X86_PPRO_FENCE
431 # define smp_rmb()      rmb()
432 #else
433 # define smp_rmb()      barrier()
434 #endif
435 #ifdef CONFIG_X86_OOSTORE
436 # define smp_wmb()      wmb()
437 #else
438 # define smp_wmb()      barrier()
439 #endif
440 #define smp_read_barrier_depends()      read_barrier_depends()
441 #define set_mb(var, value) do { (void)xchg(&var, value); } while (0)
442 #else
443 #define smp_mb()        barrier()
444 #define smp_rmb()       barrier()
445 #define smp_wmb()       barrier()
446 #define smp_read_barrier_depends()      do { } while (0)
447 #define set_mb(var, value) do { var = value; barrier(); } while (0)
448 #endif
449
450 /*
451  * Stop RDTSC speculation. This is needed when you need to use RDTSC
452  * (or get_cycles or vread that possibly accesses the TSC) in a defined
453  * code region.
454  *
455  * (Could use an alternative three way for this if there was one.)
456  */
457 static inline void rdtsc_barrier(void)
458 {
459         alternative(ASM_NOP3, "mfence", X86_FEATURE_MFENCE_RDTSC);
460         alternative(ASM_NOP3, "lfence", X86_FEATURE_LFENCE_RDTSC);
461 }
462
463 #endif /* _ASM_X86_SYSTEM_H */