x86: move stack_canary into irq_stack
[safe/jmp/linux-2.6] / arch / x86 / include / asm / system.h
1 #ifndef _ASM_X86_SYSTEM_H
2 #define _ASM_X86_SYSTEM_H
3
4 #include <asm/asm.h>
5 #include <asm/segment.h>
6 #include <asm/cpufeature.h>
7 #include <asm/cmpxchg.h>
8 #include <asm/nops.h>
9
10 #include <linux/kernel.h>
11 #include <linux/irqflags.h>
12
13 /* entries in ARCH_DLINFO: */
14 #ifdef CONFIG_IA32_EMULATION
15 # define AT_VECTOR_SIZE_ARCH 2
16 #else
17 # define AT_VECTOR_SIZE_ARCH 1
18 #endif
19
20 struct task_struct; /* one of the stranger aspects of C forward declarations */
21 struct task_struct *__switch_to(struct task_struct *prev,
22                                 struct task_struct *next);
23
24 #ifdef CONFIG_X86_32
25
26 /*
27  * Saving eflags is important. It switches not only IOPL between tasks,
28  * it also protects other tasks from NT leaking through sysenter etc.
29  */
30 #define switch_to(prev, next, last)                                     \
31 do {                                                                    \
32         /*                                                              \
33          * Context-switching clobbers all registers, so we clobber      \
34          * them explicitly, via unused output variables.                \
35          * (EAX and EBP is not listed because EBP is saved/restored     \
36          * explicitly for wchan access and EAX is the return value of   \
37          * __switch_to())                                               \
38          */                                                             \
39         unsigned long ebx, ecx, edx, esi, edi;                          \
40                                                                         \
41         asm volatile("pushfl\n\t"               /* save    flags */     \
42                      "pushl %%ebp\n\t"          /* save    EBP   */     \
43                      "movl %%esp,%[prev_sp]\n\t"        /* save    ESP   */ \
44                      "movl %[next_sp],%%esp\n\t"        /* restore ESP   */ \
45                      "movl $1f,%[prev_ip]\n\t"  /* save    EIP   */     \
46                      "pushl %[next_ip]\n\t"     /* restore EIP   */     \
47                      "jmp __switch_to\n"        /* regparm call  */     \
48                      "1:\t"                                             \
49                      "popl %%ebp\n\t"           /* restore EBP   */     \
50                      "popfl\n"                  /* restore flags */     \
51                                                                         \
52                      /* output parameters */                            \
53                      : [prev_sp] "=m" (prev->thread.sp),                \
54                        [prev_ip] "=m" (prev->thread.ip),                \
55                        "=a" (last),                                     \
56                                                                         \
57                        /* clobbered output registers: */                \
58                        "=b" (ebx), "=c" (ecx), "=d" (edx),              \
59                        "=S" (esi), "=D" (edi)                           \
60                                                                         \
61                        /* input parameters: */                          \
62                      : [next_sp]  "m" (next->thread.sp),                \
63                        [next_ip]  "m" (next->thread.ip),                \
64                                                                         \
65                        /* regparm parameters for __switch_to(): */      \
66                        [prev]     "a" (prev),                           \
67                        [next]     "d" (next)                            \
68                                                                         \
69                      : /* reloaded segment registers */                 \
70                         "memory");                                      \
71 } while (0)
72
73 /*
74  * disable hlt during certain critical i/o operations
75  */
76 #define HAVE_DISABLE_HLT
77 #else
78 #define __SAVE(reg, offset) "movq %%" #reg ",(14-" #offset ")*8(%%rsp)\n\t"
79 #define __RESTORE(reg, offset) "movq (14-" #offset ")*8(%%rsp),%%" #reg "\n\t"
80
81 /* frame pointer must be last for get_wchan */
82 #define SAVE_CONTEXT    "pushf ; pushq %%rbp ; movq %%rsi,%%rbp\n\t"
83 #define RESTORE_CONTEXT "movq %%rbp,%%rsi ; popq %%rbp ; popf\t"
84
85 #define __EXTRA_CLOBBER  \
86         , "rcx", "rbx", "rdx", "r8", "r9", "r10", "r11", \
87           "r12", "r13", "r14", "r15"
88
89 #ifdef CONFIG_CC_STACKPROTECTOR
90 #define __switch_canary                                                   \
91         "movq %P[task_canary](%%rsi),%%r8\n\t"                            \
92         "movq %%r8,%%gs:%P[gs_canary]\n\t"
93 #define __switch_canary_param                                             \
94         , [task_canary] "i" (offsetof(struct task_struct, stack_canary))  \
95         , [gs_canary] "i" (offsetof(union irq_stack_union, stack_canary))
96 #else   /* CC_STACKPROTECTOR */
97 #define __switch_canary
98 #define __switch_canary_param
99 #endif  /* CC_STACKPROTECTOR */
100
101 /* Save restore flags to clear handle leaking NT */
102 #define switch_to(prev, next, last) \
103         asm volatile(SAVE_CONTEXT                                         \
104              "movq %%rsp,%P[threadrsp](%[prev])\n\t" /* save RSP */       \
105              "movq %P[threadrsp](%[next]),%%rsp\n\t" /* restore RSP */    \
106              "call __switch_to\n\t"                                       \
107              ".globl thread_return\n"                                     \
108              "thread_return:\n\t"                                         \
109              "movq "__percpu_arg([current_task])",%%rsi\n\t"              \
110              __switch_canary                                              \
111              "movq %P[thread_info](%%rsi),%%r8\n\t"                       \
112              LOCK_PREFIX "btr  %[tif_fork],%P[ti_flags](%%r8)\n\t"        \
113              "movq %%rax,%%rdi\n\t"                                       \
114              "jc   ret_from_fork\n\t"                                     \
115              RESTORE_CONTEXT                                              \
116              : "=a" (last)                                                \
117              : [next] "S" (next), [prev] "D" (prev),                      \
118                [threadrsp] "i" (offsetof(struct task_struct, thread.sp)), \
119                [ti_flags] "i" (offsetof(struct thread_info, flags)),      \
120                [tif_fork] "i" (TIF_FORK),                                 \
121                [thread_info] "i" (offsetof(struct task_struct, stack)),   \
122                [current_task] "m" (per_cpu_var(current_task))             \
123                __switch_canary_param                                      \
124              : "memory", "cc" __EXTRA_CLOBBER)
125 #endif
126
127 #ifdef __KERNEL__
128 #define _set_base(addr, base) do { unsigned long __pr; \
129 __asm__ __volatile__ ("movw %%dx,%1\n\t" \
130         "rorl $16,%%edx\n\t" \
131         "movb %%dl,%2\n\t" \
132         "movb %%dh,%3" \
133         :"=&d" (__pr) \
134         :"m" (*((addr)+2)), \
135          "m" (*((addr)+4)), \
136          "m" (*((addr)+7)), \
137          "0" (base) \
138         ); } while (0)
139
140 #define _set_limit(addr, limit) do { unsigned long __lr; \
141 __asm__ __volatile__ ("movw %%dx,%1\n\t" \
142         "rorl $16,%%edx\n\t" \
143         "movb %2,%%dh\n\t" \
144         "andb $0xf0,%%dh\n\t" \
145         "orb %%dh,%%dl\n\t" \
146         "movb %%dl,%2" \
147         :"=&d" (__lr) \
148         :"m" (*(addr)), \
149          "m" (*((addr)+6)), \
150          "0" (limit) \
151         ); } while (0)
152
153 #define set_base(ldt, base) _set_base(((char *)&(ldt)) , (base))
154 #define set_limit(ldt, limit) _set_limit(((char *)&(ldt)) , ((limit)-1))
155
156 extern void native_load_gs_index(unsigned);
157
158 /*
159  * Load a segment. Fall back on loading the zero
160  * segment if something goes wrong..
161  */
162 #define loadsegment(seg, value)                 \
163         asm volatile("\n"                       \
164                      "1:\t"                     \
165                      "movl %k0,%%" #seg "\n"    \
166                      "2:\n"                     \
167                      ".section .fixup,\"ax\"\n" \
168                      "3:\t"                     \
169                      "movl %k1, %%" #seg "\n\t" \
170                      "jmp 2b\n"                 \
171                      ".previous\n"              \
172                      _ASM_EXTABLE(1b,3b)        \
173                      : :"r" (value), "r" (0) : "memory")
174
175
176 /*
177  * Save a segment register away
178  */
179 #define savesegment(seg, value)                         \
180         asm("mov %%" #seg ",%0":"=r" (value) : : "memory")
181
182 static inline unsigned long get_limit(unsigned long segment)
183 {
184         unsigned long __limit;
185         asm("lsll %1,%0" : "=r" (__limit) : "r" (segment));
186         return __limit + 1;
187 }
188
189 static inline void native_clts(void)
190 {
191         asm volatile("clts");
192 }
193
194 /*
195  * Volatile isn't enough to prevent the compiler from reordering the
196  * read/write functions for the control registers and messing everything up.
197  * A memory clobber would solve the problem, but would prevent reordering of
198  * all loads stores around it, which can hurt performance. Solution is to
199  * use a variable and mimic reads and writes to it to enforce serialization
200  */
201 static unsigned long __force_order;
202
203 static inline unsigned long native_read_cr0(void)
204 {
205         unsigned long val;
206         asm volatile("mov %%cr0,%0\n\t" : "=r" (val), "=m" (__force_order));
207         return val;
208 }
209
210 static inline void native_write_cr0(unsigned long val)
211 {
212         asm volatile("mov %0,%%cr0": : "r" (val), "m" (__force_order));
213 }
214
215 static inline unsigned long native_read_cr2(void)
216 {
217         unsigned long val;
218         asm volatile("mov %%cr2,%0\n\t" : "=r" (val), "=m" (__force_order));
219         return val;
220 }
221
222 static inline void native_write_cr2(unsigned long val)
223 {
224         asm volatile("mov %0,%%cr2": : "r" (val), "m" (__force_order));
225 }
226
227 static inline unsigned long native_read_cr3(void)
228 {
229         unsigned long val;
230         asm volatile("mov %%cr3,%0\n\t" : "=r" (val), "=m" (__force_order));
231         return val;
232 }
233
234 static inline void native_write_cr3(unsigned long val)
235 {
236         asm volatile("mov %0,%%cr3": : "r" (val), "m" (__force_order));
237 }
238
239 static inline unsigned long native_read_cr4(void)
240 {
241         unsigned long val;
242         asm volatile("mov %%cr4,%0\n\t" : "=r" (val), "=m" (__force_order));
243         return val;
244 }
245
246 static inline unsigned long native_read_cr4_safe(void)
247 {
248         unsigned long val;
249         /* This could fault if %cr4 does not exist. In x86_64, a cr4 always
250          * exists, so it will never fail. */
251 #ifdef CONFIG_X86_32
252         asm volatile("1: mov %%cr4, %0\n"
253                      "2:\n"
254                      _ASM_EXTABLE(1b, 2b)
255                      : "=r" (val), "=m" (__force_order) : "0" (0));
256 #else
257         val = native_read_cr4();
258 #endif
259         return val;
260 }
261
262 static inline void native_write_cr4(unsigned long val)
263 {
264         asm volatile("mov %0,%%cr4": : "r" (val), "m" (__force_order));
265 }
266
267 #ifdef CONFIG_X86_64
268 static inline unsigned long native_read_cr8(void)
269 {
270         unsigned long cr8;
271         asm volatile("movq %%cr8,%0" : "=r" (cr8));
272         return cr8;
273 }
274
275 static inline void native_write_cr8(unsigned long val)
276 {
277         asm volatile("movq %0,%%cr8" :: "r" (val) : "memory");
278 }
279 #endif
280
281 static inline void native_wbinvd(void)
282 {
283         asm volatile("wbinvd": : :"memory");
284 }
285
286 #ifdef CONFIG_PARAVIRT
287 #include <asm/paravirt.h>
288 #else
289 #define read_cr0()      (native_read_cr0())
290 #define write_cr0(x)    (native_write_cr0(x))
291 #define read_cr2()      (native_read_cr2())
292 #define write_cr2(x)    (native_write_cr2(x))
293 #define read_cr3()      (native_read_cr3())
294 #define write_cr3(x)    (native_write_cr3(x))
295 #define read_cr4()      (native_read_cr4())
296 #define read_cr4_safe() (native_read_cr4_safe())
297 #define write_cr4(x)    (native_write_cr4(x))
298 #define wbinvd()        (native_wbinvd())
299 #ifdef CONFIG_X86_64
300 #define read_cr8()      (native_read_cr8())
301 #define write_cr8(x)    (native_write_cr8(x))
302 #define load_gs_index   native_load_gs_index
303 #endif
304
305 /* Clear the 'TS' bit */
306 #define clts()          (native_clts())
307
308 #endif/* CONFIG_PARAVIRT */
309
310 #define stts() write_cr0(read_cr0() | X86_CR0_TS)
311
312 #endif /* __KERNEL__ */
313
314 static inline void clflush(volatile void *__p)
315 {
316         asm volatile("clflush %0" : "+m" (*(volatile char __force *)__p));
317 }
318
319 #define nop() asm volatile ("nop")
320
321 void disable_hlt(void);
322 void enable_hlt(void);
323
324 void cpu_idle_wait(void);
325
326 extern unsigned long arch_align_stack(unsigned long sp);
327 extern void free_init_pages(char *what, unsigned long begin, unsigned long end);
328
329 void default_idle(void);
330
331 void stop_this_cpu(void *dummy);
332
333 /*
334  * Force strict CPU ordering.
335  * And yes, this is required on UP too when we're talking
336  * to devices.
337  */
338 #ifdef CONFIG_X86_32
339 /*
340  * Some non-Intel clones support out of order store. wmb() ceases to be a
341  * nop for these.
342  */
343 #define mb() alternative("lock; addl $0,0(%%esp)", "mfence", X86_FEATURE_XMM2)
344 #define rmb() alternative("lock; addl $0,0(%%esp)", "lfence", X86_FEATURE_XMM2)
345 #define wmb() alternative("lock; addl $0,0(%%esp)", "sfence", X86_FEATURE_XMM)
346 #else
347 #define mb()    asm volatile("mfence":::"memory")
348 #define rmb()   asm volatile("lfence":::"memory")
349 #define wmb()   asm volatile("sfence" ::: "memory")
350 #endif
351
352 /**
353  * read_barrier_depends - Flush all pending reads that subsequents reads
354  * depend on.
355  *
356  * No data-dependent reads from memory-like regions are ever reordered
357  * over this barrier.  All reads preceding this primitive are guaranteed
358  * to access memory (but not necessarily other CPUs' caches) before any
359  * reads following this primitive that depend on the data return by
360  * any of the preceding reads.  This primitive is much lighter weight than
361  * rmb() on most CPUs, and is never heavier weight than is
362  * rmb().
363  *
364  * These ordering constraints are respected by both the local CPU
365  * and the compiler.
366  *
367  * Ordering is not guaranteed by anything other than these primitives,
368  * not even by data dependencies.  See the documentation for
369  * memory_barrier() for examples and URLs to more information.
370  *
371  * For example, the following code would force ordering (the initial
372  * value of "a" is zero, "b" is one, and "p" is "&a"):
373  *
374  * <programlisting>
375  *      CPU 0                           CPU 1
376  *
377  *      b = 2;
378  *      memory_barrier();
379  *      p = &b;                         q = p;
380  *                                      read_barrier_depends();
381  *                                      d = *q;
382  * </programlisting>
383  *
384  * because the read of "*q" depends on the read of "p" and these
385  * two reads are separated by a read_barrier_depends().  However,
386  * the following code, with the same initial values for "a" and "b":
387  *
388  * <programlisting>
389  *      CPU 0                           CPU 1
390  *
391  *      a = 2;
392  *      memory_barrier();
393  *      b = 3;                          y = b;
394  *                                      read_barrier_depends();
395  *                                      x = a;
396  * </programlisting>
397  *
398  * does not enforce ordering, since there is no data dependency between
399  * the read of "a" and the read of "b".  Therefore, on some CPUs, such
400  * as Alpha, "y" could be set to 3 and "x" to 0.  Use rmb()
401  * in cases like this where there are no data dependencies.
402  **/
403
404 #define read_barrier_depends()  do { } while (0)
405
406 #ifdef CONFIG_SMP
407 #define smp_mb()        mb()
408 #ifdef CONFIG_X86_PPRO_FENCE
409 # define smp_rmb()      rmb()
410 #else
411 # define smp_rmb()      barrier()
412 #endif
413 #ifdef CONFIG_X86_OOSTORE
414 # define smp_wmb()      wmb()
415 #else
416 # define smp_wmb()      barrier()
417 #endif
418 #define smp_read_barrier_depends()      read_barrier_depends()
419 #define set_mb(var, value) do { (void)xchg(&var, value); } while (0)
420 #else
421 #define smp_mb()        barrier()
422 #define smp_rmb()       barrier()
423 #define smp_wmb()       barrier()
424 #define smp_read_barrier_depends()      do { } while (0)
425 #define set_mb(var, value) do { var = value; barrier(); } while (0)
426 #endif
427
428 /*
429  * Stop RDTSC speculation. This is needed when you need to use RDTSC
430  * (or get_cycles or vread that possibly accesses the TSC) in a defined
431  * code region.
432  *
433  * (Could use an alternative three way for this if there was one.)
434  */
435 static inline void rdtsc_barrier(void)
436 {
437         alternative(ASM_NOP3, "mfence", X86_FEATURE_MFENCE_RDTSC);
438         alternative(ASM_NOP3, "lfence", X86_FEATURE_LFENCE_RDTSC);
439 }
440
441 #endif /* _ASM_X86_SYSTEM_H */