[SPARC64]: Patch up mmu context register writes for sun4v.
[safe/jmp/linux-2.6] / arch / sparc64 / mm / init.c
1 /*  $Id: init.c,v 1.209 2002/02/09 19:49:31 davem Exp $
2  *  arch/sparc64/mm/init.c
3  *
4  *  Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
5  *  Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
6  */
7  
8 #include <linux/config.h>
9 #include <linux/kernel.h>
10 #include <linux/sched.h>
11 #include <linux/string.h>
12 #include <linux/init.h>
13 #include <linux/bootmem.h>
14 #include <linux/mm.h>
15 #include <linux/hugetlb.h>
16 #include <linux/slab.h>
17 #include <linux/initrd.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/kprobes.h>
23 #include <linux/cache.h>
24 #include <linux/sort.h>
25
26 #include <asm/head.h>
27 #include <asm/system.h>
28 #include <asm/page.h>
29 #include <asm/pgalloc.h>
30 #include <asm/pgtable.h>
31 #include <asm/oplib.h>
32 #include <asm/iommu.h>
33 #include <asm/io.h>
34 #include <asm/uaccess.h>
35 #include <asm/mmu_context.h>
36 #include <asm/tlbflush.h>
37 #include <asm/dma.h>
38 #include <asm/starfire.h>
39 #include <asm/tlb.h>
40 #include <asm/spitfire.h>
41 #include <asm/sections.h>
42 #include <asm/tsb.h>
43 #include <asm/hypervisor.h>
44
45 extern void device_scan(void);
46
47 #define MAX_BANKS       32
48
49 static struct linux_prom64_registers pavail[MAX_BANKS] __initdata;
50 static struct linux_prom64_registers pavail_rescan[MAX_BANKS] __initdata;
51 static int pavail_ents __initdata;
52 static int pavail_rescan_ents __initdata;
53
54 static int cmp_p64(const void *a, const void *b)
55 {
56         const struct linux_prom64_registers *x = a, *y = b;
57
58         if (x->phys_addr > y->phys_addr)
59                 return 1;
60         if (x->phys_addr < y->phys_addr)
61                 return -1;
62         return 0;
63 }
64
65 static void __init read_obp_memory(const char *property,
66                                    struct linux_prom64_registers *regs,
67                                    int *num_ents)
68 {
69         int node = prom_finddevice("/memory");
70         int prop_size = prom_getproplen(node, property);
71         int ents, ret, i;
72
73         ents = prop_size / sizeof(struct linux_prom64_registers);
74         if (ents > MAX_BANKS) {
75                 prom_printf("The machine has more %s property entries than "
76                             "this kernel can support (%d).\n",
77                             property, MAX_BANKS);
78                 prom_halt();
79         }
80
81         ret = prom_getproperty(node, property, (char *) regs, prop_size);
82         if (ret == -1) {
83                 prom_printf("Couldn't get %s property from /memory.\n");
84                 prom_halt();
85         }
86
87         *num_ents = ents;
88
89         /* Sanitize what we got from the firmware, by page aligning
90          * everything.
91          */
92         for (i = 0; i < ents; i++) {
93                 unsigned long base, size;
94
95                 base = regs[i].phys_addr;
96                 size = regs[i].reg_size;
97
98                 size &= PAGE_MASK;
99                 if (base & ~PAGE_MASK) {
100                         unsigned long new_base = PAGE_ALIGN(base);
101
102                         size -= new_base - base;
103                         if ((long) size < 0L)
104                                 size = 0UL;
105                         base = new_base;
106                 }
107                 regs[i].phys_addr = base;
108                 regs[i].reg_size = size;
109         }
110         sort(regs, ents, sizeof(struct linux_prom64_registers),
111              cmp_p64, NULL);
112 }
113
114 unsigned long *sparc64_valid_addr_bitmap __read_mostly;
115
116 /* Ugly, but necessary... -DaveM */
117 unsigned long phys_base __read_mostly;
118 unsigned long kern_base __read_mostly;
119 unsigned long kern_size __read_mostly;
120 unsigned long pfn_base __read_mostly;
121
122 /* get_new_mmu_context() uses "cache + 1".  */
123 DEFINE_SPINLOCK(ctx_alloc_lock);
124 unsigned long tlb_context_cache = CTX_FIRST_VERSION - 1;
125 #define CTX_BMAP_SLOTS (1UL << (CTX_NR_BITS - 6))
126 unsigned long mmu_context_bmap[CTX_BMAP_SLOTS];
127
128 /* References to special section boundaries */
129 extern char  _start[], _end[];
130
131 /* Initial ramdisk setup */
132 extern unsigned long sparc_ramdisk_image64;
133 extern unsigned int sparc_ramdisk_image;
134 extern unsigned int sparc_ramdisk_size;
135
136 struct page *mem_map_zero __read_mostly;
137
138 unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
139
140 unsigned long sparc64_kern_pri_context __read_mostly;
141 unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
142 unsigned long sparc64_kern_sec_context __read_mostly;
143
144 int bigkernel = 0;
145
146 kmem_cache_t *pgtable_cache __read_mostly;
147
148 static void zero_ctor(void *addr, kmem_cache_t *cache, unsigned long flags)
149 {
150         clear_page(addr);
151 }
152
153 void pgtable_cache_init(void)
154 {
155         pgtable_cache = kmem_cache_create("pgtable_cache",
156                                           PAGE_SIZE, PAGE_SIZE,
157                                           SLAB_HWCACHE_ALIGN |
158                                           SLAB_MUST_HWCACHE_ALIGN,
159                                           zero_ctor,
160                                           NULL);
161         if (!pgtable_cache) {
162                 prom_printf("pgtable_cache_init(): Could not create!\n");
163                 prom_halt();
164         }
165 }
166
167 #ifdef CONFIG_DEBUG_DCFLUSH
168 atomic_t dcpage_flushes = ATOMIC_INIT(0);
169 #ifdef CONFIG_SMP
170 atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
171 #endif
172 #endif
173
174 __inline__ void flush_dcache_page_impl(struct page *page)
175 {
176 #ifdef CONFIG_DEBUG_DCFLUSH
177         atomic_inc(&dcpage_flushes);
178 #endif
179
180 #ifdef DCACHE_ALIASING_POSSIBLE
181         __flush_dcache_page(page_address(page),
182                             ((tlb_type == spitfire) &&
183                              page_mapping(page) != NULL));
184 #else
185         if (page_mapping(page) != NULL &&
186             tlb_type == spitfire)
187                 __flush_icache_page(__pa(page_address(page)));
188 #endif
189 }
190
191 #define PG_dcache_dirty         PG_arch_1
192 #define PG_dcache_cpu_shift     24
193 #define PG_dcache_cpu_mask      (256 - 1)
194
195 #if NR_CPUS > 256
196 #error D-cache dirty tracking and thread_info->cpu need fixing for > 256 cpus
197 #endif
198
199 #define dcache_dirty_cpu(page) \
200         (((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
201
202 static __inline__ void set_dcache_dirty(struct page *page, int this_cpu)
203 {
204         unsigned long mask = this_cpu;
205         unsigned long non_cpu_bits;
206
207         non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
208         mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
209
210         __asm__ __volatile__("1:\n\t"
211                              "ldx       [%2], %%g7\n\t"
212                              "and       %%g7, %1, %%g1\n\t"
213                              "or        %%g1, %0, %%g1\n\t"
214                              "casx      [%2], %%g7, %%g1\n\t"
215                              "cmp       %%g7, %%g1\n\t"
216                              "membar    #StoreLoad | #StoreStore\n\t"
217                              "bne,pn    %%xcc, 1b\n\t"
218                              " nop"
219                              : /* no outputs */
220                              : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
221                              : "g1", "g7");
222 }
223
224 static __inline__ void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
225 {
226         unsigned long mask = (1UL << PG_dcache_dirty);
227
228         __asm__ __volatile__("! test_and_clear_dcache_dirty\n"
229                              "1:\n\t"
230                              "ldx       [%2], %%g7\n\t"
231                              "srlx      %%g7, %4, %%g1\n\t"
232                              "and       %%g1, %3, %%g1\n\t"
233                              "cmp       %%g1, %0\n\t"
234                              "bne,pn    %%icc, 2f\n\t"
235                              " andn     %%g7, %1, %%g1\n\t"
236                              "casx      [%2], %%g7, %%g1\n\t"
237                              "cmp       %%g7, %%g1\n\t"
238                              "membar    #StoreLoad | #StoreStore\n\t"
239                              "bne,pn    %%xcc, 1b\n\t"
240                              " nop\n"
241                              "2:"
242                              : /* no outputs */
243                              : "r" (cpu), "r" (mask), "r" (&page->flags),
244                                "i" (PG_dcache_cpu_mask),
245                                "i" (PG_dcache_cpu_shift)
246                              : "g1", "g7");
247 }
248
249 static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
250 {
251         unsigned long tsb_addr = (unsigned long) ent;
252
253         if (tlb_type == cheetah_plus)
254                 tsb_addr = __pa(tsb_addr);
255
256         __tsb_insert(tsb_addr, tag, pte);
257 }
258
259 void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t pte)
260 {
261         struct mm_struct *mm;
262         struct page *page;
263         unsigned long pfn;
264         unsigned long pg_flags;
265
266         pfn = pte_pfn(pte);
267         if (pfn_valid(pfn) &&
268             (page = pfn_to_page(pfn), page_mapping(page)) &&
269             ((pg_flags = page->flags) & (1UL << PG_dcache_dirty))) {
270                 int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
271                            PG_dcache_cpu_mask);
272                 int this_cpu = get_cpu();
273
274                 /* This is just to optimize away some function calls
275                  * in the SMP case.
276                  */
277                 if (cpu == this_cpu)
278                         flush_dcache_page_impl(page);
279                 else
280                         smp_flush_dcache_page_impl(page, cpu);
281
282                 clear_dcache_dirty_cpu(page, cpu);
283
284                 put_cpu();
285         }
286
287         mm = vma->vm_mm;
288         if ((pte_val(pte) & _PAGE_ALL_SZ_BITS) == _PAGE_SZBITS) {
289                 struct tsb *tsb;
290                 unsigned long tag;
291
292                 tsb = &mm->context.tsb[(address >> PAGE_SHIFT) &
293                                        (mm->context.tsb_nentries - 1UL)];
294                 tag = (address >> 22UL) | CTX_HWBITS(mm->context) << 48UL;
295                 tsb_insert(tsb, tag, pte_val(pte));
296         }
297 }
298
299 void flush_dcache_page(struct page *page)
300 {
301         struct address_space *mapping;
302         int this_cpu;
303
304         /* Do not bother with the expensive D-cache flush if it
305          * is merely the zero page.  The 'bigcore' testcase in GDB
306          * causes this case to run millions of times.
307          */
308         if (page == ZERO_PAGE(0))
309                 return;
310
311         this_cpu = get_cpu();
312
313         mapping = page_mapping(page);
314         if (mapping && !mapping_mapped(mapping)) {
315                 int dirty = test_bit(PG_dcache_dirty, &page->flags);
316                 if (dirty) {
317                         int dirty_cpu = dcache_dirty_cpu(page);
318
319                         if (dirty_cpu == this_cpu)
320                                 goto out;
321                         smp_flush_dcache_page_impl(page, dirty_cpu);
322                 }
323                 set_dcache_dirty(page, this_cpu);
324         } else {
325                 /* We could delay the flush for the !page_mapping
326                  * case too.  But that case is for exec env/arg
327                  * pages and those are %99 certainly going to get
328                  * faulted into the tlb (and thus flushed) anyways.
329                  */
330                 flush_dcache_page_impl(page);
331         }
332
333 out:
334         put_cpu();
335 }
336
337 void __kprobes flush_icache_range(unsigned long start, unsigned long end)
338 {
339         /* Cheetah and Hypervisor platform cpus have coherent I-cache. */
340         if (tlb_type == spitfire) {
341                 unsigned long kaddr;
342
343                 for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE)
344                         __flush_icache_page(__get_phys(kaddr));
345         }
346 }
347
348 unsigned long page_to_pfn(struct page *page)
349 {
350         return (unsigned long) ((page - mem_map) + pfn_base);
351 }
352
353 struct page *pfn_to_page(unsigned long pfn)
354 {
355         return (mem_map + (pfn - pfn_base));
356 }
357
358 void show_mem(void)
359 {
360         printk("Mem-info:\n");
361         show_free_areas();
362         printk("Free swap:       %6ldkB\n",
363                nr_swap_pages << (PAGE_SHIFT-10));
364         printk("%ld pages of RAM\n", num_physpages);
365         printk("%d free pages\n", nr_free_pages());
366 }
367
368 void mmu_info(struct seq_file *m)
369 {
370         if (tlb_type == cheetah)
371                 seq_printf(m, "MMU Type\t: Cheetah\n");
372         else if (tlb_type == cheetah_plus)
373                 seq_printf(m, "MMU Type\t: Cheetah+\n");
374         else if (tlb_type == spitfire)
375                 seq_printf(m, "MMU Type\t: Spitfire\n");
376         else if (tlb_type == hypervisor)
377                 seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
378         else
379                 seq_printf(m, "MMU Type\t: ???\n");
380
381 #ifdef CONFIG_DEBUG_DCFLUSH
382         seq_printf(m, "DCPageFlushes\t: %d\n",
383                    atomic_read(&dcpage_flushes));
384 #ifdef CONFIG_SMP
385         seq_printf(m, "DCPageFlushesXC\t: %d\n",
386                    atomic_read(&dcpage_flushes_xcall));
387 #endif /* CONFIG_SMP */
388 #endif /* CONFIG_DEBUG_DCFLUSH */
389 }
390
391 struct linux_prom_translation {
392         unsigned long virt;
393         unsigned long size;
394         unsigned long data;
395 };
396
397 /* Exported for kernel TLB miss handling in ktlb.S */
398 struct linux_prom_translation prom_trans[512] __read_mostly;
399 unsigned int prom_trans_ents __read_mostly;
400
401 extern unsigned long prom_boot_page;
402 extern void prom_remap(unsigned long physpage, unsigned long virtpage, int mmu_ihandle);
403 extern int prom_get_mmu_ihandle(void);
404 extern void register_prom_callbacks(void);
405
406 /* Exported for SMP bootup purposes. */
407 unsigned long kern_locked_tte_data;
408
409 /*
410  * Translate PROM's mapping we capture at boot time into physical address.
411  * The second parameter is only set from prom_callback() invocations.
412  */
413 unsigned long prom_virt_to_phys(unsigned long promva, int *error)
414 {
415         int i;
416
417         for (i = 0; i < prom_trans_ents; i++) {
418                 struct linux_prom_translation *p = &prom_trans[i];
419
420                 if (promva >= p->virt &&
421                     promva < (p->virt + p->size)) {
422                         unsigned long base = p->data & _PAGE_PADDR;
423
424                         if (error)
425                                 *error = 0;
426                         return base + (promva & (8192 - 1));
427                 }
428         }
429         if (error)
430                 *error = 1;
431         return 0UL;
432 }
433
434 /* The obp translations are saved based on 8k pagesize, since obp can
435  * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
436  * HI_OBP_ADDRESS range are handled in ktlb.S.
437  */
438 static inline int in_obp_range(unsigned long vaddr)
439 {
440         return (vaddr >= LOW_OBP_ADDRESS &&
441                 vaddr < HI_OBP_ADDRESS);
442 }
443
444 static int cmp_ptrans(const void *a, const void *b)
445 {
446         const struct linux_prom_translation *x = a, *y = b;
447
448         if (x->virt > y->virt)
449                 return 1;
450         if (x->virt < y->virt)
451                 return -1;
452         return 0;
453 }
454
455 /* Read OBP translations property into 'prom_trans[]'.  */
456 static void __init read_obp_translations(void)
457 {
458         int n, node, ents, first, last, i;
459
460         node = prom_finddevice("/virtual-memory");
461         n = prom_getproplen(node, "translations");
462         if (unlikely(n == 0 || n == -1)) {
463                 prom_printf("prom_mappings: Couldn't get size.\n");
464                 prom_halt();
465         }
466         if (unlikely(n > sizeof(prom_trans))) {
467                 prom_printf("prom_mappings: Size %Zd is too big.\n", n);
468                 prom_halt();
469         }
470
471         if ((n = prom_getproperty(node, "translations",
472                                   (char *)&prom_trans[0],
473                                   sizeof(prom_trans))) == -1) {
474                 prom_printf("prom_mappings: Couldn't get property.\n");
475                 prom_halt();
476         }
477
478         n = n / sizeof(struct linux_prom_translation);
479
480         ents = n;
481
482         sort(prom_trans, ents, sizeof(struct linux_prom_translation),
483              cmp_ptrans, NULL);
484
485         /* Now kick out all the non-OBP entries.  */
486         for (i = 0; i < ents; i++) {
487                 if (in_obp_range(prom_trans[i].virt))
488                         break;
489         }
490         first = i;
491         for (; i < ents; i++) {
492                 if (!in_obp_range(prom_trans[i].virt))
493                         break;
494         }
495         last = i;
496
497         for (i = 0; i < (last - first); i++) {
498                 struct linux_prom_translation *src = &prom_trans[i + first];
499                 struct linux_prom_translation *dest = &prom_trans[i];
500
501                 *dest = *src;
502         }
503         for (; i < ents; i++) {
504                 struct linux_prom_translation *dest = &prom_trans[i];
505                 dest->virt = dest->size = dest->data = 0x0UL;
506         }
507
508         prom_trans_ents = last - first;
509
510         if (tlb_type == spitfire) {
511                 /* Clear diag TTE bits. */
512                 for (i = 0; i < prom_trans_ents; i++)
513                         prom_trans[i].data &= ~0x0003fe0000000000UL;
514         }
515 }
516
517 static void __init remap_kernel(void)
518 {
519         unsigned long phys_page, tte_vaddr, tte_data;
520         int tlb_ent = sparc64_highest_locked_tlbent();
521
522         tte_vaddr = (unsigned long) KERNBASE;
523         phys_page = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
524         tte_data = (phys_page | (_PAGE_VALID | _PAGE_SZ4MB |
525                                  _PAGE_CP | _PAGE_CV | _PAGE_P |
526                                  _PAGE_L | _PAGE_W));
527
528         kern_locked_tte_data = tte_data;
529
530         /* Now lock us into the TLBs via OBP. */
531         prom_dtlb_load(tlb_ent, tte_data, tte_vaddr);
532         prom_itlb_load(tlb_ent, tte_data, tte_vaddr);
533         if (bigkernel) {
534                 tlb_ent -= 1;
535                 prom_dtlb_load(tlb_ent,
536                                tte_data + 0x400000, 
537                                tte_vaddr + 0x400000);
538                 prom_itlb_load(tlb_ent,
539                                tte_data + 0x400000, 
540                                tte_vaddr + 0x400000);
541         }
542         sparc64_highest_unlocked_tlb_ent = tlb_ent - 1;
543         if (tlb_type == cheetah_plus) {
544                 sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
545                                             CTX_CHEETAH_PLUS_NUC);
546                 sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
547                 sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
548         }
549 }
550
551
552 static void __init inherit_prom_mappings(void)
553 {
554         read_obp_translations();
555
556         /* Now fixup OBP's idea about where we really are mapped. */
557         prom_printf("Remapping the kernel... ");
558         remap_kernel();
559         prom_printf("done.\n");
560
561         prom_printf("Registering callbacks... ");
562         register_prom_callbacks();
563         prom_printf("done.\n");
564 }
565
566 void prom_world(int enter)
567 {
568         if (!enter)
569                 set_fs((mm_segment_t) { get_thread_current_ds() });
570
571         __asm__ __volatile__("flushw");
572 }
573
574 #ifdef DCACHE_ALIASING_POSSIBLE
575 void __flush_dcache_range(unsigned long start, unsigned long end)
576 {
577         unsigned long va;
578
579         if (tlb_type == spitfire) {
580                 int n = 0;
581
582                 for (va = start; va < end; va += 32) {
583                         spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
584                         if (++n >= 512)
585                                 break;
586                 }
587         } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
588                 start = __pa(start);
589                 end = __pa(end);
590                 for (va = start; va < end; va += 32)
591                         __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
592                                              "membar #Sync"
593                                              : /* no outputs */
594                                              : "r" (va),
595                                                "i" (ASI_DCACHE_INVALIDATE));
596         }
597 }
598 #endif /* DCACHE_ALIASING_POSSIBLE */
599
600 /* If not locked, zap it. */
601 void __flush_tlb_all(void)
602 {
603         unsigned long pstate;
604         int i;
605
606         __asm__ __volatile__("flushw\n\t"
607                              "rdpr      %%pstate, %0\n\t"
608                              "wrpr      %0, %1, %%pstate"
609                              : "=r" (pstate)
610                              : "i" (PSTATE_IE));
611         if (tlb_type == spitfire) {
612                 for (i = 0; i < 64; i++) {
613                         /* Spitfire Errata #32 workaround */
614                         /* NOTE: Always runs on spitfire, so no
615                          *       cheetah+ page size encodings.
616                          */
617                         __asm__ __volatile__("stxa      %0, [%1] %2\n\t"
618                                              "flush     %%g6"
619                                              : /* No outputs */
620                                              : "r" (0),
621                                              "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
622
623                         if (!(spitfire_get_dtlb_data(i) & _PAGE_L)) {
624                                 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
625                                                      "membar #Sync"
626                                                      : /* no outputs */
627                                                      : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
628                                 spitfire_put_dtlb_data(i, 0x0UL);
629                         }
630
631                         /* Spitfire Errata #32 workaround */
632                         /* NOTE: Always runs on spitfire, so no
633                          *       cheetah+ page size encodings.
634                          */
635                         __asm__ __volatile__("stxa      %0, [%1] %2\n\t"
636                                              "flush     %%g6"
637                                              : /* No outputs */
638                                              : "r" (0),
639                                              "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
640
641                         if (!(spitfire_get_itlb_data(i) & _PAGE_L)) {
642                                 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
643                                                      "membar #Sync"
644                                                      : /* no outputs */
645                                                      : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
646                                 spitfire_put_itlb_data(i, 0x0UL);
647                         }
648                 }
649         } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
650                 cheetah_flush_dtlb_all();
651                 cheetah_flush_itlb_all();
652         }
653         __asm__ __volatile__("wrpr      %0, 0, %%pstate"
654                              : : "r" (pstate));
655 }
656
657 /* Caller does TLB context flushing on local CPU if necessary.
658  * The caller also ensures that CTX_VALID(mm->context) is false.
659  *
660  * We must be careful about boundary cases so that we never
661  * let the user have CTX 0 (nucleus) or we ever use a CTX
662  * version of zero (and thus NO_CONTEXT would not be caught
663  * by version mis-match tests in mmu_context.h).
664  */
665 void get_new_mmu_context(struct mm_struct *mm)
666 {
667         unsigned long ctx, new_ctx;
668         unsigned long orig_pgsz_bits;
669         
670
671         spin_lock(&ctx_alloc_lock);
672         orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
673         ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
674         new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
675         if (new_ctx >= (1 << CTX_NR_BITS)) {
676                 new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
677                 if (new_ctx >= ctx) {
678                         int i;
679                         new_ctx = (tlb_context_cache & CTX_VERSION_MASK) +
680                                 CTX_FIRST_VERSION;
681                         if (new_ctx == 1)
682                                 new_ctx = CTX_FIRST_VERSION;
683
684                         /* Don't call memset, for 16 entries that's just
685                          * plain silly...
686                          */
687                         mmu_context_bmap[0] = 3;
688                         mmu_context_bmap[1] = 0;
689                         mmu_context_bmap[2] = 0;
690                         mmu_context_bmap[3] = 0;
691                         for (i = 4; i < CTX_BMAP_SLOTS; i += 4) {
692                                 mmu_context_bmap[i + 0] = 0;
693                                 mmu_context_bmap[i + 1] = 0;
694                                 mmu_context_bmap[i + 2] = 0;
695                                 mmu_context_bmap[i + 3] = 0;
696                         }
697                         goto out;
698                 }
699         }
700         mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
701         new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
702 out:
703         tlb_context_cache = new_ctx;
704         mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
705         spin_unlock(&ctx_alloc_lock);
706 }
707
708 void sparc_ultra_dump_itlb(void)
709 {
710         int slot;
711
712         if (tlb_type == spitfire) {
713                 printk ("Contents of itlb: ");
714                 for (slot = 0; slot < 14; slot++) printk ("    ");
715                 printk ("%2x:%016lx,%016lx\n",
716                         0,
717                         spitfire_get_itlb_tag(0), spitfire_get_itlb_data(0));
718                 for (slot = 1; slot < 64; slot+=3) {
719                         printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx %2x:%016lx,%016lx\n", 
720                                 slot,
721                                 spitfire_get_itlb_tag(slot), spitfire_get_itlb_data(slot),
722                                 slot+1,
723                                 spitfire_get_itlb_tag(slot+1), spitfire_get_itlb_data(slot+1),
724                                 slot+2,
725                                 spitfire_get_itlb_tag(slot+2), spitfire_get_itlb_data(slot+2));
726                 }
727         } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
728                 printk ("Contents of itlb0:\n");
729                 for (slot = 0; slot < 16; slot+=2) {
730                         printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
731                                 slot,
732                                 cheetah_get_litlb_tag(slot), cheetah_get_litlb_data(slot),
733                                 slot+1,
734                                 cheetah_get_litlb_tag(slot+1), cheetah_get_litlb_data(slot+1));
735                 }
736                 printk ("Contents of itlb2:\n");
737                 for (slot = 0; slot < 128; slot+=2) {
738                         printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
739                                 slot,
740                                 cheetah_get_itlb_tag(slot), cheetah_get_itlb_data(slot),
741                                 slot+1,
742                                 cheetah_get_itlb_tag(slot+1), cheetah_get_itlb_data(slot+1));
743                 }
744         }
745 }
746
747 void sparc_ultra_dump_dtlb(void)
748 {
749         int slot;
750
751         if (tlb_type == spitfire) {
752                 printk ("Contents of dtlb: ");
753                 for (slot = 0; slot < 14; slot++) printk ("    ");
754                 printk ("%2x:%016lx,%016lx\n", 0,
755                         spitfire_get_dtlb_tag(0), spitfire_get_dtlb_data(0));
756                 for (slot = 1; slot < 64; slot+=3) {
757                         printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx %2x:%016lx,%016lx\n", 
758                                 slot,
759                                 spitfire_get_dtlb_tag(slot), spitfire_get_dtlb_data(slot),
760                                 slot+1,
761                                 spitfire_get_dtlb_tag(slot+1), spitfire_get_dtlb_data(slot+1),
762                                 slot+2,
763                                 spitfire_get_dtlb_tag(slot+2), spitfire_get_dtlb_data(slot+2));
764                 }
765         } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
766                 printk ("Contents of dtlb0:\n");
767                 for (slot = 0; slot < 16; slot+=2) {
768                         printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
769                                 slot,
770                                 cheetah_get_ldtlb_tag(slot), cheetah_get_ldtlb_data(slot),
771                                 slot+1,
772                                 cheetah_get_ldtlb_tag(slot+1), cheetah_get_ldtlb_data(slot+1));
773                 }
774                 printk ("Contents of dtlb2:\n");
775                 for (slot = 0; slot < 512; slot+=2) {
776                         printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
777                                 slot,
778                                 cheetah_get_dtlb_tag(slot, 2), cheetah_get_dtlb_data(slot, 2),
779                                 slot+1,
780                                 cheetah_get_dtlb_tag(slot+1, 2), cheetah_get_dtlb_data(slot+1, 2));
781                 }
782                 if (tlb_type == cheetah_plus) {
783                         printk ("Contents of dtlb3:\n");
784                         for (slot = 0; slot < 512; slot+=2) {
785                                 printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
786                                         slot,
787                                         cheetah_get_dtlb_tag(slot, 3), cheetah_get_dtlb_data(slot, 3),
788                                         slot+1,
789                                         cheetah_get_dtlb_tag(slot+1, 3), cheetah_get_dtlb_data(slot+1, 3));
790                         }
791                 }
792         }
793 }
794
795 extern unsigned long cmdline_memory_size;
796
797 unsigned long __init bootmem_init(unsigned long *pages_avail)
798 {
799         unsigned long bootmap_size, start_pfn, end_pfn;
800         unsigned long end_of_phys_memory = 0UL;
801         unsigned long bootmap_pfn, bytes_avail, size;
802         int i;
803
804 #ifdef CONFIG_DEBUG_BOOTMEM
805         prom_printf("bootmem_init: Scan pavail, ");
806 #endif
807
808         bytes_avail = 0UL;
809         for (i = 0; i < pavail_ents; i++) {
810                 end_of_phys_memory = pavail[i].phys_addr +
811                         pavail[i].reg_size;
812                 bytes_avail += pavail[i].reg_size;
813                 if (cmdline_memory_size) {
814                         if (bytes_avail > cmdline_memory_size) {
815                                 unsigned long slack = bytes_avail - cmdline_memory_size;
816
817                                 bytes_avail -= slack;
818                                 end_of_phys_memory -= slack;
819
820                                 pavail[i].reg_size -= slack;
821                                 if ((long)pavail[i].reg_size <= 0L) {
822                                         pavail[i].phys_addr = 0xdeadbeefUL;
823                                         pavail[i].reg_size = 0UL;
824                                         pavail_ents = i;
825                                 } else {
826                                         pavail[i+1].reg_size = 0Ul;
827                                         pavail[i+1].phys_addr = 0xdeadbeefUL;
828                                         pavail_ents = i + 1;
829                                 }
830                                 break;
831                         }
832                 }
833         }
834
835         *pages_avail = bytes_avail >> PAGE_SHIFT;
836
837         /* Start with page aligned address of last symbol in kernel
838          * image.  The kernel is hard mapped below PAGE_OFFSET in a
839          * 4MB locked TLB translation.
840          */
841         start_pfn = PAGE_ALIGN(kern_base + kern_size) >> PAGE_SHIFT;
842
843         bootmap_pfn = start_pfn;
844
845         end_pfn = end_of_phys_memory >> PAGE_SHIFT;
846
847 #ifdef CONFIG_BLK_DEV_INITRD
848         /* Now have to check initial ramdisk, so that bootmap does not overwrite it */
849         if (sparc_ramdisk_image || sparc_ramdisk_image64) {
850                 unsigned long ramdisk_image = sparc_ramdisk_image ?
851                         sparc_ramdisk_image : sparc_ramdisk_image64;
852                 if (ramdisk_image >= (unsigned long)_end - 2 * PAGE_SIZE)
853                         ramdisk_image -= KERNBASE;
854                 initrd_start = ramdisk_image + phys_base;
855                 initrd_end = initrd_start + sparc_ramdisk_size;
856                 if (initrd_end > end_of_phys_memory) {
857                         printk(KERN_CRIT "initrd extends beyond end of memory "
858                                          "(0x%016lx > 0x%016lx)\ndisabling initrd\n",
859                                initrd_end, end_of_phys_memory);
860                         initrd_start = 0;
861                 }
862                 if (initrd_start) {
863                         if (initrd_start >= (start_pfn << PAGE_SHIFT) &&
864                             initrd_start < (start_pfn << PAGE_SHIFT) + 2 * PAGE_SIZE)
865                                 bootmap_pfn = PAGE_ALIGN (initrd_end) >> PAGE_SHIFT;
866                 }
867         }
868 #endif  
869         /* Initialize the boot-time allocator. */
870         max_pfn = max_low_pfn = end_pfn;
871         min_low_pfn = pfn_base;
872
873 #ifdef CONFIG_DEBUG_BOOTMEM
874         prom_printf("init_bootmem(min[%lx], bootmap[%lx], max[%lx])\n",
875                     min_low_pfn, bootmap_pfn, max_low_pfn);
876 #endif
877         bootmap_size = init_bootmem_node(NODE_DATA(0), bootmap_pfn, pfn_base, end_pfn);
878
879         /* Now register the available physical memory with the
880          * allocator.
881          */
882         for (i = 0; i < pavail_ents; i++) {
883 #ifdef CONFIG_DEBUG_BOOTMEM
884                 prom_printf("free_bootmem(pavail:%d): base[%lx] size[%lx]\n",
885                             i, pavail[i].phys_addr, pavail[i].reg_size);
886 #endif
887                 free_bootmem(pavail[i].phys_addr, pavail[i].reg_size);
888         }
889
890 #ifdef CONFIG_BLK_DEV_INITRD
891         if (initrd_start) {
892                 size = initrd_end - initrd_start;
893
894                 /* Resert the initrd image area. */
895 #ifdef CONFIG_DEBUG_BOOTMEM
896                 prom_printf("reserve_bootmem(initrd): base[%llx] size[%lx]\n",
897                         initrd_start, initrd_end);
898 #endif
899                 reserve_bootmem(initrd_start, size);
900                 *pages_avail -= PAGE_ALIGN(size) >> PAGE_SHIFT;
901
902                 initrd_start += PAGE_OFFSET;
903                 initrd_end += PAGE_OFFSET;
904         }
905 #endif
906         /* Reserve the kernel text/data/bss. */
907 #ifdef CONFIG_DEBUG_BOOTMEM
908         prom_printf("reserve_bootmem(kernel): base[%lx] size[%lx]\n", kern_base, kern_size);
909 #endif
910         reserve_bootmem(kern_base, kern_size);
911         *pages_avail -= PAGE_ALIGN(kern_size) >> PAGE_SHIFT;
912
913         /* Reserve the bootmem map.   We do not account for it
914          * in pages_avail because we will release that memory
915          * in free_all_bootmem.
916          */
917         size = bootmap_size;
918 #ifdef CONFIG_DEBUG_BOOTMEM
919         prom_printf("reserve_bootmem(bootmap): base[%lx] size[%lx]\n",
920                     (bootmap_pfn << PAGE_SHIFT), size);
921 #endif
922         reserve_bootmem((bootmap_pfn << PAGE_SHIFT), size);
923         *pages_avail -= PAGE_ALIGN(size) >> PAGE_SHIFT;
924
925         return end_pfn;
926 }
927
928 #ifdef CONFIG_DEBUG_PAGEALLOC
929 static unsigned long kernel_map_range(unsigned long pstart, unsigned long pend, pgprot_t prot)
930 {
931         unsigned long vstart = PAGE_OFFSET + pstart;
932         unsigned long vend = PAGE_OFFSET + pend;
933         unsigned long alloc_bytes = 0UL;
934
935         if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
936                 prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
937                             vstart, vend);
938                 prom_halt();
939         }
940
941         while (vstart < vend) {
942                 unsigned long this_end, paddr = __pa(vstart);
943                 pgd_t *pgd = pgd_offset_k(vstart);
944                 pud_t *pud;
945                 pmd_t *pmd;
946                 pte_t *pte;
947
948                 pud = pud_offset(pgd, vstart);
949                 if (pud_none(*pud)) {
950                         pmd_t *new;
951
952                         new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
953                         alloc_bytes += PAGE_SIZE;
954                         pud_populate(&init_mm, pud, new);
955                 }
956
957                 pmd = pmd_offset(pud, vstart);
958                 if (!pmd_present(*pmd)) {
959                         pte_t *new;
960
961                         new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
962                         alloc_bytes += PAGE_SIZE;
963                         pmd_populate_kernel(&init_mm, pmd, new);
964                 }
965
966                 pte = pte_offset_kernel(pmd, vstart);
967                 this_end = (vstart + PMD_SIZE) & PMD_MASK;
968                 if (this_end > vend)
969                         this_end = vend;
970
971                 while (vstart < this_end) {
972                         pte_val(*pte) = (paddr | pgprot_val(prot));
973
974                         vstart += PAGE_SIZE;
975                         paddr += PAGE_SIZE;
976                         pte++;
977                 }
978         }
979
980         return alloc_bytes;
981 }
982
983 static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
984 static int pall_ents __initdata;
985
986 extern unsigned int kvmap_linear_patch[1];
987
988 static void __init kernel_physical_mapping_init(void)
989 {
990         unsigned long i, mem_alloced = 0UL;
991
992         read_obp_memory("reg", &pall[0], &pall_ents);
993
994         for (i = 0; i < pall_ents; i++) {
995                 unsigned long phys_start, phys_end;
996
997                 phys_start = pall[i].phys_addr;
998                 phys_end = phys_start + pall[i].reg_size;
999                 mem_alloced += kernel_map_range(phys_start, phys_end,
1000                                                 PAGE_KERNEL);
1001         }
1002
1003         printk("Allocated %ld bytes for kernel page tables.\n",
1004                mem_alloced);
1005
1006         kvmap_linear_patch[0] = 0x01000000; /* nop */
1007         flushi(&kvmap_linear_patch[0]);
1008
1009         __flush_tlb_all();
1010 }
1011
1012 void kernel_map_pages(struct page *page, int numpages, int enable)
1013 {
1014         unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
1015         unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
1016
1017         kernel_map_range(phys_start, phys_end,
1018                          (enable ? PAGE_KERNEL : __pgprot(0)));
1019
1020         flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
1021                                PAGE_OFFSET + phys_end);
1022
1023         /* we should perform an IPI and flush all tlbs,
1024          * but that can deadlock->flush only current cpu.
1025          */
1026         __flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
1027                                  PAGE_OFFSET + phys_end);
1028 }
1029 #endif
1030
1031 unsigned long __init find_ecache_flush_span(unsigned long size)
1032 {
1033         int i;
1034
1035         for (i = 0; i < pavail_ents; i++) {
1036                 if (pavail[i].reg_size >= size)
1037                         return pavail[i].phys_addr;
1038         }
1039
1040         return ~0UL;
1041 }
1042
1043 static void __init tsb_phys_patch(void)
1044 {
1045         struct tsb_ldquad_phys_patch_entry *pquad;
1046         struct tsb_phys_patch_entry *p;
1047
1048         pquad = &__tsb_ldquad_phys_patch;
1049         while (pquad < &__tsb_ldquad_phys_patch_end) {
1050                 unsigned long addr = pquad->addr;
1051
1052                 if (tlb_type == hypervisor)
1053                         *(unsigned int *) addr = pquad->sun4v_insn;
1054                 else
1055                         *(unsigned int *) addr = pquad->sun4u_insn;
1056                 wmb();
1057                 __asm__ __volatile__("flush     %0"
1058                                      : /* no outputs */
1059                                      : "r" (addr));
1060
1061                 pquad++;
1062         }
1063
1064         p = &__tsb_phys_patch;
1065         while (p < &__tsb_phys_patch_end) {
1066                 unsigned long addr = p->addr;
1067
1068                 *(unsigned int *) addr = p->insn;
1069                 wmb();
1070                 __asm__ __volatile__("flush     %0"
1071                                      : /* no outputs */
1072                                      : "r" (addr));
1073
1074                 p++;
1075         }
1076 }
1077
1078 /* Register this cpu's fault status area with the hypervisor.  */
1079 void __cpuinit sun4v_register_fault_status(void)
1080 {
1081         register unsigned long arg0 asm("%o0");
1082         register unsigned long arg1 asm("%o1");
1083         int cpu = hard_smp_processor_id();
1084         struct trap_per_cpu *tb = &trap_block[cpu];
1085         unsigned long pa;
1086
1087         pa = kern_base + ((unsigned long) tb - KERNBASE);
1088         arg0 = HV_FAST_MMU_FAULT_AREA_CONF;
1089         arg1 = pa;
1090         __asm__ __volatile__("ta        %4"
1091                              : "=&r" (arg0), "=&r" (arg1)
1092                              : "0" (arg0), "1" (arg1),
1093                                "i" (HV_FAST_TRAP));
1094 }
1095
1096 /* paging_init() sets up the page tables */
1097
1098 extern void cheetah_ecache_flush_init(void);
1099 extern void sun4v_patch_tlb_handlers(void);
1100
1101 static unsigned long last_valid_pfn;
1102 pgd_t swapper_pg_dir[2048];
1103
1104 void __init paging_init(void)
1105 {
1106         unsigned long end_pfn, pages_avail, shift;
1107         unsigned long real_end, i;
1108
1109         kern_base = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
1110         kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
1111
1112         if (tlb_type == cheetah_plus ||
1113             tlb_type == hypervisor)
1114                 tsb_phys_patch();
1115
1116         if (tlb_type == hypervisor) {
1117                 sun4v_patch_tlb_handlers();
1118                 sun4v_register_fault_status();
1119         }
1120
1121         /* Find available physical memory... */
1122         read_obp_memory("available", &pavail[0], &pavail_ents);
1123
1124         phys_base = 0xffffffffffffffffUL;
1125         for (i = 0; i < pavail_ents; i++)
1126                 phys_base = min(phys_base, pavail[i].phys_addr);
1127
1128         pfn_base = phys_base >> PAGE_SHIFT;
1129
1130         set_bit(0, mmu_context_bmap);
1131
1132         shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
1133
1134         real_end = (unsigned long)_end;
1135         if ((real_end > ((unsigned long)KERNBASE + 0x400000)))
1136                 bigkernel = 1;
1137         if ((real_end > ((unsigned long)KERNBASE + 0x800000))) {
1138                 prom_printf("paging_init: Kernel > 8MB, too large.\n");
1139                 prom_halt();
1140         }
1141
1142         /* Set kernel pgd to upper alias so physical page computations
1143          * work.
1144          */
1145         init_mm.pgd += ((shift) / (sizeof(pgd_t)));
1146         
1147         memset(swapper_low_pmd_dir, 0, sizeof(swapper_low_pmd_dir));
1148
1149         /* Now can init the kernel/bad page tables. */
1150         pud_set(pud_offset(&swapper_pg_dir[0], 0),
1151                 swapper_low_pmd_dir + (shift / sizeof(pgd_t)));
1152         
1153         inherit_prom_mappings();
1154         
1155         /* Ok, we can use our TLB miss and window trap handlers safely.  */
1156         setup_tba();
1157
1158         __flush_tlb_all();
1159
1160         /* Setup bootmem... */
1161         pages_avail = 0;
1162         last_valid_pfn = end_pfn = bootmem_init(&pages_avail);
1163
1164 #ifdef CONFIG_DEBUG_PAGEALLOC
1165         kernel_physical_mapping_init();
1166 #endif
1167
1168         {
1169                 unsigned long zones_size[MAX_NR_ZONES];
1170                 unsigned long zholes_size[MAX_NR_ZONES];
1171                 unsigned long npages;
1172                 int znum;
1173
1174                 for (znum = 0; znum < MAX_NR_ZONES; znum++)
1175                         zones_size[znum] = zholes_size[znum] = 0;
1176
1177                 npages = end_pfn - pfn_base;
1178                 zones_size[ZONE_DMA] = npages;
1179                 zholes_size[ZONE_DMA] = npages - pages_avail;
1180
1181                 free_area_init_node(0, &contig_page_data, zones_size,
1182                                     phys_base >> PAGE_SHIFT, zholes_size);
1183         }
1184
1185         device_scan();
1186 }
1187
1188 static void __init taint_real_pages(void)
1189 {
1190         int i;
1191
1192         read_obp_memory("available", &pavail_rescan[0], &pavail_rescan_ents);
1193
1194         /* Find changes discovered in the physmem available rescan and
1195          * reserve the lost portions in the bootmem maps.
1196          */
1197         for (i = 0; i < pavail_ents; i++) {
1198                 unsigned long old_start, old_end;
1199
1200                 old_start = pavail[i].phys_addr;
1201                 old_end = old_start +
1202                         pavail[i].reg_size;
1203                 while (old_start < old_end) {
1204                         int n;
1205
1206                         for (n = 0; pavail_rescan_ents; n++) {
1207                                 unsigned long new_start, new_end;
1208
1209                                 new_start = pavail_rescan[n].phys_addr;
1210                                 new_end = new_start +
1211                                         pavail_rescan[n].reg_size;
1212
1213                                 if (new_start <= old_start &&
1214                                     new_end >= (old_start + PAGE_SIZE)) {
1215                                         set_bit(old_start >> 22,
1216                                                 sparc64_valid_addr_bitmap);
1217                                         goto do_next_page;
1218                                 }
1219                         }
1220                         reserve_bootmem(old_start, PAGE_SIZE);
1221
1222                 do_next_page:
1223                         old_start += PAGE_SIZE;
1224                 }
1225         }
1226 }
1227
1228 void __init mem_init(void)
1229 {
1230         unsigned long codepages, datapages, initpages;
1231         unsigned long addr, last;
1232         int i;
1233
1234         i = last_valid_pfn >> ((22 - PAGE_SHIFT) + 6);
1235         i += 1;
1236         sparc64_valid_addr_bitmap = (unsigned long *) alloc_bootmem(i << 3);
1237         if (sparc64_valid_addr_bitmap == NULL) {
1238                 prom_printf("mem_init: Cannot alloc valid_addr_bitmap.\n");
1239                 prom_halt();
1240         }
1241         memset(sparc64_valid_addr_bitmap, 0, i << 3);
1242
1243         addr = PAGE_OFFSET + kern_base;
1244         last = PAGE_ALIGN(kern_size) + addr;
1245         while (addr < last) {
1246                 set_bit(__pa(addr) >> 22, sparc64_valid_addr_bitmap);
1247                 addr += PAGE_SIZE;
1248         }
1249
1250         taint_real_pages();
1251
1252         max_mapnr = last_valid_pfn - pfn_base;
1253         high_memory = __va(last_valid_pfn << PAGE_SHIFT);
1254
1255 #ifdef CONFIG_DEBUG_BOOTMEM
1256         prom_printf("mem_init: Calling free_all_bootmem().\n");
1257 #endif
1258         totalram_pages = num_physpages = free_all_bootmem() - 1;
1259
1260         /*
1261          * Set up the zero page, mark it reserved, so that page count
1262          * is not manipulated when freeing the page from user ptes.
1263          */
1264         mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
1265         if (mem_map_zero == NULL) {
1266                 prom_printf("paging_init: Cannot alloc zero page.\n");
1267                 prom_halt();
1268         }
1269         SetPageReserved(mem_map_zero);
1270
1271         codepages = (((unsigned long) _etext) - ((unsigned long) _start));
1272         codepages = PAGE_ALIGN(codepages) >> PAGE_SHIFT;
1273         datapages = (((unsigned long) _edata) - ((unsigned long) _etext));
1274         datapages = PAGE_ALIGN(datapages) >> PAGE_SHIFT;
1275         initpages = (((unsigned long) __init_end) - ((unsigned long) __init_begin));
1276         initpages = PAGE_ALIGN(initpages) >> PAGE_SHIFT;
1277
1278         printk("Memory: %uk available (%ldk kernel code, %ldk data, %ldk init) [%016lx,%016lx]\n",
1279                nr_free_pages() << (PAGE_SHIFT-10),
1280                codepages << (PAGE_SHIFT-10),
1281                datapages << (PAGE_SHIFT-10), 
1282                initpages << (PAGE_SHIFT-10), 
1283                PAGE_OFFSET, (last_valid_pfn << PAGE_SHIFT));
1284
1285         if (tlb_type == cheetah || tlb_type == cheetah_plus)
1286                 cheetah_ecache_flush_init();
1287 }
1288
1289 void free_initmem(void)
1290 {
1291         unsigned long addr, initend;
1292
1293         /*
1294          * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
1295          */
1296         addr = PAGE_ALIGN((unsigned long)(__init_begin));
1297         initend = (unsigned long)(__init_end) & PAGE_MASK;
1298         for (; addr < initend; addr += PAGE_SIZE) {
1299                 unsigned long page;
1300                 struct page *p;
1301
1302                 page = (addr +
1303                         ((unsigned long) __va(kern_base)) -
1304                         ((unsigned long) KERNBASE));
1305                 memset((void *)addr, 0xcc, PAGE_SIZE);
1306                 p = virt_to_page(page);
1307
1308                 ClearPageReserved(p);
1309                 set_page_count(p, 1);
1310                 __free_page(p);
1311                 num_physpages++;
1312                 totalram_pages++;
1313         }
1314 }
1315
1316 #ifdef CONFIG_BLK_DEV_INITRD
1317 void free_initrd_mem(unsigned long start, unsigned long end)
1318 {
1319         if (start < end)
1320                 printk ("Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
1321         for (; start < end; start += PAGE_SIZE) {
1322                 struct page *p = virt_to_page(start);
1323
1324                 ClearPageReserved(p);
1325                 set_page_count(p, 1);
1326                 __free_page(p);
1327                 num_physpages++;
1328                 totalram_pages++;
1329         }
1330 }
1331 #endif