[SPARC64]: Import OBP device tree into kernel data structures.
[safe/jmp/linux-2.6] / arch / sparc64 / mm / init.c
1 /*  $Id: init.c,v 1.209 2002/02/09 19:49:31 davem Exp $
2  *  arch/sparc64/mm/init.c
3  *
4  *  Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
5  *  Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
6  */
7  
8 #include <linux/config.h>
9 #include <linux/module.h>
10 #include <linux/kernel.h>
11 #include <linux/sched.h>
12 #include <linux/string.h>
13 #include <linux/init.h>
14 #include <linux/bootmem.h>
15 #include <linux/mm.h>
16 #include <linux/hugetlb.h>
17 #include <linux/slab.h>
18 #include <linux/initrd.h>
19 #include <linux/swap.h>
20 #include <linux/pagemap.h>
21 #include <linux/fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/kprobes.h>
24 #include <linux/cache.h>
25 #include <linux/sort.h>
26
27 #include <asm/head.h>
28 #include <asm/system.h>
29 #include <asm/page.h>
30 #include <asm/pgalloc.h>
31 #include <asm/pgtable.h>
32 #include <asm/oplib.h>
33 #include <asm/iommu.h>
34 #include <asm/io.h>
35 #include <asm/uaccess.h>
36 #include <asm/mmu_context.h>
37 #include <asm/tlbflush.h>
38 #include <asm/dma.h>
39 #include <asm/starfire.h>
40 #include <asm/tlb.h>
41 #include <asm/spitfire.h>
42 #include <asm/sections.h>
43 #include <asm/tsb.h>
44 #include <asm/hypervisor.h>
45 #include <asm/prom.h>
46
47 extern void device_scan(void);
48
49 #define MAX_PHYS_ADDRESS        (1UL << 42UL)
50 #define KPTE_BITMAP_CHUNK_SZ    (256UL * 1024UL * 1024UL)
51 #define KPTE_BITMAP_BYTES       \
52         ((MAX_PHYS_ADDRESS / KPTE_BITMAP_CHUNK_SZ) / 8)
53
54 unsigned long kern_linear_pte_xor[2] __read_mostly;
55
56 /* A bitmap, one bit for every 256MB of physical memory.  If the bit
57  * is clear, we should use a 4MB page (via kern_linear_pte_xor[0]) else
58  * if set we should use a 256MB page (via kern_linear_pte_xor[1]).
59  */
60 unsigned long kpte_linear_bitmap[KPTE_BITMAP_BYTES / sizeof(unsigned long)];
61
62 /* A special kernel TSB for 4MB and 256MB linear mappings.  */
63 struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES];
64
65 #define MAX_BANKS       32
66
67 static struct linux_prom64_registers pavail[MAX_BANKS] __initdata;
68 static struct linux_prom64_registers pavail_rescan[MAX_BANKS] __initdata;
69 static int pavail_ents __initdata;
70 static int pavail_rescan_ents __initdata;
71
72 static int cmp_p64(const void *a, const void *b)
73 {
74         const struct linux_prom64_registers *x = a, *y = b;
75
76         if (x->phys_addr > y->phys_addr)
77                 return 1;
78         if (x->phys_addr < y->phys_addr)
79                 return -1;
80         return 0;
81 }
82
83 static void __init read_obp_memory(const char *property,
84                                    struct linux_prom64_registers *regs,
85                                    int *num_ents)
86 {
87         int node = prom_finddevice("/memory");
88         int prop_size = prom_getproplen(node, property);
89         int ents, ret, i;
90
91         ents = prop_size / sizeof(struct linux_prom64_registers);
92         if (ents > MAX_BANKS) {
93                 prom_printf("The machine has more %s property entries than "
94                             "this kernel can support (%d).\n",
95                             property, MAX_BANKS);
96                 prom_halt();
97         }
98
99         ret = prom_getproperty(node, property, (char *) regs, prop_size);
100         if (ret == -1) {
101                 prom_printf("Couldn't get %s property from /memory.\n");
102                 prom_halt();
103         }
104
105         *num_ents = ents;
106
107         /* Sanitize what we got from the firmware, by page aligning
108          * everything.
109          */
110         for (i = 0; i < ents; i++) {
111                 unsigned long base, size;
112
113                 base = regs[i].phys_addr;
114                 size = regs[i].reg_size;
115
116                 size &= PAGE_MASK;
117                 if (base & ~PAGE_MASK) {
118                         unsigned long new_base = PAGE_ALIGN(base);
119
120                         size -= new_base - base;
121                         if ((long) size < 0L)
122                                 size = 0UL;
123                         base = new_base;
124                 }
125                 regs[i].phys_addr = base;
126                 regs[i].reg_size = size;
127         }
128         sort(regs, ents, sizeof(struct linux_prom64_registers),
129              cmp_p64, NULL);
130 }
131
132 unsigned long *sparc64_valid_addr_bitmap __read_mostly;
133
134 /* Kernel physical address base and size in bytes.  */
135 unsigned long kern_base __read_mostly;
136 unsigned long kern_size __read_mostly;
137
138 /* get_new_mmu_context() uses "cache + 1".  */
139 DEFINE_SPINLOCK(ctx_alloc_lock);
140 unsigned long tlb_context_cache = CTX_FIRST_VERSION - 1;
141 #define CTX_BMAP_SLOTS (1UL << (CTX_NR_BITS - 6))
142 unsigned long mmu_context_bmap[CTX_BMAP_SLOTS];
143
144 /* References to special section boundaries */
145 extern char  _start[], _end[];
146
147 /* Initial ramdisk setup */
148 extern unsigned long sparc_ramdisk_image64;
149 extern unsigned int sparc_ramdisk_image;
150 extern unsigned int sparc_ramdisk_size;
151
152 struct page *mem_map_zero __read_mostly;
153
154 unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
155
156 unsigned long sparc64_kern_pri_context __read_mostly;
157 unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
158 unsigned long sparc64_kern_sec_context __read_mostly;
159
160 int bigkernel = 0;
161
162 kmem_cache_t *pgtable_cache __read_mostly;
163
164 static void zero_ctor(void *addr, kmem_cache_t *cache, unsigned long flags)
165 {
166         clear_page(addr);
167 }
168
169 extern void tsb_cache_init(void);
170
171 void pgtable_cache_init(void)
172 {
173         pgtable_cache = kmem_cache_create("pgtable_cache",
174                                           PAGE_SIZE, PAGE_SIZE,
175                                           SLAB_HWCACHE_ALIGN |
176                                           SLAB_MUST_HWCACHE_ALIGN,
177                                           zero_ctor,
178                                           NULL);
179         if (!pgtable_cache) {
180                 prom_printf("Could not create pgtable_cache\n");
181                 prom_halt();
182         }
183         tsb_cache_init();
184 }
185
186 #ifdef CONFIG_DEBUG_DCFLUSH
187 atomic_t dcpage_flushes = ATOMIC_INIT(0);
188 #ifdef CONFIG_SMP
189 atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
190 #endif
191 #endif
192
193 inline void flush_dcache_page_impl(struct page *page)
194 {
195         BUG_ON(tlb_type == hypervisor);
196 #ifdef CONFIG_DEBUG_DCFLUSH
197         atomic_inc(&dcpage_flushes);
198 #endif
199
200 #ifdef DCACHE_ALIASING_POSSIBLE
201         __flush_dcache_page(page_address(page),
202                             ((tlb_type == spitfire) &&
203                              page_mapping(page) != NULL));
204 #else
205         if (page_mapping(page) != NULL &&
206             tlb_type == spitfire)
207                 __flush_icache_page(__pa(page_address(page)));
208 #endif
209 }
210
211 #define PG_dcache_dirty         PG_arch_1
212 #define PG_dcache_cpu_shift     24UL
213 #define PG_dcache_cpu_mask      (256UL - 1UL)
214
215 #if NR_CPUS > 256
216 #error D-cache dirty tracking and thread_info->cpu need fixing for > 256 cpus
217 #endif
218
219 #define dcache_dirty_cpu(page) \
220         (((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
221
222 static __inline__ void set_dcache_dirty(struct page *page, int this_cpu)
223 {
224         unsigned long mask = this_cpu;
225         unsigned long non_cpu_bits;
226
227         non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
228         mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
229
230         __asm__ __volatile__("1:\n\t"
231                              "ldx       [%2], %%g7\n\t"
232                              "and       %%g7, %1, %%g1\n\t"
233                              "or        %%g1, %0, %%g1\n\t"
234                              "casx      [%2], %%g7, %%g1\n\t"
235                              "cmp       %%g7, %%g1\n\t"
236                              "membar    #StoreLoad | #StoreStore\n\t"
237                              "bne,pn    %%xcc, 1b\n\t"
238                              " nop"
239                              : /* no outputs */
240                              : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
241                              : "g1", "g7");
242 }
243
244 static __inline__ void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
245 {
246         unsigned long mask = (1UL << PG_dcache_dirty);
247
248         __asm__ __volatile__("! test_and_clear_dcache_dirty\n"
249                              "1:\n\t"
250                              "ldx       [%2], %%g7\n\t"
251                              "srlx      %%g7, %4, %%g1\n\t"
252                              "and       %%g1, %3, %%g1\n\t"
253                              "cmp       %%g1, %0\n\t"
254                              "bne,pn    %%icc, 2f\n\t"
255                              " andn     %%g7, %1, %%g1\n\t"
256                              "casx      [%2], %%g7, %%g1\n\t"
257                              "cmp       %%g7, %%g1\n\t"
258                              "membar    #StoreLoad | #StoreStore\n\t"
259                              "bne,pn    %%xcc, 1b\n\t"
260                              " nop\n"
261                              "2:"
262                              : /* no outputs */
263                              : "r" (cpu), "r" (mask), "r" (&page->flags),
264                                "i" (PG_dcache_cpu_mask),
265                                "i" (PG_dcache_cpu_shift)
266                              : "g1", "g7");
267 }
268
269 static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
270 {
271         unsigned long tsb_addr = (unsigned long) ent;
272
273         if (tlb_type == cheetah_plus || tlb_type == hypervisor)
274                 tsb_addr = __pa(tsb_addr);
275
276         __tsb_insert(tsb_addr, tag, pte);
277 }
278
279 unsigned long _PAGE_ALL_SZ_BITS __read_mostly;
280 unsigned long _PAGE_SZBITS __read_mostly;
281
282 void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t pte)
283 {
284         struct mm_struct *mm;
285         struct tsb *tsb;
286         unsigned long tag, flags;
287         unsigned long tsb_index, tsb_hash_shift;
288
289         if (tlb_type != hypervisor) {
290                 unsigned long pfn = pte_pfn(pte);
291                 unsigned long pg_flags;
292                 struct page *page;
293
294                 if (pfn_valid(pfn) &&
295                     (page = pfn_to_page(pfn), page_mapping(page)) &&
296                     ((pg_flags = page->flags) & (1UL << PG_dcache_dirty))) {
297                         int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
298                                    PG_dcache_cpu_mask);
299                         int this_cpu = get_cpu();
300
301                         /* This is just to optimize away some function calls
302                          * in the SMP case.
303                          */
304                         if (cpu == this_cpu)
305                                 flush_dcache_page_impl(page);
306                         else
307                                 smp_flush_dcache_page_impl(page, cpu);
308
309                         clear_dcache_dirty_cpu(page, cpu);
310
311                         put_cpu();
312                 }
313         }
314
315         mm = vma->vm_mm;
316
317         tsb_index = MM_TSB_BASE;
318         tsb_hash_shift = PAGE_SHIFT;
319
320         spin_lock_irqsave(&mm->context.lock, flags);
321
322 #ifdef CONFIG_HUGETLB_PAGE
323         if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL) {
324                 if ((tlb_type == hypervisor &&
325                      (pte_val(pte) & _PAGE_SZALL_4V) == _PAGE_SZHUGE_4V) ||
326                     (tlb_type != hypervisor &&
327                      (pte_val(pte) & _PAGE_SZALL_4U) == _PAGE_SZHUGE_4U)) {
328                         tsb_index = MM_TSB_HUGE;
329                         tsb_hash_shift = HPAGE_SHIFT;
330                 }
331         }
332 #endif
333
334         tsb = mm->context.tsb_block[tsb_index].tsb;
335         tsb += ((address >> tsb_hash_shift) &
336                 (mm->context.tsb_block[tsb_index].tsb_nentries - 1UL));
337         tag = (address >> 22UL);
338         tsb_insert(tsb, tag, pte_val(pte));
339
340         spin_unlock_irqrestore(&mm->context.lock, flags);
341 }
342
343 void flush_dcache_page(struct page *page)
344 {
345         struct address_space *mapping;
346         int this_cpu;
347
348         if (tlb_type == hypervisor)
349                 return;
350
351         /* Do not bother with the expensive D-cache flush if it
352          * is merely the zero page.  The 'bigcore' testcase in GDB
353          * causes this case to run millions of times.
354          */
355         if (page == ZERO_PAGE(0))
356                 return;
357
358         this_cpu = get_cpu();
359
360         mapping = page_mapping(page);
361         if (mapping && !mapping_mapped(mapping)) {
362                 int dirty = test_bit(PG_dcache_dirty, &page->flags);
363                 if (dirty) {
364                         int dirty_cpu = dcache_dirty_cpu(page);
365
366                         if (dirty_cpu == this_cpu)
367                                 goto out;
368                         smp_flush_dcache_page_impl(page, dirty_cpu);
369                 }
370                 set_dcache_dirty(page, this_cpu);
371         } else {
372                 /* We could delay the flush for the !page_mapping
373                  * case too.  But that case is for exec env/arg
374                  * pages and those are %99 certainly going to get
375                  * faulted into the tlb (and thus flushed) anyways.
376                  */
377                 flush_dcache_page_impl(page);
378         }
379
380 out:
381         put_cpu();
382 }
383
384 void __kprobes flush_icache_range(unsigned long start, unsigned long end)
385 {
386         /* Cheetah and Hypervisor platform cpus have coherent I-cache. */
387         if (tlb_type == spitfire) {
388                 unsigned long kaddr;
389
390                 for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE)
391                         __flush_icache_page(__get_phys(kaddr));
392         }
393 }
394
395 void show_mem(void)
396 {
397         printk("Mem-info:\n");
398         show_free_areas();
399         printk("Free swap:       %6ldkB\n",
400                nr_swap_pages << (PAGE_SHIFT-10));
401         printk("%ld pages of RAM\n", num_physpages);
402         printk("%d free pages\n", nr_free_pages());
403 }
404
405 void mmu_info(struct seq_file *m)
406 {
407         if (tlb_type == cheetah)
408                 seq_printf(m, "MMU Type\t: Cheetah\n");
409         else if (tlb_type == cheetah_plus)
410                 seq_printf(m, "MMU Type\t: Cheetah+\n");
411         else if (tlb_type == spitfire)
412                 seq_printf(m, "MMU Type\t: Spitfire\n");
413         else if (tlb_type == hypervisor)
414                 seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
415         else
416                 seq_printf(m, "MMU Type\t: ???\n");
417
418 #ifdef CONFIG_DEBUG_DCFLUSH
419         seq_printf(m, "DCPageFlushes\t: %d\n",
420                    atomic_read(&dcpage_flushes));
421 #ifdef CONFIG_SMP
422         seq_printf(m, "DCPageFlushesXC\t: %d\n",
423                    atomic_read(&dcpage_flushes_xcall));
424 #endif /* CONFIG_SMP */
425 #endif /* CONFIG_DEBUG_DCFLUSH */
426 }
427
428 struct linux_prom_translation {
429         unsigned long virt;
430         unsigned long size;
431         unsigned long data;
432 };
433
434 /* Exported for kernel TLB miss handling in ktlb.S */
435 struct linux_prom_translation prom_trans[512] __read_mostly;
436 unsigned int prom_trans_ents __read_mostly;
437
438 /* Exported for SMP bootup purposes. */
439 unsigned long kern_locked_tte_data;
440
441 /* The obp translations are saved based on 8k pagesize, since obp can
442  * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
443  * HI_OBP_ADDRESS range are handled in ktlb.S.
444  */
445 static inline int in_obp_range(unsigned long vaddr)
446 {
447         return (vaddr >= LOW_OBP_ADDRESS &&
448                 vaddr < HI_OBP_ADDRESS);
449 }
450
451 static int cmp_ptrans(const void *a, const void *b)
452 {
453         const struct linux_prom_translation *x = a, *y = b;
454
455         if (x->virt > y->virt)
456                 return 1;
457         if (x->virt < y->virt)
458                 return -1;
459         return 0;
460 }
461
462 /* Read OBP translations property into 'prom_trans[]'.  */
463 static void __init read_obp_translations(void)
464 {
465         int n, node, ents, first, last, i;
466
467         node = prom_finddevice("/virtual-memory");
468         n = prom_getproplen(node, "translations");
469         if (unlikely(n == 0 || n == -1)) {
470                 prom_printf("prom_mappings: Couldn't get size.\n");
471                 prom_halt();
472         }
473         if (unlikely(n > sizeof(prom_trans))) {
474                 prom_printf("prom_mappings: Size %Zd is too big.\n", n);
475                 prom_halt();
476         }
477
478         if ((n = prom_getproperty(node, "translations",
479                                   (char *)&prom_trans[0],
480                                   sizeof(prom_trans))) == -1) {
481                 prom_printf("prom_mappings: Couldn't get property.\n");
482                 prom_halt();
483         }
484
485         n = n / sizeof(struct linux_prom_translation);
486
487         ents = n;
488
489         sort(prom_trans, ents, sizeof(struct linux_prom_translation),
490              cmp_ptrans, NULL);
491
492         /* Now kick out all the non-OBP entries.  */
493         for (i = 0; i < ents; i++) {
494                 if (in_obp_range(prom_trans[i].virt))
495                         break;
496         }
497         first = i;
498         for (; i < ents; i++) {
499                 if (!in_obp_range(prom_trans[i].virt))
500                         break;
501         }
502         last = i;
503
504         for (i = 0; i < (last - first); i++) {
505                 struct linux_prom_translation *src = &prom_trans[i + first];
506                 struct linux_prom_translation *dest = &prom_trans[i];
507
508                 *dest = *src;
509         }
510         for (; i < ents; i++) {
511                 struct linux_prom_translation *dest = &prom_trans[i];
512                 dest->virt = dest->size = dest->data = 0x0UL;
513         }
514
515         prom_trans_ents = last - first;
516
517         if (tlb_type == spitfire) {
518                 /* Clear diag TTE bits. */
519                 for (i = 0; i < prom_trans_ents; i++)
520                         prom_trans[i].data &= ~0x0003fe0000000000UL;
521         }
522 }
523
524 static void __init hypervisor_tlb_lock(unsigned long vaddr,
525                                        unsigned long pte,
526                                        unsigned long mmu)
527 {
528         register unsigned long func asm("%o5");
529         register unsigned long arg0 asm("%o0");
530         register unsigned long arg1 asm("%o1");
531         register unsigned long arg2 asm("%o2");
532         register unsigned long arg3 asm("%o3");
533
534         func = HV_FAST_MMU_MAP_PERM_ADDR;
535         arg0 = vaddr;
536         arg1 = 0;
537         arg2 = pte;
538         arg3 = mmu;
539         __asm__ __volatile__("ta        0x80"
540                              : "=&r" (func), "=&r" (arg0),
541                                "=&r" (arg1), "=&r" (arg2),
542                                "=&r" (arg3)
543                              : "0" (func), "1" (arg0), "2" (arg1),
544                                "3" (arg2), "4" (arg3));
545         if (arg0 != 0) {
546                 prom_printf("hypervisor_tlb_lock[%lx:%lx:%lx:%lx]: "
547                             "errors with %lx\n", vaddr, 0, pte, mmu, arg0);
548                 prom_halt();
549         }
550 }
551
552 static unsigned long kern_large_tte(unsigned long paddr);
553
554 static void __init remap_kernel(void)
555 {
556         unsigned long phys_page, tte_vaddr, tte_data;
557         int tlb_ent = sparc64_highest_locked_tlbent();
558
559         tte_vaddr = (unsigned long) KERNBASE;
560         phys_page = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
561         tte_data = kern_large_tte(phys_page);
562
563         kern_locked_tte_data = tte_data;
564
565         /* Now lock us into the TLBs via Hypervisor or OBP. */
566         if (tlb_type == hypervisor) {
567                 hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
568                 hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
569                 if (bigkernel) {
570                         tte_vaddr += 0x400000;
571                         tte_data += 0x400000;
572                         hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
573                         hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
574                 }
575         } else {
576                 prom_dtlb_load(tlb_ent, tte_data, tte_vaddr);
577                 prom_itlb_load(tlb_ent, tte_data, tte_vaddr);
578                 if (bigkernel) {
579                         tlb_ent -= 1;
580                         prom_dtlb_load(tlb_ent,
581                                        tte_data + 0x400000, 
582                                        tte_vaddr + 0x400000);
583                         prom_itlb_load(tlb_ent,
584                                        tte_data + 0x400000, 
585                                        tte_vaddr + 0x400000);
586                 }
587                 sparc64_highest_unlocked_tlb_ent = tlb_ent - 1;
588         }
589         if (tlb_type == cheetah_plus) {
590                 sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
591                                             CTX_CHEETAH_PLUS_NUC);
592                 sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
593                 sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
594         }
595 }
596
597
598 static void __init inherit_prom_mappings(void)
599 {
600         read_obp_translations();
601
602         /* Now fixup OBP's idea about where we really are mapped. */
603         prom_printf("Remapping the kernel... ");
604         remap_kernel();
605         prom_printf("done.\n");
606 }
607
608 void prom_world(int enter)
609 {
610         if (!enter)
611                 set_fs((mm_segment_t) { get_thread_current_ds() });
612
613         __asm__ __volatile__("flushw");
614 }
615
616 #ifdef DCACHE_ALIASING_POSSIBLE
617 void __flush_dcache_range(unsigned long start, unsigned long end)
618 {
619         unsigned long va;
620
621         if (tlb_type == spitfire) {
622                 int n = 0;
623
624                 for (va = start; va < end; va += 32) {
625                         spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
626                         if (++n >= 512)
627                                 break;
628                 }
629         } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
630                 start = __pa(start);
631                 end = __pa(end);
632                 for (va = start; va < end; va += 32)
633                         __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
634                                              "membar #Sync"
635                                              : /* no outputs */
636                                              : "r" (va),
637                                                "i" (ASI_DCACHE_INVALIDATE));
638         }
639 }
640 #endif /* DCACHE_ALIASING_POSSIBLE */
641
642 /* Caller does TLB context flushing on local CPU if necessary.
643  * The caller also ensures that CTX_VALID(mm->context) is false.
644  *
645  * We must be careful about boundary cases so that we never
646  * let the user have CTX 0 (nucleus) or we ever use a CTX
647  * version of zero (and thus NO_CONTEXT would not be caught
648  * by version mis-match tests in mmu_context.h).
649  *
650  * Always invoked with interrupts disabled.
651  */
652 void get_new_mmu_context(struct mm_struct *mm)
653 {
654         unsigned long ctx, new_ctx;
655         unsigned long orig_pgsz_bits;
656         unsigned long flags;
657         int new_version;
658
659         spin_lock_irqsave(&ctx_alloc_lock, flags);
660         orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
661         ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
662         new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
663         new_version = 0;
664         if (new_ctx >= (1 << CTX_NR_BITS)) {
665                 new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
666                 if (new_ctx >= ctx) {
667                         int i;
668                         new_ctx = (tlb_context_cache & CTX_VERSION_MASK) +
669                                 CTX_FIRST_VERSION;
670                         if (new_ctx == 1)
671                                 new_ctx = CTX_FIRST_VERSION;
672
673                         /* Don't call memset, for 16 entries that's just
674                          * plain silly...
675                          */
676                         mmu_context_bmap[0] = 3;
677                         mmu_context_bmap[1] = 0;
678                         mmu_context_bmap[2] = 0;
679                         mmu_context_bmap[3] = 0;
680                         for (i = 4; i < CTX_BMAP_SLOTS; i += 4) {
681                                 mmu_context_bmap[i + 0] = 0;
682                                 mmu_context_bmap[i + 1] = 0;
683                                 mmu_context_bmap[i + 2] = 0;
684                                 mmu_context_bmap[i + 3] = 0;
685                         }
686                         new_version = 1;
687                         goto out;
688                 }
689         }
690         mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
691         new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
692 out:
693         tlb_context_cache = new_ctx;
694         mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
695         spin_unlock_irqrestore(&ctx_alloc_lock, flags);
696
697         if (unlikely(new_version))
698                 smp_new_mmu_context_version();
699 }
700
701 void sparc_ultra_dump_itlb(void)
702 {
703         int slot;
704
705         if (tlb_type == spitfire) {
706                 printk ("Contents of itlb: ");
707                 for (slot = 0; slot < 14; slot++) printk ("    ");
708                 printk ("%2x:%016lx,%016lx\n",
709                         0,
710                         spitfire_get_itlb_tag(0), spitfire_get_itlb_data(0));
711                 for (slot = 1; slot < 64; slot+=3) {
712                         printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx %2x:%016lx,%016lx\n", 
713                                 slot,
714                                 spitfire_get_itlb_tag(slot), spitfire_get_itlb_data(slot),
715                                 slot+1,
716                                 spitfire_get_itlb_tag(slot+1), spitfire_get_itlb_data(slot+1),
717                                 slot+2,
718                                 spitfire_get_itlb_tag(slot+2), spitfire_get_itlb_data(slot+2));
719                 }
720         } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
721                 printk ("Contents of itlb0:\n");
722                 for (slot = 0; slot < 16; slot+=2) {
723                         printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
724                                 slot,
725                                 cheetah_get_litlb_tag(slot), cheetah_get_litlb_data(slot),
726                                 slot+1,
727                                 cheetah_get_litlb_tag(slot+1), cheetah_get_litlb_data(slot+1));
728                 }
729                 printk ("Contents of itlb2:\n");
730                 for (slot = 0; slot < 128; slot+=2) {
731                         printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
732                                 slot,
733                                 cheetah_get_itlb_tag(slot), cheetah_get_itlb_data(slot),
734                                 slot+1,
735                                 cheetah_get_itlb_tag(slot+1), cheetah_get_itlb_data(slot+1));
736                 }
737         }
738 }
739
740 void sparc_ultra_dump_dtlb(void)
741 {
742         int slot;
743
744         if (tlb_type == spitfire) {
745                 printk ("Contents of dtlb: ");
746                 for (slot = 0; slot < 14; slot++) printk ("    ");
747                 printk ("%2x:%016lx,%016lx\n", 0,
748                         spitfire_get_dtlb_tag(0), spitfire_get_dtlb_data(0));
749                 for (slot = 1; slot < 64; slot+=3) {
750                         printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx %2x:%016lx,%016lx\n", 
751                                 slot,
752                                 spitfire_get_dtlb_tag(slot), spitfire_get_dtlb_data(slot),
753                                 slot+1,
754                                 spitfire_get_dtlb_tag(slot+1), spitfire_get_dtlb_data(slot+1),
755                                 slot+2,
756                                 spitfire_get_dtlb_tag(slot+2), spitfire_get_dtlb_data(slot+2));
757                 }
758         } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
759                 printk ("Contents of dtlb0:\n");
760                 for (slot = 0; slot < 16; slot+=2) {
761                         printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
762                                 slot,
763                                 cheetah_get_ldtlb_tag(slot), cheetah_get_ldtlb_data(slot),
764                                 slot+1,
765                                 cheetah_get_ldtlb_tag(slot+1), cheetah_get_ldtlb_data(slot+1));
766                 }
767                 printk ("Contents of dtlb2:\n");
768                 for (slot = 0; slot < 512; slot+=2) {
769                         printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
770                                 slot,
771                                 cheetah_get_dtlb_tag(slot, 2), cheetah_get_dtlb_data(slot, 2),
772                                 slot+1,
773                                 cheetah_get_dtlb_tag(slot+1, 2), cheetah_get_dtlb_data(slot+1, 2));
774                 }
775                 if (tlb_type == cheetah_plus) {
776                         printk ("Contents of dtlb3:\n");
777                         for (slot = 0; slot < 512; slot+=2) {
778                                 printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
779                                         slot,
780                                         cheetah_get_dtlb_tag(slot, 3), cheetah_get_dtlb_data(slot, 3),
781                                         slot+1,
782                                         cheetah_get_dtlb_tag(slot+1, 3), cheetah_get_dtlb_data(slot+1, 3));
783                         }
784                 }
785         }
786 }
787
788 extern unsigned long cmdline_memory_size;
789
790 /* Find a free area for the bootmem map, avoiding the kernel image
791  * and the initial ramdisk.
792  */
793 static unsigned long __init choose_bootmap_pfn(unsigned long start_pfn,
794                                                unsigned long end_pfn)
795 {
796         unsigned long avoid_start, avoid_end, bootmap_size;
797         int i;
798
799         bootmap_size = ((end_pfn - start_pfn) + 7) / 8;
800         bootmap_size = ALIGN(bootmap_size, sizeof(long));
801
802         avoid_start = avoid_end = 0;
803 #ifdef CONFIG_BLK_DEV_INITRD
804         avoid_start = initrd_start;
805         avoid_end = PAGE_ALIGN(initrd_end);
806 #endif
807
808 #ifdef CONFIG_DEBUG_BOOTMEM
809         prom_printf("choose_bootmap_pfn: kern[%lx:%lx] avoid[%lx:%lx]\n",
810                     kern_base, PAGE_ALIGN(kern_base + kern_size),
811                     avoid_start, avoid_end);
812 #endif
813         for (i = 0; i < pavail_ents; i++) {
814                 unsigned long start, end;
815
816                 start = pavail[i].phys_addr;
817                 end = start + pavail[i].reg_size;
818
819                 while (start < end) {
820                         if (start >= kern_base &&
821                             start < PAGE_ALIGN(kern_base + kern_size)) {
822                                 start = PAGE_ALIGN(kern_base + kern_size);
823                                 continue;
824                         }
825                         if (start >= avoid_start && start < avoid_end) {
826                                 start = avoid_end;
827                                 continue;
828                         }
829
830                         if ((end - start) < bootmap_size)
831                                 break;
832
833                         if (start < kern_base &&
834                             (start + bootmap_size) > kern_base) {
835                                 start = PAGE_ALIGN(kern_base + kern_size);
836                                 continue;
837                         }
838
839                         if (start < avoid_start &&
840                             (start + bootmap_size) > avoid_start) {
841                                 start = avoid_end;
842                                 continue;
843                         }
844
845                         /* OK, it doesn't overlap anything, use it.  */
846 #ifdef CONFIG_DEBUG_BOOTMEM
847                         prom_printf("choose_bootmap_pfn: Using %lx [%lx]\n",
848                                     start >> PAGE_SHIFT, start);
849 #endif
850                         return start >> PAGE_SHIFT;
851                 }
852         }
853
854         prom_printf("Cannot find free area for bootmap, aborting.\n");
855         prom_halt();
856 }
857
858 static unsigned long __init bootmem_init(unsigned long *pages_avail,
859                                          unsigned long phys_base)
860 {
861         unsigned long bootmap_size, end_pfn;
862         unsigned long end_of_phys_memory = 0UL;
863         unsigned long bootmap_pfn, bytes_avail, size;
864         int i;
865
866 #ifdef CONFIG_DEBUG_BOOTMEM
867         prom_printf("bootmem_init: Scan pavail, ");
868 #endif
869
870         bytes_avail = 0UL;
871         for (i = 0; i < pavail_ents; i++) {
872                 end_of_phys_memory = pavail[i].phys_addr +
873                         pavail[i].reg_size;
874                 bytes_avail += pavail[i].reg_size;
875                 if (cmdline_memory_size) {
876                         if (bytes_avail > cmdline_memory_size) {
877                                 unsigned long slack = bytes_avail - cmdline_memory_size;
878
879                                 bytes_avail -= slack;
880                                 end_of_phys_memory -= slack;
881
882                                 pavail[i].reg_size -= slack;
883                                 if ((long)pavail[i].reg_size <= 0L) {
884                                         pavail[i].phys_addr = 0xdeadbeefUL;
885                                         pavail[i].reg_size = 0UL;
886                                         pavail_ents = i;
887                                 } else {
888                                         pavail[i+1].reg_size = 0Ul;
889                                         pavail[i+1].phys_addr = 0xdeadbeefUL;
890                                         pavail_ents = i + 1;
891                                 }
892                                 break;
893                         }
894                 }
895         }
896
897         *pages_avail = bytes_avail >> PAGE_SHIFT;
898
899         end_pfn = end_of_phys_memory >> PAGE_SHIFT;
900
901 #ifdef CONFIG_BLK_DEV_INITRD
902         /* Now have to check initial ramdisk, so that bootmap does not overwrite it */
903         if (sparc_ramdisk_image || sparc_ramdisk_image64) {
904                 unsigned long ramdisk_image = sparc_ramdisk_image ?
905                         sparc_ramdisk_image : sparc_ramdisk_image64;
906                 if (ramdisk_image >= (unsigned long)_end - 2 * PAGE_SIZE)
907                         ramdisk_image -= KERNBASE;
908                 initrd_start = ramdisk_image + phys_base;
909                 initrd_end = initrd_start + sparc_ramdisk_size;
910                 if (initrd_end > end_of_phys_memory) {
911                         printk(KERN_CRIT "initrd extends beyond end of memory "
912                                          "(0x%016lx > 0x%016lx)\ndisabling initrd\n",
913                                initrd_end, end_of_phys_memory);
914                         initrd_start = 0;
915                         initrd_end = 0;
916                 }
917         }
918 #endif  
919         /* Initialize the boot-time allocator. */
920         max_pfn = max_low_pfn = end_pfn;
921         min_low_pfn = (phys_base >> PAGE_SHIFT);
922
923         bootmap_pfn = choose_bootmap_pfn(min_low_pfn, end_pfn);
924
925 #ifdef CONFIG_DEBUG_BOOTMEM
926         prom_printf("init_bootmem(min[%lx], bootmap[%lx], max[%lx])\n",
927                     min_low_pfn, bootmap_pfn, max_low_pfn);
928 #endif
929         bootmap_size = init_bootmem_node(NODE_DATA(0), bootmap_pfn,
930                                          min_low_pfn, end_pfn);
931
932         /* Now register the available physical memory with the
933          * allocator.
934          */
935         for (i = 0; i < pavail_ents; i++) {
936 #ifdef CONFIG_DEBUG_BOOTMEM
937                 prom_printf("free_bootmem(pavail:%d): base[%lx] size[%lx]\n",
938                             i, pavail[i].phys_addr, pavail[i].reg_size);
939 #endif
940                 free_bootmem(pavail[i].phys_addr, pavail[i].reg_size);
941         }
942
943 #ifdef CONFIG_BLK_DEV_INITRD
944         if (initrd_start) {
945                 size = initrd_end - initrd_start;
946
947                 /* Resert the initrd image area. */
948 #ifdef CONFIG_DEBUG_BOOTMEM
949                 prom_printf("reserve_bootmem(initrd): base[%llx] size[%lx]\n",
950                         initrd_start, initrd_end);
951 #endif
952                 reserve_bootmem(initrd_start, size);
953                 *pages_avail -= PAGE_ALIGN(size) >> PAGE_SHIFT;
954
955                 initrd_start += PAGE_OFFSET;
956                 initrd_end += PAGE_OFFSET;
957         }
958 #endif
959         /* Reserve the kernel text/data/bss. */
960 #ifdef CONFIG_DEBUG_BOOTMEM
961         prom_printf("reserve_bootmem(kernel): base[%lx] size[%lx]\n", kern_base, kern_size);
962 #endif
963         reserve_bootmem(kern_base, kern_size);
964         *pages_avail -= PAGE_ALIGN(kern_size) >> PAGE_SHIFT;
965
966         /* Reserve the bootmem map.   We do not account for it
967          * in pages_avail because we will release that memory
968          * in free_all_bootmem.
969          */
970         size = bootmap_size;
971 #ifdef CONFIG_DEBUG_BOOTMEM
972         prom_printf("reserve_bootmem(bootmap): base[%lx] size[%lx]\n",
973                     (bootmap_pfn << PAGE_SHIFT), size);
974 #endif
975         reserve_bootmem((bootmap_pfn << PAGE_SHIFT), size);
976         *pages_avail -= PAGE_ALIGN(size) >> PAGE_SHIFT;
977
978         for (i = 0; i < pavail_ents; i++) {
979                 unsigned long start_pfn, end_pfn;
980
981                 start_pfn = pavail[i].phys_addr >> PAGE_SHIFT;
982                 end_pfn = (start_pfn + (pavail[i].reg_size >> PAGE_SHIFT));
983 #ifdef CONFIG_DEBUG_BOOTMEM
984                 prom_printf("memory_present(0, %lx, %lx)\n",
985                             start_pfn, end_pfn);
986 #endif
987                 memory_present(0, start_pfn, end_pfn);
988         }
989
990         sparse_init();
991
992         return end_pfn;
993 }
994
995 static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
996 static int pall_ents __initdata;
997
998 #ifdef CONFIG_DEBUG_PAGEALLOC
999 static unsigned long kernel_map_range(unsigned long pstart, unsigned long pend, pgprot_t prot)
1000 {
1001         unsigned long vstart = PAGE_OFFSET + pstart;
1002         unsigned long vend = PAGE_OFFSET + pend;
1003         unsigned long alloc_bytes = 0UL;
1004
1005         if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
1006                 prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
1007                             vstart, vend);
1008                 prom_halt();
1009         }
1010
1011         while (vstart < vend) {
1012                 unsigned long this_end, paddr = __pa(vstart);
1013                 pgd_t *pgd = pgd_offset_k(vstart);
1014                 pud_t *pud;
1015                 pmd_t *pmd;
1016                 pte_t *pte;
1017
1018                 pud = pud_offset(pgd, vstart);
1019                 if (pud_none(*pud)) {
1020                         pmd_t *new;
1021
1022                         new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1023                         alloc_bytes += PAGE_SIZE;
1024                         pud_populate(&init_mm, pud, new);
1025                 }
1026
1027                 pmd = pmd_offset(pud, vstart);
1028                 if (!pmd_present(*pmd)) {
1029                         pte_t *new;
1030
1031                         new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1032                         alloc_bytes += PAGE_SIZE;
1033                         pmd_populate_kernel(&init_mm, pmd, new);
1034                 }
1035
1036                 pte = pte_offset_kernel(pmd, vstart);
1037                 this_end = (vstart + PMD_SIZE) & PMD_MASK;
1038                 if (this_end > vend)
1039                         this_end = vend;
1040
1041                 while (vstart < this_end) {
1042                         pte_val(*pte) = (paddr | pgprot_val(prot));
1043
1044                         vstart += PAGE_SIZE;
1045                         paddr += PAGE_SIZE;
1046                         pte++;
1047                 }
1048         }
1049
1050         return alloc_bytes;
1051 }
1052
1053 extern unsigned int kvmap_linear_patch[1];
1054 #endif /* CONFIG_DEBUG_PAGEALLOC */
1055
1056 static void __init mark_kpte_bitmap(unsigned long start, unsigned long end)
1057 {
1058         const unsigned long shift_256MB = 28;
1059         const unsigned long mask_256MB = ((1UL << shift_256MB) - 1UL);
1060         const unsigned long size_256MB = (1UL << shift_256MB);
1061
1062         while (start < end) {
1063                 long remains;
1064
1065                 remains = end - start;
1066                 if (remains < size_256MB)
1067                         break;
1068
1069                 if (start & mask_256MB) {
1070                         start = (start + size_256MB) & ~mask_256MB;
1071                         continue;
1072                 }
1073
1074                 while (remains >= size_256MB) {
1075                         unsigned long index = start >> shift_256MB;
1076
1077                         __set_bit(index, kpte_linear_bitmap);
1078
1079                         start += size_256MB;
1080                         remains -= size_256MB;
1081                 }
1082         }
1083 }
1084
1085 static void __init kernel_physical_mapping_init(void)
1086 {
1087         unsigned long i;
1088 #ifdef CONFIG_DEBUG_PAGEALLOC
1089         unsigned long mem_alloced = 0UL;
1090 #endif
1091
1092         read_obp_memory("reg", &pall[0], &pall_ents);
1093
1094         for (i = 0; i < pall_ents; i++) {
1095                 unsigned long phys_start, phys_end;
1096
1097                 phys_start = pall[i].phys_addr;
1098                 phys_end = phys_start + pall[i].reg_size;
1099
1100                 mark_kpte_bitmap(phys_start, phys_end);
1101
1102 #ifdef CONFIG_DEBUG_PAGEALLOC
1103                 mem_alloced += kernel_map_range(phys_start, phys_end,
1104                                                 PAGE_KERNEL);
1105 #endif
1106         }
1107
1108 #ifdef CONFIG_DEBUG_PAGEALLOC
1109         printk("Allocated %ld bytes for kernel page tables.\n",
1110                mem_alloced);
1111
1112         kvmap_linear_patch[0] = 0x01000000; /* nop */
1113         flushi(&kvmap_linear_patch[0]);
1114
1115         __flush_tlb_all();
1116 #endif
1117 }
1118
1119 #ifdef CONFIG_DEBUG_PAGEALLOC
1120 void kernel_map_pages(struct page *page, int numpages, int enable)
1121 {
1122         unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
1123         unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
1124
1125         kernel_map_range(phys_start, phys_end,
1126                          (enable ? PAGE_KERNEL : __pgprot(0)));
1127
1128         flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
1129                                PAGE_OFFSET + phys_end);
1130
1131         /* we should perform an IPI and flush all tlbs,
1132          * but that can deadlock->flush only current cpu.
1133          */
1134         __flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
1135                                  PAGE_OFFSET + phys_end);
1136 }
1137 #endif
1138
1139 unsigned long __init find_ecache_flush_span(unsigned long size)
1140 {
1141         int i;
1142
1143         for (i = 0; i < pavail_ents; i++) {
1144                 if (pavail[i].reg_size >= size)
1145                         return pavail[i].phys_addr;
1146         }
1147
1148         return ~0UL;
1149 }
1150
1151 static void __init tsb_phys_patch(void)
1152 {
1153         struct tsb_ldquad_phys_patch_entry *pquad;
1154         struct tsb_phys_patch_entry *p;
1155
1156         pquad = &__tsb_ldquad_phys_patch;
1157         while (pquad < &__tsb_ldquad_phys_patch_end) {
1158                 unsigned long addr = pquad->addr;
1159
1160                 if (tlb_type == hypervisor)
1161                         *(unsigned int *) addr = pquad->sun4v_insn;
1162                 else
1163                         *(unsigned int *) addr = pquad->sun4u_insn;
1164                 wmb();
1165                 __asm__ __volatile__("flush     %0"
1166                                      : /* no outputs */
1167                                      : "r" (addr));
1168
1169                 pquad++;
1170         }
1171
1172         p = &__tsb_phys_patch;
1173         while (p < &__tsb_phys_patch_end) {
1174                 unsigned long addr = p->addr;
1175
1176                 *(unsigned int *) addr = p->insn;
1177                 wmb();
1178                 __asm__ __volatile__("flush     %0"
1179                                      : /* no outputs */
1180                                      : "r" (addr));
1181
1182                 p++;
1183         }
1184 }
1185
1186 /* Don't mark as init, we give this to the Hypervisor.  */
1187 static struct hv_tsb_descr ktsb_descr[2];
1188 extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
1189
1190 static void __init sun4v_ktsb_init(void)
1191 {
1192         unsigned long ktsb_pa;
1193
1194         /* First KTSB for PAGE_SIZE mappings.  */
1195         ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
1196
1197         switch (PAGE_SIZE) {
1198         case 8 * 1024:
1199         default:
1200                 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K;
1201                 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K;
1202                 break;
1203
1204         case 64 * 1024:
1205                 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K;
1206                 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K;
1207                 break;
1208
1209         case 512 * 1024:
1210                 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K;
1211                 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K;
1212                 break;
1213
1214         case 4 * 1024 * 1024:
1215                 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB;
1216                 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB;
1217                 break;
1218         };
1219
1220         ktsb_descr[0].assoc = 1;
1221         ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES;
1222         ktsb_descr[0].ctx_idx = 0;
1223         ktsb_descr[0].tsb_base = ktsb_pa;
1224         ktsb_descr[0].resv = 0;
1225
1226         /* Second KTSB for 4MB/256MB mappings.  */
1227         ktsb_pa = (kern_base +
1228                    ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
1229
1230         ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB;
1231         ktsb_descr[1].pgsz_mask = (HV_PGSZ_MASK_4MB |
1232                                    HV_PGSZ_MASK_256MB);
1233         ktsb_descr[1].assoc = 1;
1234         ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES;
1235         ktsb_descr[1].ctx_idx = 0;
1236         ktsb_descr[1].tsb_base = ktsb_pa;
1237         ktsb_descr[1].resv = 0;
1238 }
1239
1240 void __cpuinit sun4v_ktsb_register(void)
1241 {
1242         register unsigned long func asm("%o5");
1243         register unsigned long arg0 asm("%o0");
1244         register unsigned long arg1 asm("%o1");
1245         unsigned long pa;
1246
1247         pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE);
1248
1249         func = HV_FAST_MMU_TSB_CTX0;
1250         arg0 = 2;
1251         arg1 = pa;
1252         __asm__ __volatile__("ta        %6"
1253                              : "=&r" (func), "=&r" (arg0), "=&r" (arg1)
1254                              : "0" (func), "1" (arg0), "2" (arg1),
1255                                "i" (HV_FAST_TRAP));
1256 }
1257
1258 /* paging_init() sets up the page tables */
1259
1260 extern void cheetah_ecache_flush_init(void);
1261 extern void sun4v_patch_tlb_handlers(void);
1262
1263 static unsigned long last_valid_pfn;
1264 pgd_t swapper_pg_dir[2048];
1265
1266 static void sun4u_pgprot_init(void);
1267 static void sun4v_pgprot_init(void);
1268
1269 void __init paging_init(void)
1270 {
1271         unsigned long end_pfn, pages_avail, shift, phys_base;
1272         unsigned long real_end, i;
1273
1274         kern_base = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
1275         kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
1276
1277         /* Invalidate both kernel TSBs.  */
1278         memset(swapper_tsb, 0x40, sizeof(swapper_tsb));
1279         memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
1280
1281         if (tlb_type == hypervisor)
1282                 sun4v_pgprot_init();
1283         else
1284                 sun4u_pgprot_init();
1285
1286         if (tlb_type == cheetah_plus ||
1287             tlb_type == hypervisor)
1288                 tsb_phys_patch();
1289
1290         if (tlb_type == hypervisor) {
1291                 sun4v_patch_tlb_handlers();
1292                 sun4v_ktsb_init();
1293         }
1294
1295         /* Find available physical memory... */
1296         read_obp_memory("available", &pavail[0], &pavail_ents);
1297
1298         phys_base = 0xffffffffffffffffUL;
1299         for (i = 0; i < pavail_ents; i++)
1300                 phys_base = min(phys_base, pavail[i].phys_addr);
1301
1302         set_bit(0, mmu_context_bmap);
1303
1304         shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
1305
1306         real_end = (unsigned long)_end;
1307         if ((real_end > ((unsigned long)KERNBASE + 0x400000)))
1308                 bigkernel = 1;
1309         if ((real_end > ((unsigned long)KERNBASE + 0x800000))) {
1310                 prom_printf("paging_init: Kernel > 8MB, too large.\n");
1311                 prom_halt();
1312         }
1313
1314         /* Set kernel pgd to upper alias so physical page computations
1315          * work.
1316          */
1317         init_mm.pgd += ((shift) / (sizeof(pgd_t)));
1318         
1319         memset(swapper_low_pmd_dir, 0, sizeof(swapper_low_pmd_dir));
1320
1321         /* Now can init the kernel/bad page tables. */
1322         pud_set(pud_offset(&swapper_pg_dir[0], 0),
1323                 swapper_low_pmd_dir + (shift / sizeof(pgd_t)));
1324         
1325         inherit_prom_mappings();
1326         
1327         /* Ok, we can use our TLB miss and window trap handlers safely.  */
1328         setup_tba();
1329
1330         __flush_tlb_all();
1331
1332         if (tlb_type == hypervisor)
1333                 sun4v_ktsb_register();
1334
1335         /* Setup bootmem... */
1336         pages_avail = 0;
1337         last_valid_pfn = end_pfn = bootmem_init(&pages_avail, phys_base);
1338
1339         max_mapnr = last_valid_pfn;
1340
1341         kernel_physical_mapping_init();
1342
1343         prom_build_devicetree();
1344
1345         {
1346                 unsigned long zones_size[MAX_NR_ZONES];
1347                 unsigned long zholes_size[MAX_NR_ZONES];
1348                 int znum;
1349
1350                 for (znum = 0; znum < MAX_NR_ZONES; znum++)
1351                         zones_size[znum] = zholes_size[znum] = 0;
1352
1353                 zones_size[ZONE_DMA] = end_pfn;
1354                 zholes_size[ZONE_DMA] = end_pfn - pages_avail;
1355
1356                 free_area_init_node(0, &contig_page_data, zones_size,
1357                                     __pa(PAGE_OFFSET) >> PAGE_SHIFT,
1358                                     zholes_size);
1359         }
1360
1361         device_scan();
1362 }
1363
1364 static void __init taint_real_pages(void)
1365 {
1366         int i;
1367
1368         read_obp_memory("available", &pavail_rescan[0], &pavail_rescan_ents);
1369
1370         /* Find changes discovered in the physmem available rescan and
1371          * reserve the lost portions in the bootmem maps.
1372          */
1373         for (i = 0; i < pavail_ents; i++) {
1374                 unsigned long old_start, old_end;
1375
1376                 old_start = pavail[i].phys_addr;
1377                 old_end = old_start +
1378                         pavail[i].reg_size;
1379                 while (old_start < old_end) {
1380                         int n;
1381
1382                         for (n = 0; pavail_rescan_ents; n++) {
1383                                 unsigned long new_start, new_end;
1384
1385                                 new_start = pavail_rescan[n].phys_addr;
1386                                 new_end = new_start +
1387                                         pavail_rescan[n].reg_size;
1388
1389                                 if (new_start <= old_start &&
1390                                     new_end >= (old_start + PAGE_SIZE)) {
1391                                         set_bit(old_start >> 22,
1392                                                 sparc64_valid_addr_bitmap);
1393                                         goto do_next_page;
1394                                 }
1395                         }
1396                         reserve_bootmem(old_start, PAGE_SIZE);
1397
1398                 do_next_page:
1399                         old_start += PAGE_SIZE;
1400                 }
1401         }
1402 }
1403
1404 void __init mem_init(void)
1405 {
1406         unsigned long codepages, datapages, initpages;
1407         unsigned long addr, last;
1408         int i;
1409
1410         i = last_valid_pfn >> ((22 - PAGE_SHIFT) + 6);
1411         i += 1;
1412         sparc64_valid_addr_bitmap = (unsigned long *) alloc_bootmem(i << 3);
1413         if (sparc64_valid_addr_bitmap == NULL) {
1414                 prom_printf("mem_init: Cannot alloc valid_addr_bitmap.\n");
1415                 prom_halt();
1416         }
1417         memset(sparc64_valid_addr_bitmap, 0, i << 3);
1418
1419         addr = PAGE_OFFSET + kern_base;
1420         last = PAGE_ALIGN(kern_size) + addr;
1421         while (addr < last) {
1422                 set_bit(__pa(addr) >> 22, sparc64_valid_addr_bitmap);
1423                 addr += PAGE_SIZE;
1424         }
1425
1426         taint_real_pages();
1427
1428         high_memory = __va(last_valid_pfn << PAGE_SHIFT);
1429
1430 #ifdef CONFIG_DEBUG_BOOTMEM
1431         prom_printf("mem_init: Calling free_all_bootmem().\n");
1432 #endif
1433         totalram_pages = num_physpages = free_all_bootmem() - 1;
1434
1435         /*
1436          * Set up the zero page, mark it reserved, so that page count
1437          * is not manipulated when freeing the page from user ptes.
1438          */
1439         mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
1440         if (mem_map_zero == NULL) {
1441                 prom_printf("paging_init: Cannot alloc zero page.\n");
1442                 prom_halt();
1443         }
1444         SetPageReserved(mem_map_zero);
1445
1446         codepages = (((unsigned long) _etext) - ((unsigned long) _start));
1447         codepages = PAGE_ALIGN(codepages) >> PAGE_SHIFT;
1448         datapages = (((unsigned long) _edata) - ((unsigned long) _etext));
1449         datapages = PAGE_ALIGN(datapages) >> PAGE_SHIFT;
1450         initpages = (((unsigned long) __init_end) - ((unsigned long) __init_begin));
1451         initpages = PAGE_ALIGN(initpages) >> PAGE_SHIFT;
1452
1453         printk("Memory: %uk available (%ldk kernel code, %ldk data, %ldk init) [%016lx,%016lx]\n",
1454                nr_free_pages() << (PAGE_SHIFT-10),
1455                codepages << (PAGE_SHIFT-10),
1456                datapages << (PAGE_SHIFT-10), 
1457                initpages << (PAGE_SHIFT-10), 
1458                PAGE_OFFSET, (last_valid_pfn << PAGE_SHIFT));
1459
1460         if (tlb_type == cheetah || tlb_type == cheetah_plus)
1461                 cheetah_ecache_flush_init();
1462 }
1463
1464 void free_initmem(void)
1465 {
1466         unsigned long addr, initend;
1467
1468         /*
1469          * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
1470          */
1471         addr = PAGE_ALIGN((unsigned long)(__init_begin));
1472         initend = (unsigned long)(__init_end) & PAGE_MASK;
1473         for (; addr < initend; addr += PAGE_SIZE) {
1474                 unsigned long page;
1475                 struct page *p;
1476
1477                 page = (addr +
1478                         ((unsigned long) __va(kern_base)) -
1479                         ((unsigned long) KERNBASE));
1480                 memset((void *)addr, 0xcc, PAGE_SIZE);
1481                 p = virt_to_page(page);
1482
1483                 ClearPageReserved(p);
1484                 init_page_count(p);
1485                 __free_page(p);
1486                 num_physpages++;
1487                 totalram_pages++;
1488         }
1489 }
1490
1491 #ifdef CONFIG_BLK_DEV_INITRD
1492 void free_initrd_mem(unsigned long start, unsigned long end)
1493 {
1494         if (start < end)
1495                 printk ("Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
1496         for (; start < end; start += PAGE_SIZE) {
1497                 struct page *p = virt_to_page(start);
1498
1499                 ClearPageReserved(p);
1500                 init_page_count(p);
1501                 __free_page(p);
1502                 num_physpages++;
1503                 totalram_pages++;
1504         }
1505 }
1506 #endif
1507
1508 #define _PAGE_CACHE_4U  (_PAGE_CP_4U | _PAGE_CV_4U)
1509 #define _PAGE_CACHE_4V  (_PAGE_CP_4V | _PAGE_CV_4V)
1510 #define __DIRTY_BITS_4U  (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
1511 #define __DIRTY_BITS_4V  (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
1512 #define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
1513 #define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
1514
1515 pgprot_t PAGE_KERNEL __read_mostly;
1516 EXPORT_SYMBOL(PAGE_KERNEL);
1517
1518 pgprot_t PAGE_KERNEL_LOCKED __read_mostly;
1519 pgprot_t PAGE_COPY __read_mostly;
1520
1521 pgprot_t PAGE_SHARED __read_mostly;
1522 EXPORT_SYMBOL(PAGE_SHARED);
1523
1524 pgprot_t PAGE_EXEC __read_mostly;
1525 unsigned long pg_iobits __read_mostly;
1526
1527 unsigned long _PAGE_IE __read_mostly;
1528
1529 unsigned long _PAGE_E __read_mostly;
1530 EXPORT_SYMBOL(_PAGE_E);
1531
1532 unsigned long _PAGE_CACHE __read_mostly;
1533 EXPORT_SYMBOL(_PAGE_CACHE);
1534
1535 static void prot_init_common(unsigned long page_none,
1536                              unsigned long page_shared,
1537                              unsigned long page_copy,
1538                              unsigned long page_readonly,
1539                              unsigned long page_exec_bit)
1540 {
1541         PAGE_COPY = __pgprot(page_copy);
1542         PAGE_SHARED = __pgprot(page_shared);
1543
1544         protection_map[0x0] = __pgprot(page_none);
1545         protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit);
1546         protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit);
1547         protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit);
1548         protection_map[0x4] = __pgprot(page_readonly);
1549         protection_map[0x5] = __pgprot(page_readonly);
1550         protection_map[0x6] = __pgprot(page_copy);
1551         protection_map[0x7] = __pgprot(page_copy);
1552         protection_map[0x8] = __pgprot(page_none);
1553         protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit);
1554         protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit);
1555         protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit);
1556         protection_map[0xc] = __pgprot(page_readonly);
1557         protection_map[0xd] = __pgprot(page_readonly);
1558         protection_map[0xe] = __pgprot(page_shared);
1559         protection_map[0xf] = __pgprot(page_shared);
1560 }
1561
1562 static void __init sun4u_pgprot_init(void)
1563 {
1564         unsigned long page_none, page_shared, page_copy, page_readonly;
1565         unsigned long page_exec_bit;
1566
1567         PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
1568                                 _PAGE_CACHE_4U | _PAGE_P_4U |
1569                                 __ACCESS_BITS_4U | __DIRTY_BITS_4U |
1570                                 _PAGE_EXEC_4U);
1571         PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
1572                                        _PAGE_CACHE_4U | _PAGE_P_4U |
1573                                        __ACCESS_BITS_4U | __DIRTY_BITS_4U |
1574                                        _PAGE_EXEC_4U | _PAGE_L_4U);
1575         PAGE_EXEC = __pgprot(_PAGE_EXEC_4U);
1576
1577         _PAGE_IE = _PAGE_IE_4U;
1578         _PAGE_E = _PAGE_E_4U;
1579         _PAGE_CACHE = _PAGE_CACHE_4U;
1580
1581         pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U |
1582                      __ACCESS_BITS_4U | _PAGE_E_4U);
1583
1584         kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^
1585                 0xfffff80000000000;
1586         kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U |
1587                                    _PAGE_P_4U | _PAGE_W_4U);
1588
1589         /* XXX Should use 256MB on Panther. XXX */
1590         kern_linear_pte_xor[1] = kern_linear_pte_xor[0];
1591
1592         _PAGE_SZBITS = _PAGE_SZBITS_4U;
1593         _PAGE_ALL_SZ_BITS =  (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U |
1594                               _PAGE_SZ64K_4U | _PAGE_SZ8K_4U |
1595                               _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U);
1596
1597
1598         page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U;
1599         page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
1600                        __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U);
1601         page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
1602                        __ACCESS_BITS_4U | _PAGE_EXEC_4U);
1603         page_readonly   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
1604                            __ACCESS_BITS_4U | _PAGE_EXEC_4U);
1605
1606         page_exec_bit = _PAGE_EXEC_4U;
1607
1608         prot_init_common(page_none, page_shared, page_copy, page_readonly,
1609                          page_exec_bit);
1610 }
1611
1612 static void __init sun4v_pgprot_init(void)
1613 {
1614         unsigned long page_none, page_shared, page_copy, page_readonly;
1615         unsigned long page_exec_bit;
1616
1617         PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID |
1618                                 _PAGE_CACHE_4V | _PAGE_P_4V |
1619                                 __ACCESS_BITS_4V | __DIRTY_BITS_4V |
1620                                 _PAGE_EXEC_4V);
1621         PAGE_KERNEL_LOCKED = PAGE_KERNEL;
1622         PAGE_EXEC = __pgprot(_PAGE_EXEC_4V);
1623
1624         _PAGE_IE = _PAGE_IE_4V;
1625         _PAGE_E = _PAGE_E_4V;
1626         _PAGE_CACHE = _PAGE_CACHE_4V;
1627
1628         kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^
1629                 0xfffff80000000000;
1630         kern_linear_pte_xor[0] |= (_PAGE_CP_4V | _PAGE_CV_4V |
1631                                    _PAGE_P_4V | _PAGE_W_4V);
1632
1633         kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^
1634                 0xfffff80000000000;
1635         kern_linear_pte_xor[1] |= (_PAGE_CP_4V | _PAGE_CV_4V |
1636                                    _PAGE_P_4V | _PAGE_W_4V);
1637
1638         pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V |
1639                      __ACCESS_BITS_4V | _PAGE_E_4V);
1640
1641         _PAGE_SZBITS = _PAGE_SZBITS_4V;
1642         _PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V |
1643                              _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V |
1644                              _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V |
1645                              _PAGE_SZ64K_4V | _PAGE_SZ8K_4V);
1646
1647         page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | _PAGE_CACHE_4V;
1648         page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
1649                        __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V);
1650         page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
1651                        __ACCESS_BITS_4V | _PAGE_EXEC_4V);
1652         page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
1653                          __ACCESS_BITS_4V | _PAGE_EXEC_4V);
1654
1655         page_exec_bit = _PAGE_EXEC_4V;
1656
1657         prot_init_common(page_none, page_shared, page_copy, page_readonly,
1658                          page_exec_bit);
1659 }
1660
1661 unsigned long pte_sz_bits(unsigned long sz)
1662 {
1663         if (tlb_type == hypervisor) {
1664                 switch (sz) {
1665                 case 8 * 1024:
1666                 default:
1667                         return _PAGE_SZ8K_4V;
1668                 case 64 * 1024:
1669                         return _PAGE_SZ64K_4V;
1670                 case 512 * 1024:
1671                         return _PAGE_SZ512K_4V;
1672                 case 4 * 1024 * 1024:
1673                         return _PAGE_SZ4MB_4V;
1674                 };
1675         } else {
1676                 switch (sz) {
1677                 case 8 * 1024:
1678                 default:
1679                         return _PAGE_SZ8K_4U;
1680                 case 64 * 1024:
1681                         return _PAGE_SZ64K_4U;
1682                 case 512 * 1024:
1683                         return _PAGE_SZ512K_4U;
1684                 case 4 * 1024 * 1024:
1685                         return _PAGE_SZ4MB_4U;
1686                 };
1687         }
1688 }
1689
1690 pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size)
1691 {
1692         pte_t pte;
1693
1694         pte_val(pte)  = page | pgprot_val(pgprot_noncached(prot));
1695         pte_val(pte) |= (((unsigned long)space) << 32);
1696         pte_val(pte) |= pte_sz_bits(page_size);
1697
1698         return pte;
1699 }
1700
1701 static unsigned long kern_large_tte(unsigned long paddr)
1702 {
1703         unsigned long val;
1704
1705         val = (_PAGE_VALID | _PAGE_SZ4MB_4U |
1706                _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U |
1707                _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U);
1708         if (tlb_type == hypervisor)
1709                 val = (_PAGE_VALID | _PAGE_SZ4MB_4V |
1710                        _PAGE_CP_4V | _PAGE_CV_4V | _PAGE_P_4V |
1711                        _PAGE_EXEC_4V | _PAGE_W_4V);
1712
1713         return val | paddr;
1714 }
1715
1716 /*
1717  * Translate PROM's mapping we capture at boot time into physical address.
1718  * The second parameter is only set from prom_callback() invocations.
1719  */
1720 unsigned long prom_virt_to_phys(unsigned long promva, int *error)
1721 {
1722         unsigned long mask;
1723         int i;
1724
1725         mask = _PAGE_PADDR_4U;
1726         if (tlb_type == hypervisor)
1727                 mask = _PAGE_PADDR_4V;
1728
1729         for (i = 0; i < prom_trans_ents; i++) {
1730                 struct linux_prom_translation *p = &prom_trans[i];
1731
1732                 if (promva >= p->virt &&
1733                     promva < (p->virt + p->size)) {
1734                         unsigned long base = p->data & mask;
1735
1736                         if (error)
1737                                 *error = 0;
1738                         return base + (promva & (8192 - 1));
1739                 }
1740         }
1741         if (error)
1742                 *error = 1;
1743         return 0UL;
1744 }
1745
1746 /* XXX We should kill off this ugly thing at so me point. XXX */
1747 unsigned long sun4u_get_pte(unsigned long addr)
1748 {
1749         pgd_t *pgdp;
1750         pud_t *pudp;
1751         pmd_t *pmdp;
1752         pte_t *ptep;
1753         unsigned long mask = _PAGE_PADDR_4U;
1754
1755         if (tlb_type == hypervisor)
1756                 mask = _PAGE_PADDR_4V;
1757
1758         if (addr >= PAGE_OFFSET)
1759                 return addr & mask;
1760
1761         if ((addr >= LOW_OBP_ADDRESS) && (addr < HI_OBP_ADDRESS))
1762                 return prom_virt_to_phys(addr, NULL);
1763
1764         pgdp = pgd_offset_k(addr);
1765         pudp = pud_offset(pgdp, addr);
1766         pmdp = pmd_offset(pudp, addr);
1767         ptep = pte_offset_kernel(pmdp, addr);
1768
1769         return pte_val(*ptep) & mask;
1770 }
1771
1772 /* If not locked, zap it. */
1773 void __flush_tlb_all(void)
1774 {
1775         unsigned long pstate;
1776         int i;
1777
1778         __asm__ __volatile__("flushw\n\t"
1779                              "rdpr      %%pstate, %0\n\t"
1780                              "wrpr      %0, %1, %%pstate"
1781                              : "=r" (pstate)
1782                              : "i" (PSTATE_IE));
1783         if (tlb_type == spitfire) {
1784                 for (i = 0; i < 64; i++) {
1785                         /* Spitfire Errata #32 workaround */
1786                         /* NOTE: Always runs on spitfire, so no
1787                          *       cheetah+ page size encodings.
1788                          */
1789                         __asm__ __volatile__("stxa      %0, [%1] %2\n\t"
1790                                              "flush     %%g6"
1791                                              : /* No outputs */
1792                                              : "r" (0),
1793                                              "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
1794
1795                         if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) {
1796                                 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
1797                                                      "membar #Sync"
1798                                                      : /* no outputs */
1799                                                      : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
1800                                 spitfire_put_dtlb_data(i, 0x0UL);
1801                         }
1802
1803                         /* Spitfire Errata #32 workaround */
1804                         /* NOTE: Always runs on spitfire, so no
1805                          *       cheetah+ page size encodings.
1806                          */
1807                         __asm__ __volatile__("stxa      %0, [%1] %2\n\t"
1808                                              "flush     %%g6"
1809                                              : /* No outputs */
1810                                              : "r" (0),
1811                                              "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
1812
1813                         if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) {
1814                                 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
1815                                                      "membar #Sync"
1816                                                      : /* no outputs */
1817                                                      : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
1818                                 spitfire_put_itlb_data(i, 0x0UL);
1819                         }
1820                 }
1821         } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1822                 cheetah_flush_dtlb_all();
1823                 cheetah_flush_itlb_all();
1824         }
1825         __asm__ __volatile__("wrpr      %0, 0, %%pstate"
1826                              : : "r" (pstate));
1827 }
1828
1829 #ifdef CONFIG_MEMORY_HOTPLUG
1830
1831 void online_page(struct page *page)
1832 {
1833         ClearPageReserved(page);
1834         init_page_count(page);
1835         __free_page(page);
1836         totalram_pages++;
1837         num_physpages++;
1838 }
1839
1840 int remove_memory(u64 start, u64 size)
1841 {
1842         return -EINVAL;
1843 }
1844
1845 #endif /* CONFIG_MEMORY_HOTPLUG */