[SPARC64]: Kill PROM locked TLB entry preservation code.
[safe/jmp/linux-2.6] / arch / sparc64 / mm / init.c
1 /*  $Id: init.c,v 1.209 2002/02/09 19:49:31 davem Exp $
2  *  arch/sparc64/mm/init.c
3  *
4  *  Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
5  *  Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
6  */
7  
8 #include <linux/config.h>
9 #include <linux/kernel.h>
10 #include <linux/sched.h>
11 #include <linux/string.h>
12 #include <linux/init.h>
13 #include <linux/bootmem.h>
14 #include <linux/mm.h>
15 #include <linux/hugetlb.h>
16 #include <linux/slab.h>
17 #include <linux/initrd.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/kprobes.h>
23 #include <linux/cache.h>
24 #include <linux/sort.h>
25
26 #include <asm/head.h>
27 #include <asm/system.h>
28 #include <asm/page.h>
29 #include <asm/pgalloc.h>
30 #include <asm/pgtable.h>
31 #include <asm/oplib.h>
32 #include <asm/iommu.h>
33 #include <asm/io.h>
34 #include <asm/uaccess.h>
35 #include <asm/mmu_context.h>
36 #include <asm/tlbflush.h>
37 #include <asm/dma.h>
38 #include <asm/starfire.h>
39 #include <asm/tlb.h>
40 #include <asm/spitfire.h>
41 #include <asm/sections.h>
42
43 extern void device_scan(void);
44
45 #define MAX_BANKS       32
46
47 static struct linux_prom64_registers pavail[MAX_BANKS] __initdata;
48 static struct linux_prom64_registers pavail_rescan[MAX_BANKS] __initdata;
49 static int pavail_ents __initdata;
50 static int pavail_rescan_ents __initdata;
51
52 static int cmp_p64(const void *a, const void *b)
53 {
54         const struct linux_prom64_registers *x = a, *y = b;
55
56         if (x->phys_addr > y->phys_addr)
57                 return 1;
58         if (x->phys_addr < y->phys_addr)
59                 return -1;
60         return 0;
61 }
62
63 static void __init read_obp_memory(const char *property,
64                                    struct linux_prom64_registers *regs,
65                                    int *num_ents)
66 {
67         int node = prom_finddevice("/memory");
68         int prop_size = prom_getproplen(node, property);
69         int ents, ret, i;
70
71         ents = prop_size / sizeof(struct linux_prom64_registers);
72         if (ents > MAX_BANKS) {
73                 prom_printf("The machine has more %s property entries than "
74                             "this kernel can support (%d).\n",
75                             property, MAX_BANKS);
76                 prom_halt();
77         }
78
79         ret = prom_getproperty(node, property, (char *) regs, prop_size);
80         if (ret == -1) {
81                 prom_printf("Couldn't get %s property from /memory.\n");
82                 prom_halt();
83         }
84
85         *num_ents = ents;
86
87         /* Sanitize what we got from the firmware, by page aligning
88          * everything.
89          */
90         for (i = 0; i < ents; i++) {
91                 unsigned long base, size;
92
93                 base = regs[i].phys_addr;
94                 size = regs[i].reg_size;
95
96                 size &= PAGE_MASK;
97                 if (base & ~PAGE_MASK) {
98                         unsigned long new_base = PAGE_ALIGN(base);
99
100                         size -= new_base - base;
101                         if ((long) size < 0L)
102                                 size = 0UL;
103                         base = new_base;
104                 }
105                 regs[i].phys_addr = base;
106                 regs[i].reg_size = size;
107         }
108         sort(regs, ents, sizeof(struct linux_prom64_registers),
109              cmp_p64, NULL);
110 }
111
112 unsigned long *sparc64_valid_addr_bitmap __read_mostly;
113
114 /* Ugly, but necessary... -DaveM */
115 unsigned long phys_base __read_mostly;
116 unsigned long kern_base __read_mostly;
117 unsigned long kern_size __read_mostly;
118 unsigned long pfn_base __read_mostly;
119
120 /* get_new_mmu_context() uses "cache + 1".  */
121 DEFINE_SPINLOCK(ctx_alloc_lock);
122 unsigned long tlb_context_cache = CTX_FIRST_VERSION - 1;
123 #define CTX_BMAP_SLOTS (1UL << (CTX_NR_BITS - 6))
124 unsigned long mmu_context_bmap[CTX_BMAP_SLOTS];
125
126 /* References to special section boundaries */
127 extern char  _start[], _end[];
128
129 /* Initial ramdisk setup */
130 extern unsigned long sparc_ramdisk_image64;
131 extern unsigned int sparc_ramdisk_image;
132 extern unsigned int sparc_ramdisk_size;
133
134 struct page *mem_map_zero __read_mostly;
135
136 unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
137
138 unsigned long sparc64_kern_pri_context __read_mostly;
139 unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
140 unsigned long sparc64_kern_sec_context __read_mostly;
141
142 int bigkernel = 0;
143
144 kmem_cache_t *pgtable_cache __read_mostly;
145
146 static void zero_ctor(void *addr, kmem_cache_t *cache, unsigned long flags)
147 {
148         clear_page(addr);
149 }
150
151 void pgtable_cache_init(void)
152 {
153         pgtable_cache = kmem_cache_create("pgtable_cache",
154                                           PAGE_SIZE, PAGE_SIZE,
155                                           SLAB_HWCACHE_ALIGN |
156                                           SLAB_MUST_HWCACHE_ALIGN,
157                                           zero_ctor,
158                                           NULL);
159         if (!pgtable_cache) {
160                 prom_printf("pgtable_cache_init(): Could not create!\n");
161                 prom_halt();
162         }
163 }
164
165 #ifdef CONFIG_DEBUG_DCFLUSH
166 atomic_t dcpage_flushes = ATOMIC_INIT(0);
167 #ifdef CONFIG_SMP
168 atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
169 #endif
170 #endif
171
172 __inline__ void flush_dcache_page_impl(struct page *page)
173 {
174 #ifdef CONFIG_DEBUG_DCFLUSH
175         atomic_inc(&dcpage_flushes);
176 #endif
177
178 #ifdef DCACHE_ALIASING_POSSIBLE
179         __flush_dcache_page(page_address(page),
180                             ((tlb_type == spitfire) &&
181                              page_mapping(page) != NULL));
182 #else
183         if (page_mapping(page) != NULL &&
184             tlb_type == spitfire)
185                 __flush_icache_page(__pa(page_address(page)));
186 #endif
187 }
188
189 #define PG_dcache_dirty         PG_arch_1
190 #define PG_dcache_cpu_shift     24
191 #define PG_dcache_cpu_mask      (256 - 1)
192
193 #if NR_CPUS > 256
194 #error D-cache dirty tracking and thread_info->cpu need fixing for > 256 cpus
195 #endif
196
197 #define dcache_dirty_cpu(page) \
198         (((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
199
200 static __inline__ void set_dcache_dirty(struct page *page, int this_cpu)
201 {
202         unsigned long mask = this_cpu;
203         unsigned long non_cpu_bits;
204
205         non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
206         mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
207
208         __asm__ __volatile__("1:\n\t"
209                              "ldx       [%2], %%g7\n\t"
210                              "and       %%g7, %1, %%g1\n\t"
211                              "or        %%g1, %0, %%g1\n\t"
212                              "casx      [%2], %%g7, %%g1\n\t"
213                              "cmp       %%g7, %%g1\n\t"
214                              "membar    #StoreLoad | #StoreStore\n\t"
215                              "bne,pn    %%xcc, 1b\n\t"
216                              " nop"
217                              : /* no outputs */
218                              : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
219                              : "g1", "g7");
220 }
221
222 static __inline__ void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
223 {
224         unsigned long mask = (1UL << PG_dcache_dirty);
225
226         __asm__ __volatile__("! test_and_clear_dcache_dirty\n"
227                              "1:\n\t"
228                              "ldx       [%2], %%g7\n\t"
229                              "srlx      %%g7, %4, %%g1\n\t"
230                              "and       %%g1, %3, %%g1\n\t"
231                              "cmp       %%g1, %0\n\t"
232                              "bne,pn    %%icc, 2f\n\t"
233                              " andn     %%g7, %1, %%g1\n\t"
234                              "casx      [%2], %%g7, %%g1\n\t"
235                              "cmp       %%g7, %%g1\n\t"
236                              "membar    #StoreLoad | #StoreStore\n\t"
237                              "bne,pn    %%xcc, 1b\n\t"
238                              " nop\n"
239                              "2:"
240                              : /* no outputs */
241                              : "r" (cpu), "r" (mask), "r" (&page->flags),
242                                "i" (PG_dcache_cpu_mask),
243                                "i" (PG_dcache_cpu_shift)
244                              : "g1", "g7");
245 }
246
247 void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t pte)
248 {
249         struct mm_struct *mm;
250         struct page *page;
251         unsigned long pfn;
252         unsigned long pg_flags;
253         unsigned long mm_rss;
254
255         pfn = pte_pfn(pte);
256         if (pfn_valid(pfn) &&
257             (page = pfn_to_page(pfn), page_mapping(page)) &&
258             ((pg_flags = page->flags) & (1UL << PG_dcache_dirty))) {
259                 int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
260                            PG_dcache_cpu_mask);
261                 int this_cpu = get_cpu();
262
263                 /* This is just to optimize away some function calls
264                  * in the SMP case.
265                  */
266                 if (cpu == this_cpu)
267                         flush_dcache_page_impl(page);
268                 else
269                         smp_flush_dcache_page_impl(page, cpu);
270
271                 clear_dcache_dirty_cpu(page, cpu);
272
273                 put_cpu();
274         }
275
276         mm = vma->vm_mm;
277         mm_rss = get_mm_rss(mm);
278         if (mm_rss >= mm->context.tsb_rss_limit)
279                 tsb_grow(mm, mm_rss, GFP_ATOMIC);
280
281         if ((pte_val(pte) & _PAGE_ALL_SZ_BITS) == _PAGE_SZBITS) {
282                 struct tsb *tsb;
283                 unsigned long tag;
284
285                 tsb = &mm->context.tsb[(address >> PAGE_SHIFT) &
286                                        (mm->context.tsb_nentries - 1UL)];
287                 tag = (address >> 22UL) | CTX_HWBITS(mm->context) << 48UL;
288                 tsb_insert(tsb, tag, pte_val(pte));
289         }
290 }
291
292 void flush_dcache_page(struct page *page)
293 {
294         struct address_space *mapping;
295         int this_cpu;
296
297         /* Do not bother with the expensive D-cache flush if it
298          * is merely the zero page.  The 'bigcore' testcase in GDB
299          * causes this case to run millions of times.
300          */
301         if (page == ZERO_PAGE(0))
302                 return;
303
304         this_cpu = get_cpu();
305
306         mapping = page_mapping(page);
307         if (mapping && !mapping_mapped(mapping)) {
308                 int dirty = test_bit(PG_dcache_dirty, &page->flags);
309                 if (dirty) {
310                         int dirty_cpu = dcache_dirty_cpu(page);
311
312                         if (dirty_cpu == this_cpu)
313                                 goto out;
314                         smp_flush_dcache_page_impl(page, dirty_cpu);
315                 }
316                 set_dcache_dirty(page, this_cpu);
317         } else {
318                 /* We could delay the flush for the !page_mapping
319                  * case too.  But that case is for exec env/arg
320                  * pages and those are %99 certainly going to get
321                  * faulted into the tlb (and thus flushed) anyways.
322                  */
323                 flush_dcache_page_impl(page);
324         }
325
326 out:
327         put_cpu();
328 }
329
330 void __kprobes flush_icache_range(unsigned long start, unsigned long end)
331 {
332         /* Cheetah has coherent I-cache. */
333         if (tlb_type == spitfire) {
334                 unsigned long kaddr;
335
336                 for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE)
337                         __flush_icache_page(__get_phys(kaddr));
338         }
339 }
340
341 unsigned long page_to_pfn(struct page *page)
342 {
343         return (unsigned long) ((page - mem_map) + pfn_base);
344 }
345
346 struct page *pfn_to_page(unsigned long pfn)
347 {
348         return (mem_map + (pfn - pfn_base));
349 }
350
351 void show_mem(void)
352 {
353         printk("Mem-info:\n");
354         show_free_areas();
355         printk("Free swap:       %6ldkB\n",
356                nr_swap_pages << (PAGE_SHIFT-10));
357         printk("%ld pages of RAM\n", num_physpages);
358         printk("%d free pages\n", nr_free_pages());
359 }
360
361 void mmu_info(struct seq_file *m)
362 {
363         if (tlb_type == cheetah)
364                 seq_printf(m, "MMU Type\t: Cheetah\n");
365         else if (tlb_type == cheetah_plus)
366                 seq_printf(m, "MMU Type\t: Cheetah+\n");
367         else if (tlb_type == spitfire)
368                 seq_printf(m, "MMU Type\t: Spitfire\n");
369         else
370                 seq_printf(m, "MMU Type\t: ???\n");
371
372 #ifdef CONFIG_DEBUG_DCFLUSH
373         seq_printf(m, "DCPageFlushes\t: %d\n",
374                    atomic_read(&dcpage_flushes));
375 #ifdef CONFIG_SMP
376         seq_printf(m, "DCPageFlushesXC\t: %d\n",
377                    atomic_read(&dcpage_flushes_xcall));
378 #endif /* CONFIG_SMP */
379 #endif /* CONFIG_DEBUG_DCFLUSH */
380 }
381
382 struct linux_prom_translation {
383         unsigned long virt;
384         unsigned long size;
385         unsigned long data;
386 };
387
388 /* Exported for kernel TLB miss handling in ktlb.S */
389 struct linux_prom_translation prom_trans[512] __read_mostly;
390 unsigned int prom_trans_ents __read_mostly;
391 unsigned int swapper_pgd_zero __read_mostly;
392
393 extern unsigned long prom_boot_page;
394 extern void prom_remap(unsigned long physpage, unsigned long virtpage, int mmu_ihandle);
395 extern int prom_get_mmu_ihandle(void);
396 extern void register_prom_callbacks(void);
397
398 /* Exported for SMP bootup purposes. */
399 unsigned long kern_locked_tte_data;
400
401 /*
402  * Translate PROM's mapping we capture at boot time into physical address.
403  * The second parameter is only set from prom_callback() invocations.
404  */
405 unsigned long prom_virt_to_phys(unsigned long promva, int *error)
406 {
407         int i;
408
409         for (i = 0; i < prom_trans_ents; i++) {
410                 struct linux_prom_translation *p = &prom_trans[i];
411
412                 if (promva >= p->virt &&
413                     promva < (p->virt + p->size)) {
414                         unsigned long base = p->data & _PAGE_PADDR;
415
416                         if (error)
417                                 *error = 0;
418                         return base + (promva & (8192 - 1));
419                 }
420         }
421         if (error)
422                 *error = 1;
423         return 0UL;
424 }
425
426 /* The obp translations are saved based on 8k pagesize, since obp can
427  * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
428  * HI_OBP_ADDRESS range are handled in ktlb.S.
429  */
430 static inline int in_obp_range(unsigned long vaddr)
431 {
432         return (vaddr >= LOW_OBP_ADDRESS &&
433                 vaddr < HI_OBP_ADDRESS);
434 }
435
436 static int cmp_ptrans(const void *a, const void *b)
437 {
438         const struct linux_prom_translation *x = a, *y = b;
439
440         if (x->virt > y->virt)
441                 return 1;
442         if (x->virt < y->virt)
443                 return -1;
444         return 0;
445 }
446
447 /* Read OBP translations property into 'prom_trans[]'.  */
448 static void __init read_obp_translations(void)
449 {
450         int n, node, ents, first, last, i;
451
452         node = prom_finddevice("/virtual-memory");
453         n = prom_getproplen(node, "translations");
454         if (unlikely(n == 0 || n == -1)) {
455                 prom_printf("prom_mappings: Couldn't get size.\n");
456                 prom_halt();
457         }
458         if (unlikely(n > sizeof(prom_trans))) {
459                 prom_printf("prom_mappings: Size %Zd is too big.\n", n);
460                 prom_halt();
461         }
462
463         if ((n = prom_getproperty(node, "translations",
464                                   (char *)&prom_trans[0],
465                                   sizeof(prom_trans))) == -1) {
466                 prom_printf("prom_mappings: Couldn't get property.\n");
467                 prom_halt();
468         }
469
470         n = n / sizeof(struct linux_prom_translation);
471
472         ents = n;
473
474         sort(prom_trans, ents, sizeof(struct linux_prom_translation),
475              cmp_ptrans, NULL);
476
477         /* Now kick out all the non-OBP entries.  */
478         for (i = 0; i < ents; i++) {
479                 if (in_obp_range(prom_trans[i].virt))
480                         break;
481         }
482         first = i;
483         for (; i < ents; i++) {
484                 if (!in_obp_range(prom_trans[i].virt))
485                         break;
486         }
487         last = i;
488
489         for (i = 0; i < (last - first); i++) {
490                 struct linux_prom_translation *src = &prom_trans[i + first];
491                 struct linux_prom_translation *dest = &prom_trans[i];
492
493                 *dest = *src;
494         }
495         for (; i < ents; i++) {
496                 struct linux_prom_translation *dest = &prom_trans[i];
497                 dest->virt = dest->size = dest->data = 0x0UL;
498         }
499
500         prom_trans_ents = last - first;
501
502         if (tlb_type == spitfire) {
503                 /* Clear diag TTE bits. */
504                 for (i = 0; i < prom_trans_ents; i++)
505                         prom_trans[i].data &= ~0x0003fe0000000000UL;
506         }
507 }
508
509 static void __init remap_kernel(void)
510 {
511         unsigned long phys_page, tte_vaddr, tte_data;
512         int tlb_ent = sparc64_highest_locked_tlbent();
513
514         tte_vaddr = (unsigned long) KERNBASE;
515         phys_page = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
516         tte_data = (phys_page | (_PAGE_VALID | _PAGE_SZ4MB |
517                                  _PAGE_CP | _PAGE_CV | _PAGE_P |
518                                  _PAGE_L | _PAGE_W));
519
520         kern_locked_tte_data = tte_data;
521
522         /* Now lock us into the TLBs via OBP. */
523         prom_dtlb_load(tlb_ent, tte_data, tte_vaddr);
524         prom_itlb_load(tlb_ent, tte_data, tte_vaddr);
525         if (bigkernel) {
526                 tlb_ent -= 1;
527                 prom_dtlb_load(tlb_ent,
528                                tte_data + 0x400000, 
529                                tte_vaddr + 0x400000);
530                 prom_itlb_load(tlb_ent,
531                                tte_data + 0x400000, 
532                                tte_vaddr + 0x400000);
533         }
534         sparc64_highest_unlocked_tlb_ent = tlb_ent - 1;
535         if (tlb_type == cheetah_plus) {
536                 sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
537                                             CTX_CHEETAH_PLUS_NUC);
538                 sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
539                 sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
540         }
541 }
542
543
544 static void __init inherit_prom_mappings(void)
545 {
546         read_obp_translations();
547
548         /* Now fixup OBP's idea about where we really are mapped. */
549         prom_printf("Remapping the kernel... ");
550         remap_kernel();
551         prom_printf("done.\n");
552
553         prom_printf("Registering callbacks... ");
554         register_prom_callbacks();
555         prom_printf("done.\n");
556 }
557
558 void prom_world(int enter)
559 {
560         if (!enter)
561                 set_fs((mm_segment_t) { get_thread_current_ds() });
562
563         __asm__ __volatile__("flushw");
564 }
565
566 #ifdef DCACHE_ALIASING_POSSIBLE
567 void __flush_dcache_range(unsigned long start, unsigned long end)
568 {
569         unsigned long va;
570
571         if (tlb_type == spitfire) {
572                 int n = 0;
573
574                 for (va = start; va < end; va += 32) {
575                         spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
576                         if (++n >= 512)
577                                 break;
578                 }
579         } else {
580                 start = __pa(start);
581                 end = __pa(end);
582                 for (va = start; va < end; va += 32)
583                         __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
584                                              "membar #Sync"
585                                              : /* no outputs */
586                                              : "r" (va),
587                                                "i" (ASI_DCACHE_INVALIDATE));
588         }
589 }
590 #endif /* DCACHE_ALIASING_POSSIBLE */
591
592 /* If not locked, zap it. */
593 void __flush_tlb_all(void)
594 {
595         unsigned long pstate;
596         int i;
597
598         __asm__ __volatile__("flushw\n\t"
599                              "rdpr      %%pstate, %0\n\t"
600                              "wrpr      %0, %1, %%pstate"
601                              : "=r" (pstate)
602                              : "i" (PSTATE_IE));
603         if (tlb_type == spitfire) {
604                 for (i = 0; i < 64; i++) {
605                         /* Spitfire Errata #32 workaround */
606                         /* NOTE: Always runs on spitfire, so no
607                          *       cheetah+ page size encodings.
608                          */
609                         __asm__ __volatile__("stxa      %0, [%1] %2\n\t"
610                                              "flush     %%g6"
611                                              : /* No outputs */
612                                              : "r" (0),
613                                              "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
614
615                         if (!(spitfire_get_dtlb_data(i) & _PAGE_L)) {
616                                 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
617                                                      "membar #Sync"
618                                                      : /* no outputs */
619                                                      : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
620                                 spitfire_put_dtlb_data(i, 0x0UL);
621                         }
622
623                         /* Spitfire Errata #32 workaround */
624                         /* NOTE: Always runs on spitfire, so no
625                          *       cheetah+ page size encodings.
626                          */
627                         __asm__ __volatile__("stxa      %0, [%1] %2\n\t"
628                                              "flush     %%g6"
629                                              : /* No outputs */
630                                              : "r" (0),
631                                              "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
632
633                         if (!(spitfire_get_itlb_data(i) & _PAGE_L)) {
634                                 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
635                                                      "membar #Sync"
636                                                      : /* no outputs */
637                                                      : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
638                                 spitfire_put_itlb_data(i, 0x0UL);
639                         }
640                 }
641         } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
642                 cheetah_flush_dtlb_all();
643                 cheetah_flush_itlb_all();
644         }
645         __asm__ __volatile__("wrpr      %0, 0, %%pstate"
646                              : : "r" (pstate));
647 }
648
649 /* Caller does TLB context flushing on local CPU if necessary.
650  * The caller also ensures that CTX_VALID(mm->context) is false.
651  *
652  * We must be careful about boundary cases so that we never
653  * let the user have CTX 0 (nucleus) or we ever use a CTX
654  * version of zero (and thus NO_CONTEXT would not be caught
655  * by version mis-match tests in mmu_context.h).
656  */
657 void get_new_mmu_context(struct mm_struct *mm)
658 {
659         unsigned long ctx, new_ctx;
660         unsigned long orig_pgsz_bits;
661         
662
663         spin_lock(&ctx_alloc_lock);
664         orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
665         ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
666         new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
667         if (new_ctx >= (1 << CTX_NR_BITS)) {
668                 new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
669                 if (new_ctx >= ctx) {
670                         int i;
671                         new_ctx = (tlb_context_cache & CTX_VERSION_MASK) +
672                                 CTX_FIRST_VERSION;
673                         if (new_ctx == 1)
674                                 new_ctx = CTX_FIRST_VERSION;
675
676                         /* Don't call memset, for 16 entries that's just
677                          * plain silly...
678                          */
679                         mmu_context_bmap[0] = 3;
680                         mmu_context_bmap[1] = 0;
681                         mmu_context_bmap[2] = 0;
682                         mmu_context_bmap[3] = 0;
683                         for (i = 4; i < CTX_BMAP_SLOTS; i += 4) {
684                                 mmu_context_bmap[i + 0] = 0;
685                                 mmu_context_bmap[i + 1] = 0;
686                                 mmu_context_bmap[i + 2] = 0;
687                                 mmu_context_bmap[i + 3] = 0;
688                         }
689                         goto out;
690                 }
691         }
692         mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
693         new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
694 out:
695         tlb_context_cache = new_ctx;
696         mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
697         spin_unlock(&ctx_alloc_lock);
698 }
699
700 void sparc_ultra_dump_itlb(void)
701 {
702         int slot;
703
704         if (tlb_type == spitfire) {
705                 printk ("Contents of itlb: ");
706                 for (slot = 0; slot < 14; slot++) printk ("    ");
707                 printk ("%2x:%016lx,%016lx\n",
708                         0,
709                         spitfire_get_itlb_tag(0), spitfire_get_itlb_data(0));
710                 for (slot = 1; slot < 64; slot+=3) {
711                         printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx %2x:%016lx,%016lx\n", 
712                                 slot,
713                                 spitfire_get_itlb_tag(slot), spitfire_get_itlb_data(slot),
714                                 slot+1,
715                                 spitfire_get_itlb_tag(slot+1), spitfire_get_itlb_data(slot+1),
716                                 slot+2,
717                                 spitfire_get_itlb_tag(slot+2), spitfire_get_itlb_data(slot+2));
718                 }
719         } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
720                 printk ("Contents of itlb0:\n");
721                 for (slot = 0; slot < 16; slot+=2) {
722                         printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
723                                 slot,
724                                 cheetah_get_litlb_tag(slot), cheetah_get_litlb_data(slot),
725                                 slot+1,
726                                 cheetah_get_litlb_tag(slot+1), cheetah_get_litlb_data(slot+1));
727                 }
728                 printk ("Contents of itlb2:\n");
729                 for (slot = 0; slot < 128; slot+=2) {
730                         printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
731                                 slot,
732                                 cheetah_get_itlb_tag(slot), cheetah_get_itlb_data(slot),
733                                 slot+1,
734                                 cheetah_get_itlb_tag(slot+1), cheetah_get_itlb_data(slot+1));
735                 }
736         }
737 }
738
739 void sparc_ultra_dump_dtlb(void)
740 {
741         int slot;
742
743         if (tlb_type == spitfire) {
744                 printk ("Contents of dtlb: ");
745                 for (slot = 0; slot < 14; slot++) printk ("    ");
746                 printk ("%2x:%016lx,%016lx\n", 0,
747                         spitfire_get_dtlb_tag(0), spitfire_get_dtlb_data(0));
748                 for (slot = 1; slot < 64; slot+=3) {
749                         printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx %2x:%016lx,%016lx\n", 
750                                 slot,
751                                 spitfire_get_dtlb_tag(slot), spitfire_get_dtlb_data(slot),
752                                 slot+1,
753                                 spitfire_get_dtlb_tag(slot+1), spitfire_get_dtlb_data(slot+1),
754                                 slot+2,
755                                 spitfire_get_dtlb_tag(slot+2), spitfire_get_dtlb_data(slot+2));
756                 }
757         } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
758                 printk ("Contents of dtlb0:\n");
759                 for (slot = 0; slot < 16; slot+=2) {
760                         printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
761                                 slot,
762                                 cheetah_get_ldtlb_tag(slot), cheetah_get_ldtlb_data(slot),
763                                 slot+1,
764                                 cheetah_get_ldtlb_tag(slot+1), cheetah_get_ldtlb_data(slot+1));
765                 }
766                 printk ("Contents of dtlb2:\n");
767                 for (slot = 0; slot < 512; slot+=2) {
768                         printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
769                                 slot,
770                                 cheetah_get_dtlb_tag(slot, 2), cheetah_get_dtlb_data(slot, 2),
771                                 slot+1,
772                                 cheetah_get_dtlb_tag(slot+1, 2), cheetah_get_dtlb_data(slot+1, 2));
773                 }
774                 if (tlb_type == cheetah_plus) {
775                         printk ("Contents of dtlb3:\n");
776                         for (slot = 0; slot < 512; slot+=2) {
777                                 printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
778                                         slot,
779                                         cheetah_get_dtlb_tag(slot, 3), cheetah_get_dtlb_data(slot, 3),
780                                         slot+1,
781                                         cheetah_get_dtlb_tag(slot+1, 3), cheetah_get_dtlb_data(slot+1, 3));
782                         }
783                 }
784         }
785 }
786
787 static inline void spitfire_errata32(void)
788 {
789         __asm__ __volatile__("stxa      %0, [%1] %2\n\t"
790                              "flush     %%g6"
791                              : /* No outputs */
792                              : "r" (0),
793                                "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
794 }
795
796 extern unsigned long cmdline_memory_size;
797
798 unsigned long __init bootmem_init(unsigned long *pages_avail)
799 {
800         unsigned long bootmap_size, start_pfn, end_pfn;
801         unsigned long end_of_phys_memory = 0UL;
802         unsigned long bootmap_pfn, bytes_avail, size;
803         int i;
804
805 #ifdef CONFIG_DEBUG_BOOTMEM
806         prom_printf("bootmem_init: Scan pavail, ");
807 #endif
808
809         bytes_avail = 0UL;
810         for (i = 0; i < pavail_ents; i++) {
811                 end_of_phys_memory = pavail[i].phys_addr +
812                         pavail[i].reg_size;
813                 bytes_avail += pavail[i].reg_size;
814                 if (cmdline_memory_size) {
815                         if (bytes_avail > cmdline_memory_size) {
816                                 unsigned long slack = bytes_avail - cmdline_memory_size;
817
818                                 bytes_avail -= slack;
819                                 end_of_phys_memory -= slack;
820
821                                 pavail[i].reg_size -= slack;
822                                 if ((long)pavail[i].reg_size <= 0L) {
823                                         pavail[i].phys_addr = 0xdeadbeefUL;
824                                         pavail[i].reg_size = 0UL;
825                                         pavail_ents = i;
826                                 } else {
827                                         pavail[i+1].reg_size = 0Ul;
828                                         pavail[i+1].phys_addr = 0xdeadbeefUL;
829                                         pavail_ents = i + 1;
830                                 }
831                                 break;
832                         }
833                 }
834         }
835
836         *pages_avail = bytes_avail >> PAGE_SHIFT;
837
838         /* Start with page aligned address of last symbol in kernel
839          * image.  The kernel is hard mapped below PAGE_OFFSET in a
840          * 4MB locked TLB translation.
841          */
842         start_pfn = PAGE_ALIGN(kern_base + kern_size) >> PAGE_SHIFT;
843
844         bootmap_pfn = start_pfn;
845
846         end_pfn = end_of_phys_memory >> PAGE_SHIFT;
847
848 #ifdef CONFIG_BLK_DEV_INITRD
849         /* Now have to check initial ramdisk, so that bootmap does not overwrite it */
850         if (sparc_ramdisk_image || sparc_ramdisk_image64) {
851                 unsigned long ramdisk_image = sparc_ramdisk_image ?
852                         sparc_ramdisk_image : sparc_ramdisk_image64;
853                 if (ramdisk_image >= (unsigned long)_end - 2 * PAGE_SIZE)
854                         ramdisk_image -= KERNBASE;
855                 initrd_start = ramdisk_image + phys_base;
856                 initrd_end = initrd_start + sparc_ramdisk_size;
857                 if (initrd_end > end_of_phys_memory) {
858                         printk(KERN_CRIT "initrd extends beyond end of memory "
859                                          "(0x%016lx > 0x%016lx)\ndisabling initrd\n",
860                                initrd_end, end_of_phys_memory);
861                         initrd_start = 0;
862                 }
863                 if (initrd_start) {
864                         if (initrd_start >= (start_pfn << PAGE_SHIFT) &&
865                             initrd_start < (start_pfn << PAGE_SHIFT) + 2 * PAGE_SIZE)
866                                 bootmap_pfn = PAGE_ALIGN (initrd_end) >> PAGE_SHIFT;
867                 }
868         }
869 #endif  
870         /* Initialize the boot-time allocator. */
871         max_pfn = max_low_pfn = end_pfn;
872         min_low_pfn = pfn_base;
873
874 #ifdef CONFIG_DEBUG_BOOTMEM
875         prom_printf("init_bootmem(min[%lx], bootmap[%lx], max[%lx])\n",
876                     min_low_pfn, bootmap_pfn, max_low_pfn);
877 #endif
878         bootmap_size = init_bootmem_node(NODE_DATA(0), bootmap_pfn, pfn_base, end_pfn);
879
880         /* Now register the available physical memory with the
881          * allocator.
882          */
883         for (i = 0; i < pavail_ents; i++) {
884 #ifdef CONFIG_DEBUG_BOOTMEM
885                 prom_printf("free_bootmem(pavail:%d): base[%lx] size[%lx]\n",
886                             i, pavail[i].phys_addr, pavail[i].reg_size);
887 #endif
888                 free_bootmem(pavail[i].phys_addr, pavail[i].reg_size);
889         }
890
891 #ifdef CONFIG_BLK_DEV_INITRD
892         if (initrd_start) {
893                 size = initrd_end - initrd_start;
894
895                 /* Resert the initrd image area. */
896 #ifdef CONFIG_DEBUG_BOOTMEM
897                 prom_printf("reserve_bootmem(initrd): base[%llx] size[%lx]\n",
898                         initrd_start, initrd_end);
899 #endif
900                 reserve_bootmem(initrd_start, size);
901                 *pages_avail -= PAGE_ALIGN(size) >> PAGE_SHIFT;
902
903                 initrd_start += PAGE_OFFSET;
904                 initrd_end += PAGE_OFFSET;
905         }
906 #endif
907         /* Reserve the kernel text/data/bss. */
908 #ifdef CONFIG_DEBUG_BOOTMEM
909         prom_printf("reserve_bootmem(kernel): base[%lx] size[%lx]\n", kern_base, kern_size);
910 #endif
911         reserve_bootmem(kern_base, kern_size);
912         *pages_avail -= PAGE_ALIGN(kern_size) >> PAGE_SHIFT;
913
914         /* Reserve the bootmem map.   We do not account for it
915          * in pages_avail because we will release that memory
916          * in free_all_bootmem.
917          */
918         size = bootmap_size;
919 #ifdef CONFIG_DEBUG_BOOTMEM
920         prom_printf("reserve_bootmem(bootmap): base[%lx] size[%lx]\n",
921                     (bootmap_pfn << PAGE_SHIFT), size);
922 #endif
923         reserve_bootmem((bootmap_pfn << PAGE_SHIFT), size);
924         *pages_avail -= PAGE_ALIGN(size) >> PAGE_SHIFT;
925
926         return end_pfn;
927 }
928
929 #ifdef CONFIG_DEBUG_PAGEALLOC
930 static unsigned long kernel_map_range(unsigned long pstart, unsigned long pend, pgprot_t prot)
931 {
932         unsigned long vstart = PAGE_OFFSET + pstart;
933         unsigned long vend = PAGE_OFFSET + pend;
934         unsigned long alloc_bytes = 0UL;
935
936         if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
937                 prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
938                             vstart, vend);
939                 prom_halt();
940         }
941
942         while (vstart < vend) {
943                 unsigned long this_end, paddr = __pa(vstart);
944                 pgd_t *pgd = pgd_offset_k(vstart);
945                 pud_t *pud;
946                 pmd_t *pmd;
947                 pte_t *pte;
948
949                 pud = pud_offset(pgd, vstart);
950                 if (pud_none(*pud)) {
951                         pmd_t *new;
952
953                         new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
954                         alloc_bytes += PAGE_SIZE;
955                         pud_populate(&init_mm, pud, new);
956                 }
957
958                 pmd = pmd_offset(pud, vstart);
959                 if (!pmd_present(*pmd)) {
960                         pte_t *new;
961
962                         new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
963                         alloc_bytes += PAGE_SIZE;
964                         pmd_populate_kernel(&init_mm, pmd, new);
965                 }
966
967                 pte = pte_offset_kernel(pmd, vstart);
968                 this_end = (vstart + PMD_SIZE) & PMD_MASK;
969                 if (this_end > vend)
970                         this_end = vend;
971
972                 while (vstart < this_end) {
973                         pte_val(*pte) = (paddr | pgprot_val(prot));
974
975                         vstart += PAGE_SIZE;
976                         paddr += PAGE_SIZE;
977                         pte++;
978                 }
979         }
980
981         return alloc_bytes;
982 }
983
984 static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
985 static int pall_ents __initdata;
986
987 extern unsigned int kvmap_linear_patch[1];
988
989 static void __init kernel_physical_mapping_init(void)
990 {
991         unsigned long i, mem_alloced = 0UL;
992
993         read_obp_memory("reg", &pall[0], &pall_ents);
994
995         for (i = 0; i < pall_ents; i++) {
996                 unsigned long phys_start, phys_end;
997
998                 phys_start = pall[i].phys_addr;
999                 phys_end = phys_start + pall[i].reg_size;
1000                 mem_alloced += kernel_map_range(phys_start, phys_end,
1001                                                 PAGE_KERNEL);
1002         }
1003
1004         printk("Allocated %ld bytes for kernel page tables.\n",
1005                mem_alloced);
1006
1007         kvmap_linear_patch[0] = 0x01000000; /* nop */
1008         flushi(&kvmap_linear_patch[0]);
1009
1010         __flush_tlb_all();
1011 }
1012
1013 void kernel_map_pages(struct page *page, int numpages, int enable)
1014 {
1015         unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
1016         unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
1017
1018         kernel_map_range(phys_start, phys_end,
1019                          (enable ? PAGE_KERNEL : __pgprot(0)));
1020
1021         flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
1022                                PAGE_OFFSET + phys_end);
1023
1024         /* we should perform an IPI and flush all tlbs,
1025          * but that can deadlock->flush only current cpu.
1026          */
1027         __flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
1028                                  PAGE_OFFSET + phys_end);
1029 }
1030 #endif
1031
1032 unsigned long __init find_ecache_flush_span(unsigned long size)
1033 {
1034         int i;
1035
1036         for (i = 0; i < pavail_ents; i++) {
1037                 if (pavail[i].reg_size >= size)
1038                         return pavail[i].phys_addr;
1039         }
1040
1041         return ~0UL;
1042 }
1043
1044 /* paging_init() sets up the page tables */
1045
1046 extern void cheetah_ecache_flush_init(void);
1047
1048 static unsigned long last_valid_pfn;
1049 pgd_t swapper_pg_dir[2048];
1050
1051 void __init paging_init(void)
1052 {
1053         unsigned long end_pfn, pages_avail, shift;
1054         unsigned long real_end, i;
1055
1056         /* Find available physical memory... */
1057         read_obp_memory("available", &pavail[0], &pavail_ents);
1058
1059         phys_base = 0xffffffffffffffffUL;
1060         for (i = 0; i < pavail_ents; i++)
1061                 phys_base = min(phys_base, pavail[i].phys_addr);
1062
1063         pfn_base = phys_base >> PAGE_SHIFT;
1064
1065         kern_base = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
1066         kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
1067
1068         set_bit(0, mmu_context_bmap);
1069
1070         shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
1071
1072         real_end = (unsigned long)_end;
1073         if ((real_end > ((unsigned long)KERNBASE + 0x400000)))
1074                 bigkernel = 1;
1075         if ((real_end > ((unsigned long)KERNBASE + 0x800000))) {
1076                 prom_printf("paging_init: Kernel > 8MB, too large.\n");
1077                 prom_halt();
1078         }
1079
1080         /* Set kernel pgd to upper alias so physical page computations
1081          * work.
1082          */
1083         init_mm.pgd += ((shift) / (sizeof(pgd_t)));
1084         
1085         memset(swapper_low_pmd_dir, 0, sizeof(swapper_low_pmd_dir));
1086
1087         /* Now can init the kernel/bad page tables. */
1088         pud_set(pud_offset(&swapper_pg_dir[0], 0),
1089                 swapper_low_pmd_dir + (shift / sizeof(pgd_t)));
1090         
1091         swapper_pgd_zero = pgd_val(swapper_pg_dir[0]);
1092         
1093         inherit_prom_mappings();
1094         
1095         /* Ok, we can use our TLB miss and window trap handlers safely.
1096          * We need to do a quick peek here to see if we are on StarFire
1097          * or not, so setup_tba can setup the IRQ globals correctly (it
1098          * needs to get the hard smp processor id correctly).
1099          */
1100         {
1101                 extern void setup_tba(int);
1102                 setup_tba(this_is_starfire);
1103         }
1104
1105         __flush_tlb_all();
1106
1107         /* Setup bootmem... */
1108         pages_avail = 0;
1109         last_valid_pfn = end_pfn = bootmem_init(&pages_avail);
1110
1111 #ifdef CONFIG_DEBUG_PAGEALLOC
1112         kernel_physical_mapping_init();
1113 #endif
1114
1115         {
1116                 unsigned long zones_size[MAX_NR_ZONES];
1117                 unsigned long zholes_size[MAX_NR_ZONES];
1118                 unsigned long npages;
1119                 int znum;
1120
1121                 for (znum = 0; znum < MAX_NR_ZONES; znum++)
1122                         zones_size[znum] = zholes_size[znum] = 0;
1123
1124                 npages = end_pfn - pfn_base;
1125                 zones_size[ZONE_DMA] = npages;
1126                 zholes_size[ZONE_DMA] = npages - pages_avail;
1127
1128                 free_area_init_node(0, &contig_page_data, zones_size,
1129                                     phys_base >> PAGE_SHIFT, zholes_size);
1130         }
1131
1132         device_scan();
1133 }
1134
1135 static void __init taint_real_pages(void)
1136 {
1137         int i;
1138
1139         read_obp_memory("available", &pavail_rescan[0], &pavail_rescan_ents);
1140
1141         /* Find changes discovered in the physmem available rescan and
1142          * reserve the lost portions in the bootmem maps.
1143          */
1144         for (i = 0; i < pavail_ents; i++) {
1145                 unsigned long old_start, old_end;
1146
1147                 old_start = pavail[i].phys_addr;
1148                 old_end = old_start +
1149                         pavail[i].reg_size;
1150                 while (old_start < old_end) {
1151                         int n;
1152
1153                         for (n = 0; pavail_rescan_ents; n++) {
1154                                 unsigned long new_start, new_end;
1155
1156                                 new_start = pavail_rescan[n].phys_addr;
1157                                 new_end = new_start +
1158                                         pavail_rescan[n].reg_size;
1159
1160                                 if (new_start <= old_start &&
1161                                     new_end >= (old_start + PAGE_SIZE)) {
1162                                         set_bit(old_start >> 22,
1163                                                 sparc64_valid_addr_bitmap);
1164                                         goto do_next_page;
1165                                 }
1166                         }
1167                         reserve_bootmem(old_start, PAGE_SIZE);
1168
1169                 do_next_page:
1170                         old_start += PAGE_SIZE;
1171                 }
1172         }
1173 }
1174
1175 void __init mem_init(void)
1176 {
1177         unsigned long codepages, datapages, initpages;
1178         unsigned long addr, last;
1179         int i;
1180
1181         i = last_valid_pfn >> ((22 - PAGE_SHIFT) + 6);
1182         i += 1;
1183         sparc64_valid_addr_bitmap = (unsigned long *) alloc_bootmem(i << 3);
1184         if (sparc64_valid_addr_bitmap == NULL) {
1185                 prom_printf("mem_init: Cannot alloc valid_addr_bitmap.\n");
1186                 prom_halt();
1187         }
1188         memset(sparc64_valid_addr_bitmap, 0, i << 3);
1189
1190         addr = PAGE_OFFSET + kern_base;
1191         last = PAGE_ALIGN(kern_size) + addr;
1192         while (addr < last) {
1193                 set_bit(__pa(addr) >> 22, sparc64_valid_addr_bitmap);
1194                 addr += PAGE_SIZE;
1195         }
1196
1197         taint_real_pages();
1198
1199         max_mapnr = last_valid_pfn - pfn_base;
1200         high_memory = __va(last_valid_pfn << PAGE_SHIFT);
1201
1202 #ifdef CONFIG_DEBUG_BOOTMEM
1203         prom_printf("mem_init: Calling free_all_bootmem().\n");
1204 #endif
1205         totalram_pages = num_physpages = free_all_bootmem() - 1;
1206
1207         /*
1208          * Set up the zero page, mark it reserved, so that page count
1209          * is not manipulated when freeing the page from user ptes.
1210          */
1211         mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
1212         if (mem_map_zero == NULL) {
1213                 prom_printf("paging_init: Cannot alloc zero page.\n");
1214                 prom_halt();
1215         }
1216         SetPageReserved(mem_map_zero);
1217
1218         codepages = (((unsigned long) _etext) - ((unsigned long) _start));
1219         codepages = PAGE_ALIGN(codepages) >> PAGE_SHIFT;
1220         datapages = (((unsigned long) _edata) - ((unsigned long) _etext));
1221         datapages = PAGE_ALIGN(datapages) >> PAGE_SHIFT;
1222         initpages = (((unsigned long) __init_end) - ((unsigned long) __init_begin));
1223         initpages = PAGE_ALIGN(initpages) >> PAGE_SHIFT;
1224
1225         printk("Memory: %uk available (%ldk kernel code, %ldk data, %ldk init) [%016lx,%016lx]\n",
1226                nr_free_pages() << (PAGE_SHIFT-10),
1227                codepages << (PAGE_SHIFT-10),
1228                datapages << (PAGE_SHIFT-10), 
1229                initpages << (PAGE_SHIFT-10), 
1230                PAGE_OFFSET, (last_valid_pfn << PAGE_SHIFT));
1231
1232         if (tlb_type == cheetah || tlb_type == cheetah_plus)
1233                 cheetah_ecache_flush_init();
1234 }
1235
1236 void free_initmem(void)
1237 {
1238         unsigned long addr, initend;
1239
1240         /*
1241          * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
1242          */
1243         addr = PAGE_ALIGN((unsigned long)(__init_begin));
1244         initend = (unsigned long)(__init_end) & PAGE_MASK;
1245         for (; addr < initend; addr += PAGE_SIZE) {
1246                 unsigned long page;
1247                 struct page *p;
1248
1249                 page = (addr +
1250                         ((unsigned long) __va(kern_base)) -
1251                         ((unsigned long) KERNBASE));
1252                 memset((void *)addr, 0xcc, PAGE_SIZE);
1253                 p = virt_to_page(page);
1254
1255                 ClearPageReserved(p);
1256                 set_page_count(p, 1);
1257                 __free_page(p);
1258                 num_physpages++;
1259                 totalram_pages++;
1260         }
1261 }
1262
1263 #ifdef CONFIG_BLK_DEV_INITRD
1264 void free_initrd_mem(unsigned long start, unsigned long end)
1265 {
1266         if (start < end)
1267                 printk ("Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
1268         for (; start < end; start += PAGE_SIZE) {
1269                 struct page *p = virt_to_page(start);
1270
1271                 ClearPageReserved(p);
1272                 set_page_count(p, 1);
1273                 __free_page(p);
1274                 num_physpages++;
1275                 totalram_pages++;
1276         }
1277 }
1278 #endif