Introduce flags for reserve_bootmem()
[safe/jmp/linux-2.6] / arch / sh / kernel / setup.c
1 /*
2  * arch/sh/kernel/setup.c
3  *
4  * This file handles the architecture-dependent parts of initialization
5  *
6  *  Copyright (C) 1999  Niibe Yutaka
7  *  Copyright (C) 2002 - 2007 Paul Mundt
8  */
9 #include <linux/screen_info.h>
10 #include <linux/ioport.h>
11 #include <linux/init.h>
12 #include <linux/initrd.h>
13 #include <linux/bootmem.h>
14 #include <linux/console.h>
15 #include <linux/seq_file.h>
16 #include <linux/root_dev.h>
17 #include <linux/utsname.h>
18 #include <linux/nodemask.h>
19 #include <linux/cpu.h>
20 #include <linux/pfn.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/kexec.h>
24 #include <linux/module.h>
25 #include <linux/smp.h>
26 #include <asm/uaccess.h>
27 #include <asm/io.h>
28 #include <asm/page.h>
29 #include <asm/elf.h>
30 #include <asm/sections.h>
31 #include <asm/irq.h>
32 #include <asm/setup.h>
33 #include <asm/clock.h>
34 #include <asm/mmu_context.h>
35
36 /*
37  * Initialize loops_per_jiffy as 10000000 (1000MIPS).
38  * This value will be used at the very early stage of serial setup.
39  * The bigger value means no problem.
40  */
41 struct sh_cpuinfo cpu_data[NR_CPUS] __read_mostly = {
42         [0] = {
43                 .type                   = CPU_SH_NONE,
44                 .loops_per_jiffy        = 10000000,
45         },
46 };
47 EXPORT_SYMBOL(cpu_data);
48
49 /*
50  * The machine vector. First entry in .machvec.init, or clobbered by
51  * sh_mv= on the command line, prior to .machvec.init teardown.
52  */
53 struct sh_machine_vector sh_mv = { .mv_name = "generic", };
54
55 #ifdef CONFIG_VT
56 struct screen_info screen_info;
57 #endif
58
59 extern int root_mountflags;
60
61 #define RAMDISK_IMAGE_START_MASK        0x07FF
62 #define RAMDISK_PROMPT_FLAG             0x8000
63 #define RAMDISK_LOAD_FLAG               0x4000
64
65 static char __initdata command_line[COMMAND_LINE_SIZE] = { 0, };
66
67 static struct resource code_resource = {
68         .name = "Kernel code",
69         .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
70 };
71
72 static struct resource data_resource = {
73         .name = "Kernel data",
74         .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
75 };
76
77 unsigned long memory_start;
78 EXPORT_SYMBOL(memory_start);
79 unsigned long memory_end = 0;
80 EXPORT_SYMBOL(memory_end);
81
82 int l1i_cache_shape, l1d_cache_shape, l2_cache_shape;
83
84 static int __init early_parse_mem(char *p)
85 {
86         unsigned long size;
87
88         memory_start = (unsigned long)__va(__MEMORY_START);
89         size = memparse(p, &p);
90
91         if (size > __MEMORY_SIZE) {
92                 static char msg[] __initdata = KERN_ERR
93                         "Using mem= to increase the size of kernel memory "
94                         "is not allowed.\n"
95                         "  Recompile the kernel with the correct value for "
96                         "CONFIG_MEMORY_SIZE.\n";
97                 printk(msg);
98                 return 0;
99         }
100
101         memory_end = memory_start + size;
102
103         return 0;
104 }
105 early_param("mem", early_parse_mem);
106
107 /*
108  * Register fully available low RAM pages with the bootmem allocator.
109  */
110 static void __init register_bootmem_low_pages(void)
111 {
112         unsigned long curr_pfn, last_pfn, pages;
113
114         /*
115          * We are rounding up the start address of usable memory:
116          */
117         curr_pfn = PFN_UP(__MEMORY_START);
118
119         /*
120          * ... and at the end of the usable range downwards:
121          */
122         last_pfn = PFN_DOWN(__pa(memory_end));
123
124         if (last_pfn > max_low_pfn)
125                 last_pfn = max_low_pfn;
126
127         pages = last_pfn - curr_pfn;
128         free_bootmem(PFN_PHYS(curr_pfn), PFN_PHYS(pages));
129 }
130
131 #ifdef CONFIG_KEXEC
132 static void __init reserve_crashkernel(void)
133 {
134         unsigned long long free_mem;
135         unsigned long long crash_size, crash_base;
136         int ret;
137
138         free_mem = ((unsigned long long)max_low_pfn - min_low_pfn) << PAGE_SHIFT;
139
140         ret = parse_crashkernel(boot_command_line, free_mem,
141                         &crash_size, &crash_base);
142         if (ret == 0 && crash_size) {
143                 if (crash_base > 0) {
144                         printk(KERN_INFO "Reserving %ldMB of memory at %ldMB "
145                                         "for crashkernel (System RAM: %ldMB)\n",
146                                         (unsigned long)(crash_size >> 20),
147                                         (unsigned long)(crash_base >> 20),
148                                         (unsigned long)(free_mem >> 20));
149                         crashk_res.start = crash_base;
150                         crashk_res.end   = crash_base + crash_size - 1;
151                         reserve_bootmem(crash_base, crash_size,
152                                         BOOTMEM_DEFAULT);
153                 } else
154                         printk(KERN_INFO "crashkernel reservation failed - "
155                                         "you have to specify a base address\n");
156         }
157 }
158 #else
159 static inline void __init reserve_crashkernel(void)
160 {}
161 #endif
162
163 void __init setup_bootmem_allocator(unsigned long free_pfn)
164 {
165         unsigned long bootmap_size;
166
167         /*
168          * Find a proper area for the bootmem bitmap. After this
169          * bootstrap step all allocations (until the page allocator
170          * is intact) must be done via bootmem_alloc().
171          */
172         bootmap_size = init_bootmem_node(NODE_DATA(0), free_pfn,
173                                          min_low_pfn, max_low_pfn);
174
175         add_active_range(0, min_low_pfn, max_low_pfn);
176         register_bootmem_low_pages();
177
178         node_set_online(0);
179
180         /*
181          * Reserve the kernel text and
182          * Reserve the bootmem bitmap. We do this in two steps (first step
183          * was init_bootmem()), because this catches the (definitely buggy)
184          * case of us accidentally initializing the bootmem allocator with
185          * an invalid RAM area.
186          */
187         reserve_bootmem(__MEMORY_START+PAGE_SIZE,
188                 (PFN_PHYS(free_pfn)+bootmap_size+PAGE_SIZE-1)-__MEMORY_START,
189                 BOOTMEM_DEFAULT);
190
191         /*
192          * reserve physical page 0 - it's a special BIOS page on many boxes,
193          * enabling clean reboots, SMP operation, laptop functions.
194          */
195         reserve_bootmem(__MEMORY_START, PAGE_SIZE, BOOTMEM_DEFAULT);
196
197         sparse_memory_present_with_active_regions(0);
198
199 #ifdef CONFIG_BLK_DEV_INITRD
200         ROOT_DEV = Root_RAM0;
201
202         if (LOADER_TYPE && INITRD_START) {
203                 if (INITRD_START + INITRD_SIZE <= (max_low_pfn << PAGE_SHIFT)) {
204                         reserve_bootmem(INITRD_START + __MEMORY_START,
205                                         INITRD_SIZE, BOOTMEM_DEFAULT);
206                         initrd_start = INITRD_START + PAGE_OFFSET +
207                                         __MEMORY_START;
208                         initrd_end = initrd_start + INITRD_SIZE;
209                 } else {
210                         printk("initrd extends beyond end of memory "
211                             "(0x%08lx > 0x%08lx)\ndisabling initrd\n",
212                                     INITRD_START + INITRD_SIZE,
213                                     max_low_pfn << PAGE_SHIFT);
214                         initrd_start = 0;
215                 }
216         }
217 #endif
218
219         reserve_crashkernel();
220 }
221
222 #ifndef CONFIG_NEED_MULTIPLE_NODES
223 static void __init setup_memory(void)
224 {
225         unsigned long start_pfn;
226
227         /*
228          * Partially used pages are not usable - thus
229          * we are rounding upwards:
230          */
231         start_pfn = PFN_UP(__pa(_end));
232         setup_bootmem_allocator(start_pfn);
233 }
234 #else
235 extern void __init setup_memory(void);
236 #endif
237
238 void __init setup_arch(char **cmdline_p)
239 {
240         enable_mmu();
241
242         ROOT_DEV = old_decode_dev(ORIG_ROOT_DEV);
243
244 #ifdef CONFIG_BLK_DEV_RAM
245         rd_image_start = RAMDISK_FLAGS & RAMDISK_IMAGE_START_MASK;
246         rd_prompt = ((RAMDISK_FLAGS & RAMDISK_PROMPT_FLAG) != 0);
247         rd_doload = ((RAMDISK_FLAGS & RAMDISK_LOAD_FLAG) != 0);
248 #endif
249
250         if (!MOUNT_ROOT_RDONLY)
251                 root_mountflags &= ~MS_RDONLY;
252         init_mm.start_code = (unsigned long) _text;
253         init_mm.end_code = (unsigned long) _etext;
254         init_mm.end_data = (unsigned long) _edata;
255         init_mm.brk = (unsigned long) _end;
256
257         code_resource.start = virt_to_phys(_text);
258         code_resource.end = virt_to_phys(_etext)-1;
259         data_resource.start = virt_to_phys(_etext);
260         data_resource.end = virt_to_phys(_edata)-1;
261
262         memory_start = (unsigned long)__va(__MEMORY_START);
263         if (!memory_end)
264                 memory_end = memory_start + __MEMORY_SIZE;
265
266 #ifdef CONFIG_CMDLINE_BOOL
267         strlcpy(command_line, CONFIG_CMDLINE, sizeof(command_line));
268 #else
269         strlcpy(command_line, COMMAND_LINE, sizeof(command_line));
270 #endif
271
272         /* Save unparsed command line copy for /proc/cmdline */
273         memcpy(boot_command_line, command_line, COMMAND_LINE_SIZE);
274         *cmdline_p = command_line;
275
276         parse_early_param();
277
278         sh_mv_setup();
279
280         /*
281          * Find the highest page frame number we have available
282          */
283         max_pfn = PFN_DOWN(__pa(memory_end));
284
285         /*
286          * Determine low and high memory ranges:
287          */
288         max_low_pfn = max_pfn;
289         min_low_pfn = __MEMORY_START >> PAGE_SHIFT;
290
291         nodes_clear(node_online_map);
292
293         /* Setup bootmem with available RAM */
294         setup_memory();
295         sparse_init();
296
297 #ifdef CONFIG_DUMMY_CONSOLE
298         conswitchp = &dummy_con;
299 #endif
300
301         /* Perform the machine specific initialisation */
302         if (likely(sh_mv.mv_setup))
303                 sh_mv.mv_setup(cmdline_p);
304
305         paging_init();
306
307 #ifdef CONFIG_SMP
308         plat_smp_setup();
309 #endif
310 }
311
312 static const char *cpu_name[] = {
313         [CPU_SH7203]    = "SH7203",     [CPU_SH7263]    = "SH7263",
314         [CPU_SH7206]    = "SH7206",     [CPU_SH7619]    = "SH7619",
315         [CPU_SH7705]    = "SH7705",     [CPU_SH7706]    = "SH7706",
316         [CPU_SH7707]    = "SH7707",     [CPU_SH7708]    = "SH7708",
317         [CPU_SH7709]    = "SH7709",     [CPU_SH7710]    = "SH7710",
318         [CPU_SH7712]    = "SH7712",     [CPU_SH7720]    = "SH7720",
319         [CPU_SH7721]    = "SH7721",     [CPU_SH7729]    = "SH7729",
320         [CPU_SH7750]    = "SH7750",     [CPU_SH7750S]   = "SH7750S",
321         [CPU_SH7750R]   = "SH7750R",    [CPU_SH7751]    = "SH7751",
322         [CPU_SH7751R]   = "SH7751R",    [CPU_SH7760]    = "SH7760",
323         [CPU_SH4_202]   = "SH4-202",    [CPU_SH4_501]   = "SH4-501",
324         [CPU_SH7763]    = "SH7763",     [CPU_SH7770]    = "SH7770",
325         [CPU_SH7780]    = "SH7780",     [CPU_SH7781]    = "SH7781",
326         [CPU_SH7343]    = "SH7343",     [CPU_SH7785]    = "SH7785",
327         [CPU_SH7722]    = "SH7722",     [CPU_SHX3]      = "SH-X3",
328         [CPU_SH5_101]   = "SH5-101",    [CPU_SH5_103]   = "SH5-103",
329         [CPU_SH_NONE]   = "Unknown"
330 };
331
332 const char *get_cpu_subtype(struct sh_cpuinfo *c)
333 {
334         return cpu_name[c->type];
335 }
336
337 #ifdef CONFIG_PROC_FS
338 /* Symbolic CPU flags, keep in sync with asm/cpu-features.h */
339 static const char *cpu_flags[] = {
340         "none", "fpu", "p2flush", "mmuassoc", "dsp", "perfctr",
341         "ptea", "llsc", "l2", "op32", NULL
342 };
343
344 static void show_cpuflags(struct seq_file *m, struct sh_cpuinfo *c)
345 {
346         unsigned long i;
347
348         seq_printf(m, "cpu flags\t:");
349
350         if (!c->flags) {
351                 seq_printf(m, " %s\n", cpu_flags[0]);
352                 return;
353         }
354
355         for (i = 0; cpu_flags[i]; i++)
356                 if ((c->flags & (1 << i)))
357                         seq_printf(m, " %s", cpu_flags[i+1]);
358
359         seq_printf(m, "\n");
360 }
361
362 static void show_cacheinfo(struct seq_file *m, const char *type,
363                            struct cache_info info)
364 {
365         unsigned int cache_size;
366
367         cache_size = info.ways * info.sets * info.linesz;
368
369         seq_printf(m, "%s size\t: %2dKiB (%d-way)\n",
370                    type, cache_size >> 10, info.ways);
371 }
372
373 /*
374  *      Get CPU information for use by the procfs.
375  */
376 static int show_cpuinfo(struct seq_file *m, void *v)
377 {
378         struct sh_cpuinfo *c = v;
379         unsigned int cpu = c - cpu_data;
380
381         if (!cpu_online(cpu))
382                 return 0;
383
384         if (cpu == 0)
385                 seq_printf(m, "machine\t\t: %s\n", get_system_type());
386
387         seq_printf(m, "processor\t: %d\n", cpu);
388         seq_printf(m, "cpu family\t: %s\n", init_utsname()->machine);
389         seq_printf(m, "cpu type\t: %s\n", get_cpu_subtype(c));
390
391         show_cpuflags(m, c);
392
393         seq_printf(m, "cache type\t: ");
394
395         /*
396          * Check for what type of cache we have, we support both the
397          * unified cache on the SH-2 and SH-3, as well as the harvard
398          * style cache on the SH-4.
399          */
400         if (c->icache.flags & SH_CACHE_COMBINED) {
401                 seq_printf(m, "unified\n");
402                 show_cacheinfo(m, "cache", c->icache);
403         } else {
404                 seq_printf(m, "split (harvard)\n");
405                 show_cacheinfo(m, "icache", c->icache);
406                 show_cacheinfo(m, "dcache", c->dcache);
407         }
408
409         /* Optional secondary cache */
410         if (c->flags & CPU_HAS_L2_CACHE)
411                 show_cacheinfo(m, "scache", c->scache);
412
413         seq_printf(m, "bogomips\t: %lu.%02lu\n",
414                      c->loops_per_jiffy/(500000/HZ),
415                      (c->loops_per_jiffy/(5000/HZ)) % 100);
416
417         return 0;
418 }
419
420 static void *c_start(struct seq_file *m, loff_t *pos)
421 {
422         return *pos < NR_CPUS ? cpu_data + *pos : NULL;
423 }
424 static void *c_next(struct seq_file *m, void *v, loff_t *pos)
425 {
426         ++*pos;
427         return c_start(m, pos);
428 }
429 static void c_stop(struct seq_file *m, void *v)
430 {
431 }
432 const struct seq_operations cpuinfo_op = {
433         .start  = c_start,
434         .next   = c_next,
435         .stop   = c_stop,
436         .show   = show_cpuinfo,
437 };
438 #endif /* CONFIG_PROC_FS */