mpc52xx/wdt: merge WDT code into the GPT driver
[safe/jmp/linux-2.6] / arch / powerpc / mm / hugetlbpage.c
1 /*
2  * PPC64 (POWER4) Huge TLB Page Support for Kernel.
3  *
4  * Copyright (C) 2003 David Gibson, IBM Corporation.
5  *
6  * Based on the IA-32 version:
7  * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
8  */
9
10 #include <linux/init.h>
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/hugetlb.h>
14 #include <linux/pagemap.h>
15 #include <linux/slab.h>
16 #include <linux/err.h>
17 #include <linux/sysctl.h>
18 #include <asm/mman.h>
19 #include <asm/pgalloc.h>
20 #include <asm/tlb.h>
21 #include <asm/tlbflush.h>
22 #include <asm/mmu_context.h>
23 #include <asm/machdep.h>
24 #include <asm/cputable.h>
25 #include <asm/spu.h>
26
27 #define PAGE_SHIFT_64K  16
28 #define PAGE_SHIFT_16M  24
29 #define PAGE_SHIFT_16G  34
30
31 #define NUM_LOW_AREAS   (0x100000000UL >> SID_SHIFT)
32 #define NUM_HIGH_AREAS  (PGTABLE_RANGE >> HTLB_AREA_SHIFT)
33 #define MAX_NUMBER_GPAGES       1024
34
35 /* Tracks the 16G pages after the device tree is scanned and before the
36  * huge_boot_pages list is ready.  */
37 static unsigned long gpage_freearray[MAX_NUMBER_GPAGES];
38 static unsigned nr_gpages;
39
40 /* Array of valid huge page sizes - non-zero value(hugepte_shift) is
41  * stored for the huge page sizes that are valid.
42  */
43 unsigned int mmu_huge_psizes[MMU_PAGE_COUNT] = { }; /* initialize all to 0 */
44
45 #define hugepte_shift                   mmu_huge_psizes
46 #define PTRS_PER_HUGEPTE(psize)         (1 << hugepte_shift[psize])
47 #define HUGEPTE_TABLE_SIZE(psize)       (sizeof(pte_t) << hugepte_shift[psize])
48
49 #define HUGEPD_SHIFT(psize)             (mmu_psize_to_shift(psize) \
50                                                 + hugepte_shift[psize])
51 #define HUGEPD_SIZE(psize)              (1UL << HUGEPD_SHIFT(psize))
52 #define HUGEPD_MASK(psize)              (~(HUGEPD_SIZE(psize)-1))
53
54 /* Subtract one from array size because we don't need a cache for 4K since
55  * is not a huge page size */
56 #define HUGE_PGTABLE_INDEX(psize)       (HUGEPTE_CACHE_NUM + psize - 1)
57 #define HUGEPTE_CACHE_NAME(psize)       (huge_pgtable_cache_name[psize])
58
59 static const char *huge_pgtable_cache_name[MMU_PAGE_COUNT] = {
60         [MMU_PAGE_64K]  = "hugepte_cache_64K",
61         [MMU_PAGE_1M]   = "hugepte_cache_1M",
62         [MMU_PAGE_16M]  = "hugepte_cache_16M",
63         [MMU_PAGE_16G]  = "hugepte_cache_16G",
64 };
65
66 /* Flag to mark huge PD pointers.  This means pmd_bad() and pud_bad()
67  * will choke on pointers to hugepte tables, which is handy for
68  * catching screwups early. */
69 #define HUGEPD_OK       0x1
70
71 typedef struct { unsigned long pd; } hugepd_t;
72
73 #define hugepd_none(hpd)        ((hpd).pd == 0)
74
75 static inline int shift_to_mmu_psize(unsigned int shift)
76 {
77         switch (shift) {
78 #ifndef CONFIG_PPC_64K_PAGES
79         case PAGE_SHIFT_64K:
80             return MMU_PAGE_64K;
81 #endif
82         case PAGE_SHIFT_16M:
83             return MMU_PAGE_16M;
84         case PAGE_SHIFT_16G:
85             return MMU_PAGE_16G;
86         }
87         return -1;
88 }
89
90 static inline unsigned int mmu_psize_to_shift(unsigned int mmu_psize)
91 {
92         if (mmu_psize_defs[mmu_psize].shift)
93                 return mmu_psize_defs[mmu_psize].shift;
94         BUG();
95 }
96
97 static inline pte_t *hugepd_page(hugepd_t hpd)
98 {
99         BUG_ON(!(hpd.pd & HUGEPD_OK));
100         return (pte_t *)(hpd.pd & ~HUGEPD_OK);
101 }
102
103 static inline pte_t *hugepte_offset(hugepd_t *hpdp, unsigned long addr,
104                                     struct hstate *hstate)
105 {
106         unsigned int shift = huge_page_shift(hstate);
107         int psize = shift_to_mmu_psize(shift);
108         unsigned long idx = ((addr >> shift) & (PTRS_PER_HUGEPTE(psize)-1));
109         pte_t *dir = hugepd_page(*hpdp);
110
111         return dir + idx;
112 }
113
114 static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp,
115                            unsigned long address, unsigned int psize)
116 {
117         pte_t *new = kmem_cache_zalloc(pgtable_cache[HUGE_PGTABLE_INDEX(psize)],
118                                       GFP_KERNEL|__GFP_REPEAT);
119
120         if (! new)
121                 return -ENOMEM;
122
123         spin_lock(&mm->page_table_lock);
124         if (!hugepd_none(*hpdp))
125                 kmem_cache_free(pgtable_cache[HUGE_PGTABLE_INDEX(psize)], new);
126         else
127                 hpdp->pd = (unsigned long)new | HUGEPD_OK;
128         spin_unlock(&mm->page_table_lock);
129         return 0;
130 }
131
132
133 static pud_t *hpud_offset(pgd_t *pgd, unsigned long addr, struct hstate *hstate)
134 {
135         if (huge_page_shift(hstate) < PUD_SHIFT)
136                 return pud_offset(pgd, addr);
137         else
138                 return (pud_t *) pgd;
139 }
140 static pud_t *hpud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long addr,
141                          struct hstate *hstate)
142 {
143         if (huge_page_shift(hstate) < PUD_SHIFT)
144                 return pud_alloc(mm, pgd, addr);
145         else
146                 return (pud_t *) pgd;
147 }
148 static pmd_t *hpmd_offset(pud_t *pud, unsigned long addr, struct hstate *hstate)
149 {
150         if (huge_page_shift(hstate) < PMD_SHIFT)
151                 return pmd_offset(pud, addr);
152         else
153                 return (pmd_t *) pud;
154 }
155 static pmd_t *hpmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long addr,
156                          struct hstate *hstate)
157 {
158         if (huge_page_shift(hstate) < PMD_SHIFT)
159                 return pmd_alloc(mm, pud, addr);
160         else
161                 return (pmd_t *) pud;
162 }
163
164 /* Build list of addresses of gigantic pages.  This function is used in early
165  * boot before the buddy or bootmem allocator is setup.
166  */
167 void add_gpage(unsigned long addr, unsigned long page_size,
168         unsigned long number_of_pages)
169 {
170         if (!addr)
171                 return;
172         while (number_of_pages > 0) {
173                 gpage_freearray[nr_gpages] = addr;
174                 nr_gpages++;
175                 number_of_pages--;
176                 addr += page_size;
177         }
178 }
179
180 /* Moves the gigantic page addresses from the temporary list to the
181  * huge_boot_pages list.
182  */
183 int alloc_bootmem_huge_page(struct hstate *hstate)
184 {
185         struct huge_bootmem_page *m;
186         if (nr_gpages == 0)
187                 return 0;
188         m = phys_to_virt(gpage_freearray[--nr_gpages]);
189         gpage_freearray[nr_gpages] = 0;
190         list_add(&m->list, &huge_boot_pages);
191         m->hstate = hstate;
192         return 1;
193 }
194
195
196 /* Modelled after find_linux_pte() */
197 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
198 {
199         pgd_t *pg;
200         pud_t *pu;
201         pmd_t *pm;
202
203         unsigned int psize;
204         unsigned int shift;
205         unsigned long sz;
206         struct hstate *hstate;
207         psize = get_slice_psize(mm, addr);
208         shift = mmu_psize_to_shift(psize);
209         sz = ((1UL) << shift);
210         hstate = size_to_hstate(sz);
211
212         addr &= hstate->mask;
213
214         pg = pgd_offset(mm, addr);
215         if (!pgd_none(*pg)) {
216                 pu = hpud_offset(pg, addr, hstate);
217                 if (!pud_none(*pu)) {
218                         pm = hpmd_offset(pu, addr, hstate);
219                         if (!pmd_none(*pm))
220                                 return hugepte_offset((hugepd_t *)pm, addr,
221                                                       hstate);
222                 }
223         }
224
225         return NULL;
226 }
227
228 pte_t *huge_pte_alloc(struct mm_struct *mm,
229                         unsigned long addr, unsigned long sz)
230 {
231         pgd_t *pg;
232         pud_t *pu;
233         pmd_t *pm;
234         hugepd_t *hpdp = NULL;
235         struct hstate *hstate;
236         unsigned int psize;
237         hstate = size_to_hstate(sz);
238
239         psize = get_slice_psize(mm, addr);
240         BUG_ON(!mmu_huge_psizes[psize]);
241
242         addr &= hstate->mask;
243
244         pg = pgd_offset(mm, addr);
245         pu = hpud_alloc(mm, pg, addr, hstate);
246
247         if (pu) {
248                 pm = hpmd_alloc(mm, pu, addr, hstate);
249                 if (pm)
250                         hpdp = (hugepd_t *)pm;
251         }
252
253         if (! hpdp)
254                 return NULL;
255
256         if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr, psize))
257                 return NULL;
258
259         return hugepte_offset(hpdp, addr, hstate);
260 }
261
262 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
263 {
264         return 0;
265 }
266
267 static void free_hugepte_range(struct mmu_gather *tlb, hugepd_t *hpdp,
268                                unsigned int psize)
269 {
270         pte_t *hugepte = hugepd_page(*hpdp);
271
272         hpdp->pd = 0;
273         tlb->need_flush = 1;
274         pgtable_free_tlb(tlb, pgtable_free_cache(hugepte,
275                                                  HUGEPTE_CACHE_NUM+psize-1,
276                                                  PGF_CACHENUM_MASK));
277 }
278
279 static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
280                                    unsigned long addr, unsigned long end,
281                                    unsigned long floor, unsigned long ceiling,
282                                    unsigned int psize)
283 {
284         pmd_t *pmd;
285         unsigned long next;
286         unsigned long start;
287
288         start = addr;
289         pmd = pmd_offset(pud, addr);
290         do {
291                 next = pmd_addr_end(addr, end);
292                 if (pmd_none(*pmd))
293                         continue;
294                 free_hugepte_range(tlb, (hugepd_t *)pmd, psize);
295         } while (pmd++, addr = next, addr != end);
296
297         start &= PUD_MASK;
298         if (start < floor)
299                 return;
300         if (ceiling) {
301                 ceiling &= PUD_MASK;
302                 if (!ceiling)
303                         return;
304         }
305         if (end - 1 > ceiling - 1)
306                 return;
307
308         pmd = pmd_offset(pud, start);
309         pud_clear(pud);
310         pmd_free_tlb(tlb, pmd, start);
311 }
312
313 static void hugetlb_free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
314                                    unsigned long addr, unsigned long end,
315                                    unsigned long floor, unsigned long ceiling)
316 {
317         pud_t *pud;
318         unsigned long next;
319         unsigned long start;
320         unsigned int shift;
321         unsigned int psize = get_slice_psize(tlb->mm, addr);
322         shift = mmu_psize_to_shift(psize);
323
324         start = addr;
325         pud = pud_offset(pgd, addr);
326         do {
327                 next = pud_addr_end(addr, end);
328                 if (shift < PMD_SHIFT) {
329                         if (pud_none_or_clear_bad(pud))
330                                 continue;
331                         hugetlb_free_pmd_range(tlb, pud, addr, next, floor,
332                                                ceiling, psize);
333                 } else {
334                         if (pud_none(*pud))
335                                 continue;
336                         free_hugepte_range(tlb, (hugepd_t *)pud, psize);
337                 }
338         } while (pud++, addr = next, addr != end);
339
340         start &= PGDIR_MASK;
341         if (start < floor)
342                 return;
343         if (ceiling) {
344                 ceiling &= PGDIR_MASK;
345                 if (!ceiling)
346                         return;
347         }
348         if (end - 1 > ceiling - 1)
349                 return;
350
351         pud = pud_offset(pgd, start);
352         pgd_clear(pgd);
353         pud_free_tlb(tlb, pud, start);
354 }
355
356 /*
357  * This function frees user-level page tables of a process.
358  *
359  * Must be called with pagetable lock held.
360  */
361 void hugetlb_free_pgd_range(struct mmu_gather *tlb,
362                             unsigned long addr, unsigned long end,
363                             unsigned long floor, unsigned long ceiling)
364 {
365         pgd_t *pgd;
366         unsigned long next;
367         unsigned long start;
368
369         /*
370          * Comments below take from the normal free_pgd_range().  They
371          * apply here too.  The tests against HUGEPD_MASK below are
372          * essential, because we *don't* test for this at the bottom
373          * level.  Without them we'll attempt to free a hugepte table
374          * when we unmap just part of it, even if there are other
375          * active mappings using it.
376          *
377          * The next few lines have given us lots of grief...
378          *
379          * Why are we testing HUGEPD* at this top level?  Because
380          * often there will be no work to do at all, and we'd prefer
381          * not to go all the way down to the bottom just to discover
382          * that.
383          *
384          * Why all these "- 1"s?  Because 0 represents both the bottom
385          * of the address space and the top of it (using -1 for the
386          * top wouldn't help much: the masks would do the wrong thing).
387          * The rule is that addr 0 and floor 0 refer to the bottom of
388          * the address space, but end 0 and ceiling 0 refer to the top
389          * Comparisons need to use "end - 1" and "ceiling - 1" (though
390          * that end 0 case should be mythical).
391          *
392          * Wherever addr is brought up or ceiling brought down, we
393          * must be careful to reject "the opposite 0" before it
394          * confuses the subsequent tests.  But what about where end is
395          * brought down by HUGEPD_SIZE below? no, end can't go down to
396          * 0 there.
397          *
398          * Whereas we round start (addr) and ceiling down, by different
399          * masks at different levels, in order to test whether a table
400          * now has no other vmas using it, so can be freed, we don't
401          * bother to round floor or end up - the tests don't need that.
402          */
403         unsigned int psize = get_slice_psize(tlb->mm, addr);
404
405         addr &= HUGEPD_MASK(psize);
406         if (addr < floor) {
407                 addr += HUGEPD_SIZE(psize);
408                 if (!addr)
409                         return;
410         }
411         if (ceiling) {
412                 ceiling &= HUGEPD_MASK(psize);
413                 if (!ceiling)
414                         return;
415         }
416         if (end - 1 > ceiling - 1)
417                 end -= HUGEPD_SIZE(psize);
418         if (addr > end - 1)
419                 return;
420
421         start = addr;
422         pgd = pgd_offset(tlb->mm, addr);
423         do {
424                 psize = get_slice_psize(tlb->mm, addr);
425                 BUG_ON(!mmu_huge_psizes[psize]);
426                 next = pgd_addr_end(addr, end);
427                 if (mmu_psize_to_shift(psize) < PUD_SHIFT) {
428                         if (pgd_none_or_clear_bad(pgd))
429                                 continue;
430                         hugetlb_free_pud_range(tlb, pgd, addr, next, floor, ceiling);
431                 } else {
432                         if (pgd_none(*pgd))
433                                 continue;
434                         free_hugepte_range(tlb, (hugepd_t *)pgd, psize);
435                 }
436         } while (pgd++, addr = next, addr != end);
437 }
438
439 void set_huge_pte_at(struct mm_struct *mm, unsigned long addr,
440                      pte_t *ptep, pte_t pte)
441 {
442         if (pte_present(*ptep)) {
443                 /* We open-code pte_clear because we need to pass the right
444                  * argument to hpte_need_flush (huge / !huge). Might not be
445                  * necessary anymore if we make hpte_need_flush() get the
446                  * page size from the slices
447                  */
448                 unsigned int psize = get_slice_psize(mm, addr);
449                 unsigned int shift = mmu_psize_to_shift(psize);
450                 unsigned long sz = ((1UL) << shift);
451                 struct hstate *hstate = size_to_hstate(sz);
452                 pte_update(mm, addr & hstate->mask, ptep, ~0UL, 1);
453         }
454         *ptep = __pte(pte_val(pte) & ~_PAGE_HPTEFLAGS);
455 }
456
457 pte_t huge_ptep_get_and_clear(struct mm_struct *mm, unsigned long addr,
458                               pte_t *ptep)
459 {
460         unsigned long old = pte_update(mm, addr, ptep, ~0UL, 1);
461         return __pte(old);
462 }
463
464 struct page *
465 follow_huge_addr(struct mm_struct *mm, unsigned long address, int write)
466 {
467         pte_t *ptep;
468         struct page *page;
469         unsigned int mmu_psize = get_slice_psize(mm, address);
470
471         /* Verify it is a huge page else bail. */
472         if (!mmu_huge_psizes[mmu_psize])
473                 return ERR_PTR(-EINVAL);
474
475         ptep = huge_pte_offset(mm, address);
476         page = pte_page(*ptep);
477         if (page) {
478                 unsigned int shift = mmu_psize_to_shift(mmu_psize);
479                 unsigned long sz = ((1UL) << shift);
480                 page += (address % sz) / PAGE_SIZE;
481         }
482
483         return page;
484 }
485
486 int pmd_huge(pmd_t pmd)
487 {
488         return 0;
489 }
490
491 int pud_huge(pud_t pud)
492 {
493         return 0;
494 }
495
496 struct page *
497 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
498                 pmd_t *pmd, int write)
499 {
500         BUG();
501         return NULL;
502 }
503
504
505 unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
506                                         unsigned long len, unsigned long pgoff,
507                                         unsigned long flags)
508 {
509         struct hstate *hstate = hstate_file(file);
510         int mmu_psize = shift_to_mmu_psize(huge_page_shift(hstate));
511
512         if (!mmu_huge_psizes[mmu_psize])
513                 return -EINVAL;
514         return slice_get_unmapped_area(addr, len, flags, mmu_psize, 1, 0);
515 }
516
517 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
518 {
519         unsigned int psize = get_slice_psize(vma->vm_mm, vma->vm_start);
520
521         return 1UL << mmu_psize_to_shift(psize);
522 }
523
524 /*
525  * Called by asm hashtable.S for doing lazy icache flush
526  */
527 static unsigned int hash_huge_page_do_lazy_icache(unsigned long rflags,
528                                         pte_t pte, int trap, unsigned long sz)
529 {
530         struct page *page;
531         int i;
532
533         if (!pfn_valid(pte_pfn(pte)))
534                 return rflags;
535
536         page = pte_page(pte);
537
538         /* page is dirty */
539         if (!test_bit(PG_arch_1, &page->flags) && !PageReserved(page)) {
540                 if (trap == 0x400) {
541                         for (i = 0; i < (sz / PAGE_SIZE); i++)
542                                 __flush_dcache_icache(page_address(page+i));
543                         set_bit(PG_arch_1, &page->flags);
544                 } else {
545                         rflags |= HPTE_R_N;
546                 }
547         }
548         return rflags;
549 }
550
551 int hash_huge_page(struct mm_struct *mm, unsigned long access,
552                    unsigned long ea, unsigned long vsid, int local,
553                    unsigned long trap)
554 {
555         pte_t *ptep;
556         unsigned long old_pte, new_pte;
557         unsigned long va, rflags, pa, sz;
558         long slot;
559         int err = 1;
560         int ssize = user_segment_size(ea);
561         unsigned int mmu_psize;
562         int shift;
563         mmu_psize = get_slice_psize(mm, ea);
564
565         if (!mmu_huge_psizes[mmu_psize])
566                 goto out;
567         ptep = huge_pte_offset(mm, ea);
568
569         /* Search the Linux page table for a match with va */
570         va = hpt_va(ea, vsid, ssize);
571
572         /*
573          * If no pte found or not present, send the problem up to
574          * do_page_fault
575          */
576         if (unlikely(!ptep || pte_none(*ptep)))
577                 goto out;
578
579         /* 
580          * Check the user's access rights to the page.  If access should be
581          * prevented then send the problem up to do_page_fault.
582          */
583         if (unlikely(access & ~pte_val(*ptep)))
584                 goto out;
585         /*
586          * At this point, we have a pte (old_pte) which can be used to build
587          * or update an HPTE. There are 2 cases:
588          *
589          * 1. There is a valid (present) pte with no associated HPTE (this is 
590          *      the most common case)
591          * 2. There is a valid (present) pte with an associated HPTE. The
592          *      current values of the pp bits in the HPTE prevent access
593          *      because we are doing software DIRTY bit management and the
594          *      page is currently not DIRTY. 
595          */
596
597
598         do {
599                 old_pte = pte_val(*ptep);
600                 if (old_pte & _PAGE_BUSY)
601                         goto out;
602                 new_pte = old_pte | _PAGE_BUSY | _PAGE_ACCESSED;
603         } while(old_pte != __cmpxchg_u64((unsigned long *)ptep,
604                                          old_pte, new_pte));
605
606         rflags = 0x2 | (!(new_pte & _PAGE_RW));
607         /* _PAGE_EXEC -> HW_NO_EXEC since it's inverted */
608         rflags |= ((new_pte & _PAGE_EXEC) ? 0 : HPTE_R_N);
609         shift = mmu_psize_to_shift(mmu_psize);
610         sz = ((1UL) << shift);
611         if (!cpu_has_feature(CPU_FTR_COHERENT_ICACHE))
612                 /* No CPU has hugepages but lacks no execute, so we
613                  * don't need to worry about that case */
614                 rflags = hash_huge_page_do_lazy_icache(rflags, __pte(old_pte),
615                                                        trap, sz);
616
617         /* Check if pte already has an hpte (case 2) */
618         if (unlikely(old_pte & _PAGE_HASHPTE)) {
619                 /* There MIGHT be an HPTE for this pte */
620                 unsigned long hash, slot;
621
622                 hash = hpt_hash(va, shift, ssize);
623                 if (old_pte & _PAGE_F_SECOND)
624                         hash = ~hash;
625                 slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
626                 slot += (old_pte & _PAGE_F_GIX) >> 12;
627
628                 if (ppc_md.hpte_updatepp(slot, rflags, va, mmu_psize,
629                                          ssize, local) == -1)
630                         old_pte &= ~_PAGE_HPTEFLAGS;
631         }
632
633         if (likely(!(old_pte & _PAGE_HASHPTE))) {
634                 unsigned long hash = hpt_hash(va, shift, ssize);
635                 unsigned long hpte_group;
636
637                 pa = pte_pfn(__pte(old_pte)) << PAGE_SHIFT;
638
639 repeat:
640                 hpte_group = ((hash & htab_hash_mask) *
641                               HPTES_PER_GROUP) & ~0x7UL;
642
643                 /* clear HPTE slot informations in new PTE */
644 #ifdef CONFIG_PPC_64K_PAGES
645                 new_pte = (new_pte & ~_PAGE_HPTEFLAGS) | _PAGE_HPTE_SUB0;
646 #else
647                 new_pte = (new_pte & ~_PAGE_HPTEFLAGS) | _PAGE_HASHPTE;
648 #endif
649                 /* Add in WIMG bits */
650                 rflags |= (new_pte & (_PAGE_WRITETHRU | _PAGE_NO_CACHE |
651                                       _PAGE_COHERENT | _PAGE_GUARDED));
652
653                 /* Insert into the hash table, primary slot */
654                 slot = ppc_md.hpte_insert(hpte_group, va, pa, rflags, 0,
655                                           mmu_psize, ssize);
656
657                 /* Primary is full, try the secondary */
658                 if (unlikely(slot == -1)) {
659                         hpte_group = ((~hash & htab_hash_mask) *
660                                       HPTES_PER_GROUP) & ~0x7UL; 
661                         slot = ppc_md.hpte_insert(hpte_group, va, pa, rflags,
662                                                   HPTE_V_SECONDARY,
663                                                   mmu_psize, ssize);
664                         if (slot == -1) {
665                                 if (mftb() & 0x1)
666                                         hpte_group = ((hash & htab_hash_mask) *
667                                                       HPTES_PER_GROUP)&~0x7UL;
668
669                                 ppc_md.hpte_remove(hpte_group);
670                                 goto repeat;
671                         }
672                 }
673
674                 if (unlikely(slot == -2))
675                         panic("hash_huge_page: pte_insert failed\n");
676
677                 new_pte |= (slot << 12) & (_PAGE_F_SECOND | _PAGE_F_GIX);
678         }
679
680         /*
681          * No need to use ldarx/stdcx here
682          */
683         *ptep = __pte(new_pte & ~_PAGE_BUSY);
684
685         err = 0;
686
687  out:
688         return err;
689 }
690
691 static void __init set_huge_psize(int psize)
692 {
693         /* Check that it is a page size supported by the hardware and
694          * that it fits within pagetable limits. */
695         if (mmu_psize_defs[psize].shift &&
696                 mmu_psize_defs[psize].shift < SID_SHIFT_1T &&
697                 (mmu_psize_defs[psize].shift > MIN_HUGEPTE_SHIFT ||
698                  mmu_psize_defs[psize].shift == PAGE_SHIFT_64K ||
699                  mmu_psize_defs[psize].shift == PAGE_SHIFT_16G)) {
700                 /* Return if huge page size has already been setup or is the
701                  * same as the base page size. */
702                 if (mmu_huge_psizes[psize] ||
703                    mmu_psize_defs[psize].shift == PAGE_SHIFT)
704                         return;
705                 if (WARN_ON(HUGEPTE_CACHE_NAME(psize) == NULL))
706                         return;
707                 hugetlb_add_hstate(mmu_psize_defs[psize].shift - PAGE_SHIFT);
708
709                 switch (mmu_psize_defs[psize].shift) {
710                 case PAGE_SHIFT_64K:
711                     /* We only allow 64k hpages with 4k base page,
712                      * which was checked above, and always put them
713                      * at the PMD */
714                     hugepte_shift[psize] = PMD_SHIFT;
715                     break;
716                 case PAGE_SHIFT_16M:
717                     /* 16M pages can be at two different levels
718                      * of pagestables based on base page size */
719                     if (PAGE_SHIFT == PAGE_SHIFT_64K)
720                             hugepte_shift[psize] = PMD_SHIFT;
721                     else /* 4k base page */
722                             hugepte_shift[psize] = PUD_SHIFT;
723                     break;
724                 case PAGE_SHIFT_16G:
725                     /* 16G pages are always at PGD level */
726                     hugepte_shift[psize] = PGDIR_SHIFT;
727                     break;
728                 }
729                 hugepte_shift[psize] -= mmu_psize_defs[psize].shift;
730         } else
731                 hugepte_shift[psize] = 0;
732 }
733
734 static int __init hugepage_setup_sz(char *str)
735 {
736         unsigned long long size;
737         int mmu_psize;
738         int shift;
739
740         size = memparse(str, &str);
741
742         shift = __ffs(size);
743         mmu_psize = shift_to_mmu_psize(shift);
744         if (mmu_psize >= 0 && mmu_psize_defs[mmu_psize].shift)
745                 set_huge_psize(mmu_psize);
746         else
747                 printk(KERN_WARNING "Invalid huge page size specified(%llu)\n", size);
748
749         return 1;
750 }
751 __setup("hugepagesz=", hugepage_setup_sz);
752
753 static int __init hugetlbpage_init(void)
754 {
755         unsigned int psize;
756
757         if (!cpu_has_feature(CPU_FTR_16M_PAGE))
758                 return -ENODEV;
759
760         /* Add supported huge page sizes.  Need to change HUGE_MAX_HSTATE
761          * and adjust PTE_NONCACHE_NUM if the number of supported huge page
762          * sizes changes.
763          */
764         set_huge_psize(MMU_PAGE_16M);
765         set_huge_psize(MMU_PAGE_16G);
766
767         /* Temporarily disable support for 64K huge pages when 64K SPU local
768          * store support is enabled as the current implementation conflicts.
769          */
770 #ifndef CONFIG_SPU_FS_64K_LS
771         set_huge_psize(MMU_PAGE_64K);
772 #endif
773
774         for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
775                 if (mmu_huge_psizes[psize]) {
776                         pgtable_cache[HUGE_PGTABLE_INDEX(psize)] =
777                                 kmem_cache_create(
778                                         HUGEPTE_CACHE_NAME(psize),
779                                         HUGEPTE_TABLE_SIZE(psize),
780                                         HUGEPTE_TABLE_SIZE(psize),
781                                         0,
782                                         NULL);
783                         if (!pgtable_cache[HUGE_PGTABLE_INDEX(psize)])
784                                 panic("hugetlbpage_init(): could not create %s"\
785                                       "\n", HUGEPTE_CACHE_NAME(psize));
786                 }
787         }
788
789         return 0;
790 }
791
792 module_init(hugetlbpage_init);