powerpc: Fix bug arising from having multiple memory_limit variables
[safe/jmp/linux-2.6] / arch / powerpc / kernel / prom.c
1 /*
2  * Procedures for creating, accessing and interpreting the device tree.
3  *
4  * Paul Mackerras       August 1996.
5  * Copyright (C) 1996-2005 Paul Mackerras.
6  * 
7  *  Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
8  *    {engebret|bergner}@us.ibm.com 
9  *
10  *      This program is free software; you can redistribute it and/or
11  *      modify it under the terms of the GNU General Public License
12  *      as published by the Free Software Foundation; either version
13  *      2 of the License, or (at your option) any later version.
14  */
15
16 #undef DEBUG
17
18 #include <stdarg.h>
19 #include <linux/config.h>
20 #include <linux/kernel.h>
21 #include <linux/string.h>
22 #include <linux/init.h>
23 #include <linux/threads.h>
24 #include <linux/spinlock.h>
25 #include <linux/types.h>
26 #include <linux/pci.h>
27 #include <linux/stringify.h>
28 #include <linux/delay.h>
29 #include <linux/initrd.h>
30 #include <linux/bitops.h>
31 #include <linux/module.h>
32
33 #include <asm/prom.h>
34 #include <asm/rtas.h>
35 #include <asm/lmb.h>
36 #include <asm/page.h>
37 #include <asm/processor.h>
38 #include <asm/irq.h>
39 #include <asm/io.h>
40 #include <asm/smp.h>
41 #include <asm/system.h>
42 #include <asm/mmu.h>
43 #include <asm/pgtable.h>
44 #include <asm/pci.h>
45 #include <asm/iommu.h>
46 #include <asm/btext.h>
47 #include <asm/sections.h>
48 #include <asm/machdep.h>
49 #include <asm/pSeries_reconfig.h>
50 #include <asm/pci-bridge.h>
51 #ifdef CONFIG_PPC64
52 #include <asm/systemcfg.h>
53 #endif
54
55 #ifdef DEBUG
56 #define DBG(fmt...) printk(KERN_ERR fmt)
57 #else
58 #define DBG(fmt...)
59 #endif
60
61 struct pci_reg_property {
62         struct pci_address addr;
63         u32 size_hi;
64         u32 size_lo;
65 };
66
67 struct isa_reg_property {
68         u32 space;
69         u32 address;
70         u32 size;
71 };
72
73
74 typedef int interpret_func(struct device_node *, unsigned long *,
75                            int, int, int);
76
77 extern struct rtas_t rtas;
78 extern struct lmb lmb;
79 extern unsigned long klimit;
80
81 static int __initdata dt_root_addr_cells;
82 static int __initdata dt_root_size_cells;
83
84 #ifdef CONFIG_PPC64
85 static int __initdata iommu_is_off;
86 int __initdata iommu_force_on;
87 unsigned long tce_alloc_start, tce_alloc_end;
88 #endif
89
90 typedef u32 cell_t;
91
92 #if 0
93 static struct boot_param_header *initial_boot_params __initdata;
94 #else
95 struct boot_param_header *initial_boot_params;
96 #endif
97
98 static struct device_node *allnodes = NULL;
99
100 /* use when traversing tree through the allnext, child, sibling,
101  * or parent members of struct device_node.
102  */
103 static DEFINE_RWLOCK(devtree_lock);
104
105 /* export that to outside world */
106 struct device_node *of_chosen;
107
108 struct device_node *dflt_interrupt_controller;
109 int num_interrupt_controllers;
110
111 /*
112  * Wrapper for allocating memory for various data that needs to be
113  * attached to device nodes as they are processed at boot or when
114  * added to the device tree later (e.g. DLPAR).  At boot there is
115  * already a region reserved so we just increment *mem_start by size;
116  * otherwise we call kmalloc.
117  */
118 static void * prom_alloc(unsigned long size, unsigned long *mem_start)
119 {
120         unsigned long tmp;
121
122         if (!mem_start)
123                 return kmalloc(size, GFP_KERNEL);
124
125         tmp = *mem_start;
126         *mem_start += size;
127         return (void *)tmp;
128 }
129
130 /*
131  * Find the device_node with a given phandle.
132  */
133 static struct device_node * find_phandle(phandle ph)
134 {
135         struct device_node *np;
136
137         for (np = allnodes; np != 0; np = np->allnext)
138                 if (np->linux_phandle == ph)
139                         return np;
140         return NULL;
141 }
142
143 /*
144  * Find the interrupt parent of a node.
145  */
146 static struct device_node * __devinit intr_parent(struct device_node *p)
147 {
148         phandle *parp;
149
150         parp = (phandle *) get_property(p, "interrupt-parent", NULL);
151         if (parp == NULL)
152                 return p->parent;
153         p = find_phandle(*parp);
154         if (p != NULL)
155                 return p;
156         /*
157          * On a powermac booted with BootX, we don't get to know the
158          * phandles for any nodes, so find_phandle will return NULL.
159          * Fortunately these machines only have one interrupt controller
160          * so there isn't in fact any ambiguity.  -- paulus
161          */
162         if (num_interrupt_controllers == 1)
163                 p = dflt_interrupt_controller;
164         return p;
165 }
166
167 /*
168  * Find out the size of each entry of the interrupts property
169  * for a node.
170  */
171 int __devinit prom_n_intr_cells(struct device_node *np)
172 {
173         struct device_node *p;
174         unsigned int *icp;
175
176         for (p = np; (p = intr_parent(p)) != NULL; ) {
177                 icp = (unsigned int *)
178                         get_property(p, "#interrupt-cells", NULL);
179                 if (icp != NULL)
180                         return *icp;
181                 if (get_property(p, "interrupt-controller", NULL) != NULL
182                     || get_property(p, "interrupt-map", NULL) != NULL) {
183                         printk("oops, node %s doesn't have #interrupt-cells\n",
184                                p->full_name);
185                         return 1;
186                 }
187         }
188 #ifdef DEBUG_IRQ
189         printk("prom_n_intr_cells failed for %s\n", np->full_name);
190 #endif
191         return 1;
192 }
193
194 /*
195  * Map an interrupt from a device up to the platform interrupt
196  * descriptor.
197  */
198 static int __devinit map_interrupt(unsigned int **irq, struct device_node **ictrler,
199                                    struct device_node *np, unsigned int *ints,
200                                    int nintrc)
201 {
202         struct device_node *p, *ipar;
203         unsigned int *imap, *imask, *ip;
204         int i, imaplen, match;
205         int newintrc = 0, newaddrc = 0;
206         unsigned int *reg;
207         int naddrc;
208
209         reg = (unsigned int *) get_property(np, "reg", NULL);
210         naddrc = prom_n_addr_cells(np);
211         p = intr_parent(np);
212         while (p != NULL) {
213                 if (get_property(p, "interrupt-controller", NULL) != NULL)
214                         /* this node is an interrupt controller, stop here */
215                         break;
216                 imap = (unsigned int *)
217                         get_property(p, "interrupt-map", &imaplen);
218                 if (imap == NULL) {
219                         p = intr_parent(p);
220                         continue;
221                 }
222                 imask = (unsigned int *)
223                         get_property(p, "interrupt-map-mask", NULL);
224                 if (imask == NULL) {
225                         printk("oops, %s has interrupt-map but no mask\n",
226                                p->full_name);
227                         return 0;
228                 }
229                 imaplen /= sizeof(unsigned int);
230                 match = 0;
231                 ipar = NULL;
232                 while (imaplen > 0 && !match) {
233                         /* check the child-interrupt field */
234                         match = 1;
235                         for (i = 0; i < naddrc && match; ++i)
236                                 match = ((reg[i] ^ imap[i]) & imask[i]) == 0;
237                         for (; i < naddrc + nintrc && match; ++i)
238                                 match = ((ints[i-naddrc] ^ imap[i]) & imask[i]) == 0;
239                         imap += naddrc + nintrc;
240                         imaplen -= naddrc + nintrc;
241                         /* grab the interrupt parent */
242                         ipar = find_phandle((phandle) *imap++);
243                         --imaplen;
244                         if (ipar == NULL && num_interrupt_controllers == 1)
245                                 /* cope with BootX not giving us phandles */
246                                 ipar = dflt_interrupt_controller;
247                         if (ipar == NULL) {
248                                 printk("oops, no int parent %x in map of %s\n",
249                                        imap[-1], p->full_name);
250                                 return 0;
251                         }
252                         /* find the parent's # addr and intr cells */
253                         ip = (unsigned int *)
254                                 get_property(ipar, "#interrupt-cells", NULL);
255                         if (ip == NULL) {
256                                 printk("oops, no #interrupt-cells on %s\n",
257                                        ipar->full_name);
258                                 return 0;
259                         }
260                         newintrc = *ip;
261                         ip = (unsigned int *)
262                                 get_property(ipar, "#address-cells", NULL);
263                         newaddrc = (ip == NULL)? 0: *ip;
264                         imap += newaddrc + newintrc;
265                         imaplen -= newaddrc + newintrc;
266                 }
267                 if (imaplen < 0) {
268                         printk("oops, error decoding int-map on %s, len=%d\n",
269                                p->full_name, imaplen);
270                         return 0;
271                 }
272                 if (!match) {
273 #ifdef DEBUG_IRQ
274                         printk("oops, no match in %s int-map for %s\n",
275                                p->full_name, np->full_name);
276 #endif
277                         return 0;
278                 }
279                 p = ipar;
280                 naddrc = newaddrc;
281                 nintrc = newintrc;
282                 ints = imap - nintrc;
283                 reg = ints - naddrc;
284         }
285         if (p == NULL) {
286 #ifdef DEBUG_IRQ
287                 printk("hmmm, int tree for %s doesn't have ctrler\n",
288                        np->full_name);
289 #endif
290                 return 0;
291         }
292         *irq = ints;
293         *ictrler = p;
294         return nintrc;
295 }
296
297 static unsigned char map_isa_senses[4] = {
298         IRQ_SENSE_LEVEL | IRQ_POLARITY_NEGATIVE,
299         IRQ_SENSE_LEVEL | IRQ_POLARITY_POSITIVE,
300         IRQ_SENSE_EDGE  | IRQ_POLARITY_NEGATIVE,
301         IRQ_SENSE_EDGE  | IRQ_POLARITY_POSITIVE
302 };
303
304 static unsigned char map_mpic_senses[4] = {
305         IRQ_SENSE_EDGE  | IRQ_POLARITY_POSITIVE,
306         IRQ_SENSE_LEVEL | IRQ_POLARITY_NEGATIVE,
307         /* 2 seems to be used for the 8259 cascade... */
308         IRQ_SENSE_LEVEL | IRQ_POLARITY_POSITIVE,
309         IRQ_SENSE_EDGE  | IRQ_POLARITY_NEGATIVE,
310 };
311
312 static int __devinit finish_node_interrupts(struct device_node *np,
313                                             unsigned long *mem_start,
314                                             int measure_only)
315 {
316         unsigned int *ints;
317         int intlen, intrcells, intrcount;
318         int i, j, n, sense;
319         unsigned int *irq, virq;
320         struct device_node *ic;
321
322         if (num_interrupt_controllers == 0) {
323                 /*
324                  * Old machines just have a list of interrupt numbers
325                  * and no interrupt-controller nodes.
326                  */
327                 ints = (unsigned int *) get_property(np, "AAPL,interrupts",
328                                                      &intlen);
329                 /* XXX old interpret_pci_props looked in parent too */
330                 /* XXX old interpret_macio_props looked for interrupts
331                    before AAPL,interrupts */
332                 if (ints == NULL)
333                         ints = (unsigned int *) get_property(np, "interrupts",
334                                                              &intlen);
335                 if (ints == NULL)
336                         return 0;
337
338                 np->n_intrs = intlen / sizeof(unsigned int);
339                 np->intrs = prom_alloc(np->n_intrs * sizeof(np->intrs[0]),
340                                        mem_start);
341                 if (!np->intrs)
342                         return -ENOMEM;
343                 if (measure_only)
344                         return 0;
345
346                 for (i = 0; i < np->n_intrs; ++i) {
347                         np->intrs[i].line = *ints++;
348                         np->intrs[i].sense = IRQ_SENSE_LEVEL
349                                 | IRQ_POLARITY_NEGATIVE;
350                 }
351                 return 0;
352         }
353
354         ints = (unsigned int *) get_property(np, "interrupts", &intlen);
355         if (ints == NULL)
356                 return 0;
357         intrcells = prom_n_intr_cells(np);
358         intlen /= intrcells * sizeof(unsigned int);
359
360         np->intrs = prom_alloc(intlen * sizeof(*(np->intrs)), mem_start);
361         if (!np->intrs)
362                 return -ENOMEM;
363
364         if (measure_only)
365                 return 0;
366
367         intrcount = 0;
368         for (i = 0; i < intlen; ++i, ints += intrcells) {
369                 n = map_interrupt(&irq, &ic, np, ints, intrcells);
370                 if (n <= 0)
371                         continue;
372
373                 /* don't map IRQ numbers under a cascaded 8259 controller */
374                 if (ic && device_is_compatible(ic, "chrp,iic")) {
375                         np->intrs[intrcount].line = irq[0];
376                         sense = (n > 1)? (irq[1] & 3): 3;
377                         np->intrs[intrcount].sense = map_isa_senses[sense];
378                 } else {
379                         virq = virt_irq_create_mapping(irq[0]);
380 #ifdef CONFIG_PPC64
381                         if (virq == NO_IRQ) {
382                                 printk(KERN_CRIT "Could not allocate interrupt"
383                                        " number for %s\n", np->full_name);
384                                 continue;
385                         }
386 #endif
387                         np->intrs[intrcount].line = irq_offset_up(virq);
388                         sense = (n > 1)? (irq[1] & 3): 1;
389                         np->intrs[intrcount].sense = map_mpic_senses[sense];
390                 }
391
392 #ifdef CONFIG_PPC64
393                 /* We offset irq numbers for the u3 MPIC by 128 in PowerMac */
394                 if (systemcfg->platform == PLATFORM_POWERMAC && ic && ic->parent) {
395                         char *name = get_property(ic->parent, "name", NULL);
396                         if (name && !strcmp(name, "u3"))
397                                 np->intrs[intrcount].line += 128;
398                         else if (!(name && !strcmp(name, "mac-io")))
399                                 /* ignore other cascaded controllers, such as
400                                    the k2-sata-root */
401                                 break;
402                 }
403 #endif
404                 if (n > 2) {
405                         printk("hmmm, got %d intr cells for %s:", n,
406                                np->full_name);
407                         for (j = 0; j < n; ++j)
408                                 printk(" %d", irq[j]);
409                         printk("\n");
410                 }
411                 ++intrcount;
412         }
413         np->n_intrs = intrcount;
414
415         return 0;
416 }
417
418 static int __devinit interpret_pci_props(struct device_node *np,
419                                          unsigned long *mem_start,
420                                          int naddrc, int nsizec,
421                                          int measure_only)
422 {
423         struct address_range *adr;
424         struct pci_reg_property *pci_addrs;
425         int i, l, n_addrs;
426
427         pci_addrs = (struct pci_reg_property *)
428                 get_property(np, "assigned-addresses", &l);
429         if (!pci_addrs)
430                 return 0;
431
432         n_addrs = l / sizeof(*pci_addrs);
433
434         adr = prom_alloc(n_addrs * sizeof(*adr), mem_start);
435         if (!adr)
436                 return -ENOMEM;
437
438         if (measure_only)
439                 return 0;
440
441         np->addrs = adr;
442         np->n_addrs = n_addrs;
443
444         for (i = 0; i < n_addrs; i++) {
445                 adr[i].space = pci_addrs[i].addr.a_hi;
446                 adr[i].address = pci_addrs[i].addr.a_lo |
447                         ((u64)pci_addrs[i].addr.a_mid << 32);
448                 adr[i].size = pci_addrs[i].size_lo;
449         }
450
451         return 0;
452 }
453
454 static int __init interpret_dbdma_props(struct device_node *np,
455                                         unsigned long *mem_start,
456                                         int naddrc, int nsizec,
457                                         int measure_only)
458 {
459         struct reg_property32 *rp;
460         struct address_range *adr;
461         unsigned long base_address;
462         int i, l;
463         struct device_node *db;
464
465         base_address = 0;
466         if (!measure_only) {
467                 for (db = np->parent; db != NULL; db = db->parent) {
468                         if (!strcmp(db->type, "dbdma") && db->n_addrs != 0) {
469                                 base_address = db->addrs[0].address;
470                                 break;
471                         }
472                 }
473         }
474
475         rp = (struct reg_property32 *) get_property(np, "reg", &l);
476         if (rp != 0 && l >= sizeof(struct reg_property32)) {
477                 i = 0;
478                 adr = (struct address_range *) (*mem_start);
479                 while ((l -= sizeof(struct reg_property32)) >= 0) {
480                         if (!measure_only) {
481                                 adr[i].space = 2;
482                                 adr[i].address = rp[i].address + base_address;
483                                 adr[i].size = rp[i].size;
484                         }
485                         ++i;
486                 }
487                 np->addrs = adr;
488                 np->n_addrs = i;
489                 (*mem_start) += i * sizeof(struct address_range);
490         }
491
492         return 0;
493 }
494
495 static int __init interpret_macio_props(struct device_node *np,
496                                         unsigned long *mem_start,
497                                         int naddrc, int nsizec,
498                                         int measure_only)
499 {
500         struct reg_property32 *rp;
501         struct address_range *adr;
502         unsigned long base_address;
503         int i, l;
504         struct device_node *db;
505
506         base_address = 0;
507         if (!measure_only) {
508                 for (db = np->parent; db != NULL; db = db->parent) {
509                         if (!strcmp(db->type, "mac-io") && db->n_addrs != 0) {
510                                 base_address = db->addrs[0].address;
511                                 break;
512                         }
513                 }
514         }
515
516         rp = (struct reg_property32 *) get_property(np, "reg", &l);
517         if (rp != 0 && l >= sizeof(struct reg_property32)) {
518                 i = 0;
519                 adr = (struct address_range *) (*mem_start);
520                 while ((l -= sizeof(struct reg_property32)) >= 0) {
521                         if (!measure_only) {
522                                 adr[i].space = 2;
523                                 adr[i].address = rp[i].address + base_address;
524                                 adr[i].size = rp[i].size;
525                         }
526                         ++i;
527                 }
528                 np->addrs = adr;
529                 np->n_addrs = i;
530                 (*mem_start) += i * sizeof(struct address_range);
531         }
532
533         return 0;
534 }
535
536 static int __init interpret_isa_props(struct device_node *np,
537                                       unsigned long *mem_start,
538                                       int naddrc, int nsizec,
539                                       int measure_only)
540 {
541         struct isa_reg_property *rp;
542         struct address_range *adr;
543         int i, l;
544
545         rp = (struct isa_reg_property *) get_property(np, "reg", &l);
546         if (rp != 0 && l >= sizeof(struct isa_reg_property)) {
547                 i = 0;
548                 adr = (struct address_range *) (*mem_start);
549                 while ((l -= sizeof(struct isa_reg_property)) >= 0) {
550                         if (!measure_only) {
551                                 adr[i].space = rp[i].space;
552                                 adr[i].address = rp[i].address;
553                                 adr[i].size = rp[i].size;
554                         }
555                         ++i;
556                 }
557                 np->addrs = adr;
558                 np->n_addrs = i;
559                 (*mem_start) += i * sizeof(struct address_range);
560         }
561
562         return 0;
563 }
564
565 static int __init interpret_root_props(struct device_node *np,
566                                        unsigned long *mem_start,
567                                        int naddrc, int nsizec,
568                                        int measure_only)
569 {
570         struct address_range *adr;
571         int i, l;
572         unsigned int *rp;
573         int rpsize = (naddrc + nsizec) * sizeof(unsigned int);
574
575         rp = (unsigned int *) get_property(np, "reg", &l);
576         if (rp != 0 && l >= rpsize) {
577                 i = 0;
578                 adr = (struct address_range *) (*mem_start);
579                 while ((l -= rpsize) >= 0) {
580                         if (!measure_only) {
581                                 adr[i].space = 0;
582                                 adr[i].address = rp[naddrc - 1];
583                                 adr[i].size = rp[naddrc + nsizec - 1];
584                         }
585                         ++i;
586                         rp += naddrc + nsizec;
587                 }
588                 np->addrs = adr;
589                 np->n_addrs = i;
590                 (*mem_start) += i * sizeof(struct address_range);
591         }
592
593         return 0;
594 }
595
596 static int __devinit finish_node(struct device_node *np,
597                                  unsigned long *mem_start,
598                                  interpret_func *ifunc,
599                                  int naddrc, int nsizec,
600                                  int measure_only)
601 {
602         struct device_node *child;
603         int *ip, rc = 0;
604
605         /* get the device addresses and interrupts */
606         if (ifunc != NULL)
607                 rc = ifunc(np, mem_start, naddrc, nsizec, measure_only);
608         if (rc)
609                 goto out;
610
611         rc = finish_node_interrupts(np, mem_start, measure_only);
612         if (rc)
613                 goto out;
614
615         /* Look for #address-cells and #size-cells properties. */
616         ip = (int *) get_property(np, "#address-cells", NULL);
617         if (ip != NULL)
618                 naddrc = *ip;
619         ip = (int *) get_property(np, "#size-cells", NULL);
620         if (ip != NULL)
621                 nsizec = *ip;
622
623         if (!strcmp(np->name, "device-tree") || np->parent == NULL)
624                 ifunc = interpret_root_props;
625         else if (np->type == 0)
626                 ifunc = NULL;
627         else if (!strcmp(np->type, "pci") || !strcmp(np->type, "vci"))
628                 ifunc = interpret_pci_props;
629         else if (!strcmp(np->type, "dbdma"))
630                 ifunc = interpret_dbdma_props;
631         else if (!strcmp(np->type, "mac-io") || ifunc == interpret_macio_props)
632                 ifunc = interpret_macio_props;
633         else if (!strcmp(np->type, "isa"))
634                 ifunc = interpret_isa_props;
635         else if (!strcmp(np->name, "uni-n") || !strcmp(np->name, "u3"))
636                 ifunc = interpret_root_props;
637         else if (!((ifunc == interpret_dbdma_props
638                     || ifunc == interpret_macio_props)
639                    && (!strcmp(np->type, "escc")
640                        || !strcmp(np->type, "media-bay"))))
641                 ifunc = NULL;
642
643         for (child = np->child; child != NULL; child = child->sibling) {
644                 rc = finish_node(child, mem_start, ifunc,
645                                  naddrc, nsizec, measure_only);
646                 if (rc)
647                         goto out;
648         }
649 out:
650         return rc;
651 }
652
653 static void __init scan_interrupt_controllers(void)
654 {
655         struct device_node *np;
656         int n = 0;
657         char *name, *ic;
658         int iclen;
659
660         for (np = allnodes; np != NULL; np = np->allnext) {
661                 ic = get_property(np, "interrupt-controller", &iclen);
662                 name = get_property(np, "name", NULL);
663                 /* checking iclen makes sure we don't get a false
664                    match on /chosen.interrupt_controller */
665                 if ((name != NULL
666                      && strcmp(name, "interrupt-controller") == 0)
667                     || (ic != NULL && iclen == 0
668                         && strcmp(name, "AppleKiwi"))) {
669                         if (n == 0)
670                                 dflt_interrupt_controller = np;
671                         ++n;
672                 }
673         }
674         num_interrupt_controllers = n;
675 }
676
677 /**
678  * finish_device_tree is called once things are running normally
679  * (i.e. with text and data mapped to the address they were linked at).
680  * It traverses the device tree and fills in some of the additional,
681  * fields in each node like {n_}addrs and {n_}intrs, the virt interrupt
682  * mapping is also initialized at this point.
683  */
684 void __init finish_device_tree(void)
685 {
686         unsigned long start, end, size = 0;
687
688         DBG(" -> finish_device_tree\n");
689
690 #ifdef CONFIG_PPC64
691         /* Initialize virtual IRQ map */
692         virt_irq_init();
693 #endif
694         scan_interrupt_controllers();
695
696         /*
697          * Finish device-tree (pre-parsing some properties etc...)
698          * We do this in 2 passes. One with "measure_only" set, which
699          * will only measure the amount of memory needed, then we can
700          * allocate that memory, and call finish_node again. However,
701          * we must be careful as most routines will fail nowadays when
702          * prom_alloc() returns 0, so we must make sure our first pass
703          * doesn't start at 0. We pre-initialize size to 16 for that
704          * reason and then remove those additional 16 bytes
705          */
706         size = 16;
707         finish_node(allnodes, &size, NULL, 0, 0, 1);
708         size -= 16;
709         end = start = (unsigned long) __va(lmb_alloc(size, 128));
710         finish_node(allnodes, &end, NULL, 0, 0, 0);
711         BUG_ON(end != start + size);
712
713         DBG(" <- finish_device_tree\n");
714 }
715
716 static inline char *find_flat_dt_string(u32 offset)
717 {
718         return ((char *)initial_boot_params) +
719                 initial_boot_params->off_dt_strings + offset;
720 }
721
722 /**
723  * This function is used to scan the flattened device-tree, it is
724  * used to extract the memory informations at boot before we can
725  * unflatten the tree
726  */
727 static int __init scan_flat_dt(int (*it)(unsigned long node,
728                                          const char *uname, int depth,
729                                          void *data),
730                                void *data)
731 {
732         unsigned long p = ((unsigned long)initial_boot_params) +
733                 initial_boot_params->off_dt_struct;
734         int rc = 0;
735         int depth = -1;
736
737         do {
738                 u32 tag = *((u32 *)p);
739                 char *pathp;
740                 
741                 p += 4;
742                 if (tag == OF_DT_END_NODE) {
743                         depth --;
744                         continue;
745                 }
746                 if (tag == OF_DT_NOP)
747                         continue;
748                 if (tag == OF_DT_END)
749                         break;
750                 if (tag == OF_DT_PROP) {
751                         u32 sz = *((u32 *)p);
752                         p += 8;
753                         if (initial_boot_params->version < 0x10)
754                                 p = _ALIGN(p, sz >= 8 ? 8 : 4);
755                         p += sz;
756                         p = _ALIGN(p, 4);
757                         continue;
758                 }
759                 if (tag != OF_DT_BEGIN_NODE) {
760                         printk(KERN_WARNING "Invalid tag %x scanning flattened"
761                                " device tree !\n", tag);
762                         return -EINVAL;
763                 }
764                 depth++;
765                 pathp = (char *)p;
766                 p = _ALIGN(p + strlen(pathp) + 1, 4);
767                 if ((*pathp) == '/') {
768                         char *lp, *np;
769                         for (lp = NULL, np = pathp; *np; np++)
770                                 if ((*np) == '/')
771                                         lp = np+1;
772                         if (lp != NULL)
773                                 pathp = lp;
774                 }
775                 rc = it(p, pathp, depth, data);
776                 if (rc != 0)
777                         break;          
778         } while(1);
779
780         return rc;
781 }
782
783 /**
784  * This  function can be used within scan_flattened_dt callback to get
785  * access to properties
786  */
787 static void* __init get_flat_dt_prop(unsigned long node, const char *name,
788                                      unsigned long *size)
789 {
790         unsigned long p = node;
791
792         do {
793                 u32 tag = *((u32 *)p);
794                 u32 sz, noff;
795                 const char *nstr;
796
797                 p += 4;
798                 if (tag == OF_DT_NOP)
799                         continue;
800                 if (tag != OF_DT_PROP)
801                         return NULL;
802
803                 sz = *((u32 *)p);
804                 noff = *((u32 *)(p + 4));
805                 p += 8;
806                 if (initial_boot_params->version < 0x10)
807                         p = _ALIGN(p, sz >= 8 ? 8 : 4);
808
809                 nstr = find_flat_dt_string(noff);
810                 if (nstr == NULL) {
811                         printk(KERN_WARNING "Can't find property index"
812                                " name !\n");
813                         return NULL;
814                 }
815                 if (strcmp(name, nstr) == 0) {
816                         if (size)
817                                 *size = sz;
818                         return (void *)p;
819                 }
820                 p += sz;
821                 p = _ALIGN(p, 4);
822         } while(1);
823 }
824
825 static void *__init unflatten_dt_alloc(unsigned long *mem, unsigned long size,
826                                        unsigned long align)
827 {
828         void *res;
829
830         *mem = _ALIGN(*mem, align);
831         res = (void *)*mem;
832         *mem += size;
833
834         return res;
835 }
836
837 static unsigned long __init unflatten_dt_node(unsigned long mem,
838                                               unsigned long *p,
839                                               struct device_node *dad,
840                                               struct device_node ***allnextpp,
841                                               unsigned long fpsize)
842 {
843         struct device_node *np;
844         struct property *pp, **prev_pp = NULL;
845         char *pathp;
846         u32 tag;
847         unsigned int l, allocl;
848         int has_name = 0;
849         int new_format = 0;
850
851         tag = *((u32 *)(*p));
852         if (tag != OF_DT_BEGIN_NODE) {
853                 printk("Weird tag at start of node: %x\n", tag);
854                 return mem;
855         }
856         *p += 4;
857         pathp = (char *)*p;
858         l = allocl = strlen(pathp) + 1;
859         *p = _ALIGN(*p + l, 4);
860
861         /* version 0x10 has a more compact unit name here instead of the full
862          * path. we accumulate the full path size using "fpsize", we'll rebuild
863          * it later. We detect this because the first character of the name is
864          * not '/'.
865          */
866         if ((*pathp) != '/') {
867                 new_format = 1;
868                 if (fpsize == 0) {
869                         /* root node: special case. fpsize accounts for path
870                          * plus terminating zero. root node only has '/', so
871                          * fpsize should be 2, but we want to avoid the first
872                          * level nodes to have two '/' so we use fpsize 1 here
873                          */
874                         fpsize = 1;
875                         allocl = 2;
876                 } else {
877                         /* account for '/' and path size minus terminal 0
878                          * already in 'l'
879                          */
880                         fpsize += l;
881                         allocl = fpsize;
882                 }
883         }
884
885
886         np = unflatten_dt_alloc(&mem, sizeof(struct device_node) + allocl,
887                                 __alignof__(struct device_node));
888         if (allnextpp) {
889                 memset(np, 0, sizeof(*np));
890                 np->full_name = ((char*)np) + sizeof(struct device_node);
891                 if (new_format) {
892                         char *p = np->full_name;
893                         /* rebuild full path for new format */
894                         if (dad && dad->parent) {
895                                 strcpy(p, dad->full_name);
896 #ifdef DEBUG
897                                 if ((strlen(p) + l + 1) != allocl) {
898                                         DBG("%s: p: %d, l: %d, a: %d\n",
899                                             pathp, strlen(p), l, allocl);
900                                 }
901 #endif
902                                 p += strlen(p);
903                         }
904                         *(p++) = '/';
905                         memcpy(p, pathp, l);
906                 } else
907                         memcpy(np->full_name, pathp, l);
908                 prev_pp = &np->properties;
909                 **allnextpp = np;
910                 *allnextpp = &np->allnext;
911                 if (dad != NULL) {
912                         np->parent = dad;
913                         /* we temporarily use the next field as `last_child'*/
914                         if (dad->next == 0)
915                                 dad->child = np;
916                         else
917                                 dad->next->sibling = np;
918                         dad->next = np;
919                 }
920                 kref_init(&np->kref);
921         }
922         while(1) {
923                 u32 sz, noff;
924                 char *pname;
925
926                 tag = *((u32 *)(*p));
927                 if (tag == OF_DT_NOP) {
928                         *p += 4;
929                         continue;
930                 }
931                 if (tag != OF_DT_PROP)
932                         break;
933                 *p += 4;
934                 sz = *((u32 *)(*p));
935                 noff = *((u32 *)((*p) + 4));
936                 *p += 8;
937                 if (initial_boot_params->version < 0x10)
938                         *p = _ALIGN(*p, sz >= 8 ? 8 : 4);
939
940                 pname = find_flat_dt_string(noff);
941                 if (pname == NULL) {
942                         printk("Can't find property name in list !\n");
943                         break;
944                 }
945                 if (strcmp(pname, "name") == 0)
946                         has_name = 1;
947                 l = strlen(pname) + 1;
948                 pp = unflatten_dt_alloc(&mem, sizeof(struct property),
949                                         __alignof__(struct property));
950                 if (allnextpp) {
951                         if (strcmp(pname, "linux,phandle") == 0) {
952                                 np->node = *((u32 *)*p);
953                                 if (np->linux_phandle == 0)
954                                         np->linux_phandle = np->node;
955                         }
956                         if (strcmp(pname, "ibm,phandle") == 0)
957                                 np->linux_phandle = *((u32 *)*p);
958                         pp->name = pname;
959                         pp->length = sz;
960                         pp->value = (void *)*p;
961                         *prev_pp = pp;
962                         prev_pp = &pp->next;
963                 }
964                 *p = _ALIGN((*p) + sz, 4);
965         }
966         /* with version 0x10 we may not have the name property, recreate
967          * it here from the unit name if absent
968          */
969         if (!has_name) {
970                 char *p = pathp, *ps = pathp, *pa = NULL;
971                 int sz;
972
973                 while (*p) {
974                         if ((*p) == '@')
975                                 pa = p;
976                         if ((*p) == '/')
977                                 ps = p + 1;
978                         p++;
979                 }
980                 if (pa < ps)
981                         pa = p;
982                 sz = (pa - ps) + 1;
983                 pp = unflatten_dt_alloc(&mem, sizeof(struct property) + sz,
984                                         __alignof__(struct property));
985                 if (allnextpp) {
986                         pp->name = "name";
987                         pp->length = sz;
988                         pp->value = (unsigned char *)(pp + 1);
989                         *prev_pp = pp;
990                         prev_pp = &pp->next;
991                         memcpy(pp->value, ps, sz - 1);
992                         ((char *)pp->value)[sz - 1] = 0;
993                         DBG("fixed up name for %s -> %s\n", pathp, pp->value);
994                 }
995         }
996         if (allnextpp) {
997                 *prev_pp = NULL;
998                 np->name = get_property(np, "name", NULL);
999                 np->type = get_property(np, "device_type", NULL);
1000
1001                 if (!np->name)
1002                         np->name = "<NULL>";
1003                 if (!np->type)
1004                         np->type = "<NULL>";
1005         }
1006         while (tag == OF_DT_BEGIN_NODE) {
1007                 mem = unflatten_dt_node(mem, p, np, allnextpp, fpsize);
1008                 tag = *((u32 *)(*p));
1009         }
1010         if (tag != OF_DT_END_NODE) {
1011                 printk("Weird tag at end of node: %x\n", tag);
1012                 return mem;
1013         }
1014         *p += 4;
1015         return mem;
1016 }
1017
1018
1019 /**
1020  * unflattens the device-tree passed by the firmware, creating the
1021  * tree of struct device_node. It also fills the "name" and "type"
1022  * pointers of the nodes so the normal device-tree walking functions
1023  * can be used (this used to be done by finish_device_tree)
1024  */
1025 void __init unflatten_device_tree(void)
1026 {
1027         unsigned long start, mem, size;
1028         struct device_node **allnextp = &allnodes;
1029         char *p = NULL;
1030         int l = 0;
1031
1032         DBG(" -> unflatten_device_tree()\n");
1033
1034         /* First pass, scan for size */
1035         start = ((unsigned long)initial_boot_params) +
1036                 initial_boot_params->off_dt_struct;
1037         size = unflatten_dt_node(0, &start, NULL, NULL, 0);
1038         size = (size | 3) + 1;
1039
1040         DBG("  size is %lx, allocating...\n", size);
1041
1042         /* Allocate memory for the expanded device tree */
1043         mem = lmb_alloc(size + 4, __alignof__(struct device_node));
1044         if (!mem) {
1045                 DBG("Couldn't allocate memory with lmb_alloc()!\n");
1046                 panic("Couldn't allocate memory with lmb_alloc()!\n");
1047         }
1048         mem = (unsigned long) __va(mem);
1049
1050         ((u32 *)mem)[size / 4] = 0xdeadbeef;
1051
1052         DBG("  unflattening %lx...\n", mem);
1053
1054         /* Second pass, do actual unflattening */
1055         start = ((unsigned long)initial_boot_params) +
1056                 initial_boot_params->off_dt_struct;
1057         unflatten_dt_node(mem, &start, NULL, &allnextp, 0);
1058         if (*((u32 *)start) != OF_DT_END)
1059                 printk(KERN_WARNING "Weird tag at end of tree: %08x\n", *((u32 *)start));
1060         if (((u32 *)mem)[size / 4] != 0xdeadbeef)
1061                 printk(KERN_WARNING "End of tree marker overwritten: %08x\n",
1062                        ((u32 *)mem)[size / 4] );
1063         *allnextp = NULL;
1064
1065         /* Get pointer to OF "/chosen" node for use everywhere */
1066         of_chosen = of_find_node_by_path("/chosen");
1067         if (of_chosen == NULL)
1068                 of_chosen = of_find_node_by_path("/chosen@0");
1069
1070         /* Retreive command line */
1071         if (of_chosen != NULL) {
1072                 p = (char *)get_property(of_chosen, "bootargs", &l);
1073                 if (p != NULL && l > 0)
1074                         strlcpy(cmd_line, p, min(l, COMMAND_LINE_SIZE));
1075         }
1076 #ifdef CONFIG_CMDLINE
1077         if (l == 0 || (l == 1 && (*p) == 0))
1078                 strlcpy(cmd_line, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1079 #endif /* CONFIG_CMDLINE */
1080
1081         DBG("Command line is: %s\n", cmd_line);
1082
1083         DBG(" <- unflatten_device_tree()\n");
1084 }
1085
1086
1087 static int __init early_init_dt_scan_cpus(unsigned long node,
1088                                           const char *uname, int depth, void *data)
1089 {
1090         char *type = get_flat_dt_prop(node, "device_type", NULL);
1091         u32 *prop;
1092         unsigned long size = 0;
1093
1094         /* We are scanning "cpu" nodes only */
1095         if (type == NULL || strcmp(type, "cpu") != 0)
1096                 return 0;
1097
1098 #ifdef CONFIG_PPC_PSERIES
1099         /* On LPAR, look for the first ibm,pft-size property for the  hash table size
1100          */
1101         if (systemcfg->platform == PLATFORM_PSERIES_LPAR && ppc64_pft_size == 0) {
1102                 u32 *pft_size;
1103                 pft_size = get_flat_dt_prop(node, "ibm,pft-size", NULL);
1104                 if (pft_size != NULL) {
1105                         /* pft_size[0] is the NUMA CEC cookie */
1106                         ppc64_pft_size = pft_size[1];
1107                 }
1108         }
1109 #endif
1110
1111         boot_cpuid = 0;
1112         boot_cpuid_phys = 0;
1113         if (initial_boot_params && initial_boot_params->version >= 2) {
1114                 /* version 2 of the kexec param format adds the phys cpuid
1115                  * of booted proc.
1116                  */
1117                 boot_cpuid_phys = initial_boot_params->boot_cpuid_phys;
1118         } else {
1119                 /* Check if it's the boot-cpu, set it's hw index now */
1120                 if (get_flat_dt_prop(node, "linux,boot-cpu", NULL) != NULL) {
1121                         prop = get_flat_dt_prop(node, "reg", NULL);
1122                         if (prop != NULL)
1123                                 boot_cpuid_phys = *prop;
1124                 }
1125         }
1126         set_hard_smp_processor_id(0, boot_cpuid_phys);
1127
1128 #ifdef CONFIG_ALTIVEC
1129         /* Check if we have a VMX and eventually update CPU features */
1130         prop = (u32 *)get_flat_dt_prop(node, "ibm,vmx", &size);
1131         if (prop && (*prop) > 0) {
1132                 cur_cpu_spec->cpu_features |= CPU_FTR_ALTIVEC;
1133                 cur_cpu_spec->cpu_user_features |= PPC_FEATURE_HAS_ALTIVEC;
1134         }
1135
1136         /* Same goes for Apple's "altivec" property */
1137         prop = (u32 *)get_flat_dt_prop(node, "altivec", NULL);
1138         if (prop) {
1139                 cur_cpu_spec->cpu_features |= CPU_FTR_ALTIVEC;
1140                 cur_cpu_spec->cpu_user_features |= PPC_FEATURE_HAS_ALTIVEC;
1141         }
1142 #endif /* CONFIG_ALTIVEC */
1143
1144 #ifdef CONFIG_PPC_PSERIES
1145         /*
1146          * Check for an SMT capable CPU and set the CPU feature. We do
1147          * this by looking at the size of the ibm,ppc-interrupt-server#s
1148          * property
1149          */
1150         prop = (u32 *)get_flat_dt_prop(node, "ibm,ppc-interrupt-server#s",
1151                                        &size);
1152         cur_cpu_spec->cpu_features &= ~CPU_FTR_SMT;
1153         if (prop && ((size / sizeof(u32)) > 1))
1154                 cur_cpu_spec->cpu_features |= CPU_FTR_SMT;
1155 #endif
1156
1157         return 0;
1158 }
1159
1160 static int __init early_init_dt_scan_chosen(unsigned long node,
1161                                             const char *uname, int depth, void *data)
1162 {
1163         u32 *prop;
1164         unsigned long *lprop;
1165
1166         DBG("search \"chosen\", depth: %d, uname: %s\n", depth, uname);
1167
1168         if (depth != 1 ||
1169             (strcmp(uname, "chosen") != 0 && strcmp(uname, "chosen@0") != 0))
1170                 return 0;
1171
1172         /* get platform type */
1173         prop = (u32 *)get_flat_dt_prop(node, "linux,platform", NULL);
1174         if (prop == NULL)
1175                 return 0;
1176 #ifdef CONFIG_PPC64
1177         systemcfg->platform = *prop;
1178 #else
1179 #ifdef CONFIG_PPC_MULTIPLATFORM
1180         _machine = *prop;
1181 #endif
1182 #endif
1183
1184 #ifdef CONFIG_PPC64
1185         /* check if iommu is forced on or off */
1186         if (get_flat_dt_prop(node, "linux,iommu-off", NULL) != NULL)
1187                 iommu_is_off = 1;
1188         if (get_flat_dt_prop(node, "linux,iommu-force-on", NULL) != NULL)
1189                 iommu_force_on = 1;
1190 #endif
1191
1192         lprop = get_flat_dt_prop(node, "linux,memory-limit", NULL);
1193         if (lprop)
1194                 memory_limit = *lprop;
1195
1196 #ifdef CONFIG_PPC64
1197         lprop = get_flat_dt_prop(node, "linux,tce-alloc-start", NULL);
1198         if (lprop)
1199                 tce_alloc_start = *lprop;
1200         lprop = get_flat_dt_prop(node, "linux,tce-alloc-end", NULL);
1201         if (lprop)
1202                 tce_alloc_end = *lprop;
1203 #endif
1204
1205 #ifdef CONFIG_PPC_RTAS
1206         /* To help early debugging via the front panel, we retreive a minimal
1207          * set of RTAS infos now if available
1208          */
1209         {
1210                 u64 *basep, *entryp;
1211
1212                 basep = get_flat_dt_prop(node, "linux,rtas-base", NULL);
1213                 entryp = get_flat_dt_prop(node, "linux,rtas-entry", NULL);
1214                 prop = get_flat_dt_prop(node, "linux,rtas-size", NULL);
1215                 if (basep && entryp && prop) {
1216                         rtas.base = *basep;
1217                         rtas.entry = *entryp;
1218                         rtas.size = *prop;
1219                 }
1220         }
1221 #endif /* CONFIG_PPC_RTAS */
1222
1223         /* break now */
1224         return 1;
1225 }
1226
1227 static int __init early_init_dt_scan_root(unsigned long node,
1228                                           const char *uname, int depth, void *data)
1229 {
1230         u32 *prop;
1231
1232         if (depth != 0)
1233                 return 0;
1234
1235         prop = get_flat_dt_prop(node, "#size-cells", NULL);
1236         dt_root_size_cells = (prop == NULL) ? 1 : *prop;
1237         DBG("dt_root_size_cells = %x\n", dt_root_size_cells);
1238
1239         prop = get_flat_dt_prop(node, "#address-cells", NULL);
1240         dt_root_addr_cells = (prop == NULL) ? 2 : *prop;
1241         DBG("dt_root_addr_cells = %x\n", dt_root_addr_cells);
1242         
1243         /* break now */
1244         return 1;
1245 }
1246
1247 static unsigned long __init dt_mem_next_cell(int s, cell_t **cellp)
1248 {
1249         cell_t *p = *cellp;
1250         unsigned long r;
1251
1252         /* Ignore more than 2 cells */
1253         while (s > sizeof(unsigned long) / 4) {
1254                 p++;
1255                 s--;
1256         }
1257         r = *p++;
1258 #ifdef CONFIG_PPC64
1259         if (s > 1) {
1260                 r <<= 32;
1261                 r |= *(p++);
1262                 s--;
1263         }
1264 #endif
1265
1266         *cellp = p;
1267         return r;
1268 }
1269
1270
1271 static int __init early_init_dt_scan_memory(unsigned long node,
1272                                             const char *uname, int depth, void *data)
1273 {
1274         char *type = get_flat_dt_prop(node, "device_type", NULL);
1275         cell_t *reg, *endp;
1276         unsigned long l;
1277
1278         /* We are scanning "memory" nodes only */
1279         if (type == NULL || strcmp(type, "memory") != 0)
1280                 return 0;
1281
1282         reg = (cell_t *)get_flat_dt_prop(node, "reg", &l);
1283         if (reg == NULL)
1284                 return 0;
1285
1286         endp = reg + (l / sizeof(cell_t));
1287
1288         DBG("memory scan node %s ..., reg size %ld, data: %x %x %x %x, ...\n",
1289             uname, l, reg[0], reg[1], reg[2], reg[3]);
1290
1291         while ((endp - reg) >= (dt_root_addr_cells + dt_root_size_cells)) {
1292                 unsigned long base, size;
1293
1294                 base = dt_mem_next_cell(dt_root_addr_cells, &reg);
1295                 size = dt_mem_next_cell(dt_root_size_cells, &reg);
1296
1297                 if (size == 0)
1298                         continue;
1299                 DBG(" - %lx ,  %lx\n", base, size);
1300 #ifdef CONFIG_PPC64
1301                 if (iommu_is_off) {
1302                         if (base >= 0x80000000ul)
1303                                 continue;
1304                         if ((base + size) > 0x80000000ul)
1305                                 size = 0x80000000ul - base;
1306                 }
1307 #endif
1308                 lmb_add(base, size);
1309         }
1310         return 0;
1311 }
1312
1313 static void __init early_reserve_mem(void)
1314 {
1315         unsigned long base, size;
1316         unsigned long *reserve_map;
1317
1318         reserve_map = (unsigned long *)(((unsigned long)initial_boot_params) +
1319                                         initial_boot_params->off_mem_rsvmap);
1320         while (1) {
1321                 base = *(reserve_map++);
1322                 size = *(reserve_map++);
1323                 if (size == 0)
1324                         break;
1325                 DBG("reserving: %lx -> %lx\n", base, size);
1326                 lmb_reserve(base, size);
1327         }
1328
1329 #if 0
1330         DBG("memory reserved, lmbs :\n");
1331         lmb_dump_all();
1332 #endif
1333 }
1334
1335 void __init early_init_devtree(void *params)
1336 {
1337         DBG(" -> early_init_devtree()\n");
1338
1339         /* Setup flat device-tree pointer */
1340         initial_boot_params = params;
1341
1342         /* Retrieve various informations from the /chosen node of the
1343          * device-tree, including the platform type, initrd location and
1344          * size, TCE reserve, and more ...
1345          */
1346         scan_flat_dt(early_init_dt_scan_chosen, NULL);
1347
1348         /* Scan memory nodes and rebuild LMBs */
1349         lmb_init();
1350         scan_flat_dt(early_init_dt_scan_root, NULL);
1351         scan_flat_dt(early_init_dt_scan_memory, NULL);
1352         lmb_enforce_memory_limit(memory_limit);
1353         lmb_analyze();
1354 #ifdef CONFIG_PPC64
1355         systemcfg->physicalMemorySize = lmb_phys_mem_size();
1356 #endif
1357         lmb_reserve(0, __pa(klimit));
1358
1359         DBG("Phys. mem: %lx\n", lmb_phys_mem_size());
1360
1361         /* Reserve LMB regions used by kernel, initrd, dt, etc... */
1362         early_reserve_mem();
1363
1364         DBG("Scanning CPUs ...\n");
1365
1366         /* Retreive hash table size from flattened tree plus other
1367          * CPU related informations (altivec support, boot CPU ID, ...)
1368          */
1369         scan_flat_dt(early_init_dt_scan_cpus, NULL);
1370
1371         DBG(" <- early_init_devtree()\n");
1372 }
1373
1374 #undef printk
1375
1376 int
1377 prom_n_addr_cells(struct device_node* np)
1378 {
1379         int* ip;
1380         do {
1381                 if (np->parent)
1382                         np = np->parent;
1383                 ip = (int *) get_property(np, "#address-cells", NULL);
1384                 if (ip != NULL)
1385                         return *ip;
1386         } while (np->parent);
1387         /* No #address-cells property for the root node, default to 1 */
1388         return 1;
1389 }
1390
1391 int
1392 prom_n_size_cells(struct device_node* np)
1393 {
1394         int* ip;
1395         do {
1396                 if (np->parent)
1397                         np = np->parent;
1398                 ip = (int *) get_property(np, "#size-cells", NULL);
1399                 if (ip != NULL)
1400                         return *ip;
1401         } while (np->parent);
1402         /* No #size-cells property for the root node, default to 1 */
1403         return 1;
1404 }
1405
1406 /**
1407  * Work out the sense (active-low level / active-high edge)
1408  * of each interrupt from the device tree.
1409  */
1410 void __init prom_get_irq_senses(unsigned char *senses, int off, int max)
1411 {
1412         struct device_node *np;
1413         int i, j;
1414
1415         /* default to level-triggered */
1416         memset(senses, IRQ_SENSE_LEVEL | IRQ_POLARITY_NEGATIVE, max - off);
1417
1418         for (np = allnodes; np != 0; np = np->allnext) {
1419                 for (j = 0; j < np->n_intrs; j++) {
1420                         i = np->intrs[j].line;
1421                         if (i >= off && i < max)
1422                                 senses[i-off] = np->intrs[j].sense;
1423                 }
1424         }
1425 }
1426
1427 /**
1428  * Construct and return a list of the device_nodes with a given name.
1429  */
1430 struct device_node *find_devices(const char *name)
1431 {
1432         struct device_node *head, **prevp, *np;
1433
1434         prevp = &head;
1435         for (np = allnodes; np != 0; np = np->allnext) {
1436                 if (np->name != 0 && strcasecmp(np->name, name) == 0) {
1437                         *prevp = np;
1438                         prevp = &np->next;
1439                 }
1440         }
1441         *prevp = NULL;
1442         return head;
1443 }
1444 EXPORT_SYMBOL(find_devices);
1445
1446 /**
1447  * Construct and return a list of the device_nodes with a given type.
1448  */
1449 struct device_node *find_type_devices(const char *type)
1450 {
1451         struct device_node *head, **prevp, *np;
1452
1453         prevp = &head;
1454         for (np = allnodes; np != 0; np = np->allnext) {
1455                 if (np->type != 0 && strcasecmp(np->type, type) == 0) {
1456                         *prevp = np;
1457                         prevp = &np->next;
1458                 }
1459         }
1460         *prevp = NULL;
1461         return head;
1462 }
1463 EXPORT_SYMBOL(find_type_devices);
1464
1465 /**
1466  * Returns all nodes linked together
1467  */
1468 struct device_node *find_all_nodes(void)
1469 {
1470         struct device_node *head, **prevp, *np;
1471
1472         prevp = &head;
1473         for (np = allnodes; np != 0; np = np->allnext) {
1474                 *prevp = np;
1475                 prevp = &np->next;
1476         }
1477         *prevp = NULL;
1478         return head;
1479 }
1480 EXPORT_SYMBOL(find_all_nodes);
1481
1482 /** Checks if the given "compat" string matches one of the strings in
1483  * the device's "compatible" property
1484  */
1485 int device_is_compatible(struct device_node *device, const char *compat)
1486 {
1487         const char* cp;
1488         int cplen, l;
1489
1490         cp = (char *) get_property(device, "compatible", &cplen);
1491         if (cp == NULL)
1492                 return 0;
1493         while (cplen > 0) {
1494                 if (strncasecmp(cp, compat, strlen(compat)) == 0)
1495                         return 1;
1496                 l = strlen(cp) + 1;
1497                 cp += l;
1498                 cplen -= l;
1499         }
1500
1501         return 0;
1502 }
1503 EXPORT_SYMBOL(device_is_compatible);
1504
1505
1506 /**
1507  * Indicates whether the root node has a given value in its
1508  * compatible property.
1509  */
1510 int machine_is_compatible(const char *compat)
1511 {
1512         struct device_node *root;
1513         int rc = 0;
1514
1515         root = of_find_node_by_path("/");
1516         if (root) {
1517                 rc = device_is_compatible(root, compat);
1518                 of_node_put(root);
1519         }
1520         return rc;
1521 }
1522 EXPORT_SYMBOL(machine_is_compatible);
1523
1524 /**
1525  * Construct and return a list of the device_nodes with a given type
1526  * and compatible property.
1527  */
1528 struct device_node *find_compatible_devices(const char *type,
1529                                             const char *compat)
1530 {
1531         struct device_node *head, **prevp, *np;
1532
1533         prevp = &head;
1534         for (np = allnodes; np != 0; np = np->allnext) {
1535                 if (type != NULL
1536                     && !(np->type != 0 && strcasecmp(np->type, type) == 0))
1537                         continue;
1538                 if (device_is_compatible(np, compat)) {
1539                         *prevp = np;
1540                         prevp = &np->next;
1541                 }
1542         }
1543         *prevp = NULL;
1544         return head;
1545 }
1546 EXPORT_SYMBOL(find_compatible_devices);
1547
1548 /**
1549  * Find the device_node with a given full_name.
1550  */
1551 struct device_node *find_path_device(const char *path)
1552 {
1553         struct device_node *np;
1554
1555         for (np = allnodes; np != 0; np = np->allnext)
1556                 if (np->full_name != 0 && strcasecmp(np->full_name, path) == 0)
1557                         return np;
1558         return NULL;
1559 }
1560 EXPORT_SYMBOL(find_path_device);
1561
1562 /*******
1563  *
1564  * New implementation of the OF "find" APIs, return a refcounted
1565  * object, call of_node_put() when done.  The device tree and list
1566  * are protected by a rw_lock.
1567  *
1568  * Note that property management will need some locking as well,
1569  * this isn't dealt with yet.
1570  *
1571  *******/
1572
1573 /**
1574  *      of_find_node_by_name - Find a node by its "name" property
1575  *      @from:  The node to start searching from or NULL, the node
1576  *              you pass will not be searched, only the next one
1577  *              will; typically, you pass what the previous call
1578  *              returned. of_node_put() will be called on it
1579  *      @name:  The name string to match against
1580  *
1581  *      Returns a node pointer with refcount incremented, use
1582  *      of_node_put() on it when done.
1583  */
1584 struct device_node *of_find_node_by_name(struct device_node *from,
1585         const char *name)
1586 {
1587         struct device_node *np;
1588
1589         read_lock(&devtree_lock);
1590         np = from ? from->allnext : allnodes;
1591         for (; np != 0; np = np->allnext)
1592                 if (np->name != 0 && strcasecmp(np->name, name) == 0
1593                     && of_node_get(np))
1594                         break;
1595         if (from)
1596                 of_node_put(from);
1597         read_unlock(&devtree_lock);
1598         return np;
1599 }
1600 EXPORT_SYMBOL(of_find_node_by_name);
1601
1602 /**
1603  *      of_find_node_by_type - Find a node by its "device_type" property
1604  *      @from:  The node to start searching from or NULL, the node
1605  *              you pass will not be searched, only the next one
1606  *              will; typically, you pass what the previous call
1607  *              returned. of_node_put() will be called on it
1608  *      @name:  The type string to match against
1609  *
1610  *      Returns a node pointer with refcount incremented, use
1611  *      of_node_put() on it when done.
1612  */
1613 struct device_node *of_find_node_by_type(struct device_node *from,
1614         const char *type)
1615 {
1616         struct device_node *np;
1617
1618         read_lock(&devtree_lock);
1619         np = from ? from->allnext : allnodes;
1620         for (; np != 0; np = np->allnext)
1621                 if (np->type != 0 && strcasecmp(np->type, type) == 0
1622                     && of_node_get(np))
1623                         break;
1624         if (from)
1625                 of_node_put(from);
1626         read_unlock(&devtree_lock);
1627         return np;
1628 }
1629 EXPORT_SYMBOL(of_find_node_by_type);
1630
1631 /**
1632  *      of_find_compatible_node - Find a node based on type and one of the
1633  *                                tokens in its "compatible" property
1634  *      @from:          The node to start searching from or NULL, the node
1635  *                      you pass will not be searched, only the next one
1636  *                      will; typically, you pass what the previous call
1637  *                      returned. of_node_put() will be called on it
1638  *      @type:          The type string to match "device_type" or NULL to ignore
1639  *      @compatible:    The string to match to one of the tokens in the device
1640  *                      "compatible" list.
1641  *
1642  *      Returns a node pointer with refcount incremented, use
1643  *      of_node_put() on it when done.
1644  */
1645 struct device_node *of_find_compatible_node(struct device_node *from,
1646         const char *type, const char *compatible)
1647 {
1648         struct device_node *np;
1649
1650         read_lock(&devtree_lock);
1651         np = from ? from->allnext : allnodes;
1652         for (; np != 0; np = np->allnext) {
1653                 if (type != NULL
1654                     && !(np->type != 0 && strcasecmp(np->type, type) == 0))
1655                         continue;
1656                 if (device_is_compatible(np, compatible) && of_node_get(np))
1657                         break;
1658         }
1659         if (from)
1660                 of_node_put(from);
1661         read_unlock(&devtree_lock);
1662         return np;
1663 }
1664 EXPORT_SYMBOL(of_find_compatible_node);
1665
1666 /**
1667  *      of_find_node_by_path - Find a node matching a full OF path
1668  *      @path:  The full path to match
1669  *
1670  *      Returns a node pointer with refcount incremented, use
1671  *      of_node_put() on it when done.
1672  */
1673 struct device_node *of_find_node_by_path(const char *path)
1674 {
1675         struct device_node *np = allnodes;
1676
1677         read_lock(&devtree_lock);
1678         for (; np != 0; np = np->allnext) {
1679                 if (np->full_name != 0 && strcasecmp(np->full_name, path) == 0
1680                     && of_node_get(np))
1681                         break;
1682         }
1683         read_unlock(&devtree_lock);
1684         return np;
1685 }
1686 EXPORT_SYMBOL(of_find_node_by_path);
1687
1688 /**
1689  *      of_find_node_by_phandle - Find a node given a phandle
1690  *      @handle:        phandle of the node to find
1691  *
1692  *      Returns a node pointer with refcount incremented, use
1693  *      of_node_put() on it when done.
1694  */
1695 struct device_node *of_find_node_by_phandle(phandle handle)
1696 {
1697         struct device_node *np;
1698
1699         read_lock(&devtree_lock);
1700         for (np = allnodes; np != 0; np = np->allnext)
1701                 if (np->linux_phandle == handle)
1702                         break;
1703         if (np)
1704                 of_node_get(np);
1705         read_unlock(&devtree_lock);
1706         return np;
1707 }
1708 EXPORT_SYMBOL(of_find_node_by_phandle);
1709
1710 /**
1711  *      of_find_all_nodes - Get next node in global list
1712  *      @prev:  Previous node or NULL to start iteration
1713  *              of_node_put() will be called on it
1714  *
1715  *      Returns a node pointer with refcount incremented, use
1716  *      of_node_put() on it when done.
1717  */
1718 struct device_node *of_find_all_nodes(struct device_node *prev)
1719 {
1720         struct device_node *np;
1721
1722         read_lock(&devtree_lock);
1723         np = prev ? prev->allnext : allnodes;
1724         for (; np != 0; np = np->allnext)
1725                 if (of_node_get(np))
1726                         break;
1727         if (prev)
1728                 of_node_put(prev);
1729         read_unlock(&devtree_lock);
1730         return np;
1731 }
1732 EXPORT_SYMBOL(of_find_all_nodes);
1733
1734 /**
1735  *      of_get_parent - Get a node's parent if any
1736  *      @node:  Node to get parent
1737  *
1738  *      Returns a node pointer with refcount incremented, use
1739  *      of_node_put() on it when done.
1740  */
1741 struct device_node *of_get_parent(const struct device_node *node)
1742 {
1743         struct device_node *np;
1744
1745         if (!node)
1746                 return NULL;
1747
1748         read_lock(&devtree_lock);
1749         np = of_node_get(node->parent);
1750         read_unlock(&devtree_lock);
1751         return np;
1752 }
1753 EXPORT_SYMBOL(of_get_parent);
1754
1755 /**
1756  *      of_get_next_child - Iterate a node childs
1757  *      @node:  parent node
1758  *      @prev:  previous child of the parent node, or NULL to get first
1759  *
1760  *      Returns a node pointer with refcount incremented, use
1761  *      of_node_put() on it when done.
1762  */
1763 struct device_node *of_get_next_child(const struct device_node *node,
1764         struct device_node *prev)
1765 {
1766         struct device_node *next;
1767
1768         read_lock(&devtree_lock);
1769         next = prev ? prev->sibling : node->child;
1770         for (; next != 0; next = next->sibling)
1771                 if (of_node_get(next))
1772                         break;
1773         if (prev)
1774                 of_node_put(prev);
1775         read_unlock(&devtree_lock);
1776         return next;
1777 }
1778 EXPORT_SYMBOL(of_get_next_child);
1779
1780 /**
1781  *      of_node_get - Increment refcount of a node
1782  *      @node:  Node to inc refcount, NULL is supported to
1783  *              simplify writing of callers
1784  *
1785  *      Returns node.
1786  */
1787 struct device_node *of_node_get(struct device_node *node)
1788 {
1789         if (node)
1790                 kref_get(&node->kref);
1791         return node;
1792 }
1793 EXPORT_SYMBOL(of_node_get);
1794
1795 static inline struct device_node * kref_to_device_node(struct kref *kref)
1796 {
1797         return container_of(kref, struct device_node, kref);
1798 }
1799
1800 /**
1801  *      of_node_release - release a dynamically allocated node
1802  *      @kref:  kref element of the node to be released
1803  *
1804  *      In of_node_put() this function is passed to kref_put()
1805  *      as the destructor.
1806  */
1807 static void of_node_release(struct kref *kref)
1808 {
1809         struct device_node *node = kref_to_device_node(kref);
1810         struct property *prop = node->properties;
1811
1812         if (!OF_IS_DYNAMIC(node))
1813                 return;
1814         while (prop) {
1815                 struct property *next = prop->next;
1816                 kfree(prop->name);
1817                 kfree(prop->value);
1818                 kfree(prop);
1819                 prop = next;
1820         }
1821         kfree(node->intrs);
1822         kfree(node->addrs);
1823         kfree(node->full_name);
1824         kfree(node->data);
1825         kfree(node);
1826 }
1827
1828 /**
1829  *      of_node_put - Decrement refcount of a node
1830  *      @node:  Node to dec refcount, NULL is supported to
1831  *              simplify writing of callers
1832  *
1833  */
1834 void of_node_put(struct device_node *node)
1835 {
1836         if (node)
1837                 kref_put(&node->kref, of_node_release);
1838 }
1839 EXPORT_SYMBOL(of_node_put);
1840
1841 /*
1842  * Plug a device node into the tree and global list.
1843  */
1844 void of_attach_node(struct device_node *np)
1845 {
1846         write_lock(&devtree_lock);
1847         np->sibling = np->parent->child;
1848         np->allnext = allnodes;
1849         np->parent->child = np;
1850         allnodes = np;
1851         write_unlock(&devtree_lock);
1852 }
1853
1854 /*
1855  * "Unplug" a node from the device tree.  The caller must hold
1856  * a reference to the node.  The memory associated with the node
1857  * is not freed until its refcount goes to zero.
1858  */
1859 void of_detach_node(const struct device_node *np)
1860 {
1861         struct device_node *parent;
1862
1863         write_lock(&devtree_lock);
1864
1865         parent = np->parent;
1866
1867         if (allnodes == np)
1868                 allnodes = np->allnext;
1869         else {
1870                 struct device_node *prev;
1871                 for (prev = allnodes;
1872                      prev->allnext != np;
1873                      prev = prev->allnext)
1874                         ;
1875                 prev->allnext = np->allnext;
1876         }
1877
1878         if (parent->child == np)
1879                 parent->child = np->sibling;
1880         else {
1881                 struct device_node *prevsib;
1882                 for (prevsib = np->parent->child;
1883                      prevsib->sibling != np;
1884                      prevsib = prevsib->sibling)
1885                         ;
1886                 prevsib->sibling = np->sibling;
1887         }
1888
1889         write_unlock(&devtree_lock);
1890 }
1891
1892 #ifdef CONFIG_PPC_PSERIES
1893 /*
1894  * Fix up the uninitialized fields in a new device node:
1895  * name, type, n_addrs, addrs, n_intrs, intrs, and pci-specific fields
1896  *
1897  * A lot of boot-time code is duplicated here, because functions such
1898  * as finish_node_interrupts, interpret_pci_props, etc. cannot use the
1899  * slab allocator.
1900  *
1901  * This should probably be split up into smaller chunks.
1902  */
1903
1904 static int of_finish_dynamic_node(struct device_node *node,
1905                                   unsigned long *unused1, int unused2,
1906                                   int unused3, int unused4)
1907 {
1908         struct device_node *parent = of_get_parent(node);
1909         int err = 0;
1910         phandle *ibm_phandle;
1911
1912         node->name = get_property(node, "name", NULL);
1913         node->type = get_property(node, "device_type", NULL);
1914
1915         if (!parent) {
1916                 err = -ENODEV;
1917                 goto out;
1918         }
1919
1920         /* We don't support that function on PowerMac, at least
1921          * not yet
1922          */
1923         if (systemcfg->platform == PLATFORM_POWERMAC)
1924                 return -ENODEV;
1925
1926         /* fix up new node's linux_phandle field */
1927         if ((ibm_phandle = (unsigned int *)get_property(node, "ibm,phandle", NULL)))
1928                 node->linux_phandle = *ibm_phandle;
1929
1930 out:
1931         of_node_put(parent);
1932         return err;
1933 }
1934
1935 static int prom_reconfig_notifier(struct notifier_block *nb,
1936                                   unsigned long action, void *node)
1937 {
1938         int err;
1939
1940         switch (action) {
1941         case PSERIES_RECONFIG_ADD:
1942                 err = finish_node(node, NULL, of_finish_dynamic_node, 0, 0, 0);
1943                 if (err < 0) {
1944                         printk(KERN_ERR "finish_node returned %d\n", err);
1945                         err = NOTIFY_BAD;
1946                 }
1947                 break;
1948         default:
1949                 err = NOTIFY_DONE;
1950                 break;
1951         }
1952         return err;
1953 }
1954
1955 static struct notifier_block prom_reconfig_nb = {
1956         .notifier_call = prom_reconfig_notifier,
1957         .priority = 10, /* This one needs to run first */
1958 };
1959
1960 static int __init prom_reconfig_setup(void)
1961 {
1962         return pSeries_reconfig_notifier_register(&prom_reconfig_nb);
1963 }
1964 __initcall(prom_reconfig_setup);
1965 #endif
1966
1967 /*
1968  * Find a property with a given name for a given node
1969  * and return the value.
1970  */
1971 unsigned char *get_property(struct device_node *np, const char *name,
1972                             int *lenp)
1973 {
1974         struct property *pp;
1975
1976         for (pp = np->properties; pp != 0; pp = pp->next)
1977                 if (strcmp(pp->name, name) == 0) {
1978                         if (lenp != 0)
1979                                 *lenp = pp->length;
1980                         return pp->value;
1981                 }
1982         return NULL;
1983 }
1984 EXPORT_SYMBOL(get_property);
1985
1986 /*
1987  * Add a property to a node
1988  */
1989 void prom_add_property(struct device_node* np, struct property* prop)
1990 {
1991         struct property **next = &np->properties;
1992
1993         prop->next = NULL;      
1994         while (*next)
1995                 next = &(*next)->next;
1996         *next = prop;
1997 }
1998
1999 /* I quickly hacked that one, check against spec ! */
2000 static inline unsigned long
2001 bus_space_to_resource_flags(unsigned int bus_space)
2002 {
2003         u8 space = (bus_space >> 24) & 0xf;
2004         if (space == 0)
2005                 space = 0x02;
2006         if (space == 0x02)
2007                 return IORESOURCE_MEM;
2008         else if (space == 0x01)
2009                 return IORESOURCE_IO;
2010         else {
2011                 printk(KERN_WARNING "prom.c: bus_space_to_resource_flags(), space: %x\n",
2012                         bus_space);
2013                 return 0;
2014         }
2015 }
2016
2017 #ifdef CONFIG_PCI
2018 static struct resource *find_parent_pci_resource(struct pci_dev* pdev,
2019                                                  struct address_range *range)
2020 {
2021         unsigned long mask;
2022         int i;
2023
2024         /* Check this one */
2025         mask = bus_space_to_resource_flags(range->space);
2026         for (i=0; i<DEVICE_COUNT_RESOURCE; i++) {
2027                 if ((pdev->resource[i].flags & mask) == mask &&
2028                         pdev->resource[i].start <= range->address &&
2029                         pdev->resource[i].end > range->address) {
2030                                 if ((range->address + range->size - 1) > pdev->resource[i].end) {
2031                                         /* Add better message */
2032                                         printk(KERN_WARNING "PCI/OF resource overlap !\n");
2033                                         return NULL;
2034                                 }
2035                                 break;
2036                         }
2037         }
2038         if (i == DEVICE_COUNT_RESOURCE)
2039                 return NULL;
2040         return &pdev->resource[i];
2041 }
2042
2043 /*
2044  * Request an OF device resource. Currently handles child of PCI devices,
2045  * or other nodes attached to the root node. Ultimately, put some
2046  * link to resources in the OF node.
2047  */
2048 struct resource *request_OF_resource(struct device_node* node, int index,
2049                                      const char* name_postfix)
2050 {
2051         struct pci_dev* pcidev;
2052         u8 pci_bus, pci_devfn;
2053         unsigned long iomask;
2054         struct device_node* nd;
2055         struct resource* parent;
2056         struct resource *res = NULL;
2057         int nlen, plen;
2058
2059         if (index >= node->n_addrs)
2060                 goto fail;
2061
2062         /* Sanity check on bus space */
2063         iomask = bus_space_to_resource_flags(node->addrs[index].space);
2064         if (iomask & IORESOURCE_MEM)
2065                 parent = &iomem_resource;
2066         else if (iomask & IORESOURCE_IO)
2067                 parent = &ioport_resource;
2068         else
2069                 goto fail;
2070
2071         /* Find a PCI parent if any */
2072         nd = node;
2073         pcidev = NULL;
2074         while (nd) {
2075                 if (!pci_device_from_OF_node(nd, &pci_bus, &pci_devfn))
2076                         pcidev = pci_find_slot(pci_bus, pci_devfn);
2077                 if (pcidev) break;
2078                 nd = nd->parent;
2079         }
2080         if (pcidev)
2081                 parent = find_parent_pci_resource(pcidev, &node->addrs[index]);
2082         if (!parent) {
2083                 printk(KERN_WARNING "request_OF_resource(%s), parent not found\n",
2084                         node->name);
2085                 goto fail;
2086         }
2087
2088         res = __request_region(parent, node->addrs[index].address,
2089                                node->addrs[index].size, NULL);
2090         if (!res)
2091                 goto fail;
2092         nlen = strlen(node->name);
2093         plen = name_postfix ? strlen(name_postfix) : 0;
2094         res->name = (const char *)kmalloc(nlen+plen+1, GFP_KERNEL);
2095         if (res->name) {
2096                 strcpy((char *)res->name, node->name);
2097                 if (plen)
2098                         strcpy((char *)res->name+nlen, name_postfix);
2099         }
2100         return res;
2101 fail:
2102         return NULL;
2103 }
2104 EXPORT_SYMBOL(request_OF_resource);
2105
2106 int release_OF_resource(struct device_node *node, int index)
2107 {
2108         struct pci_dev* pcidev;
2109         u8 pci_bus, pci_devfn;
2110         unsigned long iomask, start, end;
2111         struct device_node* nd;
2112         struct resource* parent;
2113         struct resource *res = NULL;
2114
2115         if (index >= node->n_addrs)
2116                 return -EINVAL;
2117
2118         /* Sanity check on bus space */
2119         iomask = bus_space_to_resource_flags(node->addrs[index].space);
2120         if (iomask & IORESOURCE_MEM)
2121                 parent = &iomem_resource;
2122         else if (iomask & IORESOURCE_IO)
2123                 parent = &ioport_resource;
2124         else
2125                 return -EINVAL;
2126
2127         /* Find a PCI parent if any */
2128         nd = node;
2129         pcidev = NULL;
2130         while(nd) {
2131                 if (!pci_device_from_OF_node(nd, &pci_bus, &pci_devfn))
2132                         pcidev = pci_find_slot(pci_bus, pci_devfn);
2133                 if (pcidev) break;
2134                 nd = nd->parent;
2135         }
2136         if (pcidev)
2137                 parent = find_parent_pci_resource(pcidev, &node->addrs[index]);
2138         if (!parent) {
2139                 printk(KERN_WARNING "release_OF_resource(%s), parent not found\n",
2140                         node->name);
2141                 return -ENODEV;
2142         }
2143
2144         /* Find us in the parent and its childs */
2145         res = parent->child;
2146         start = node->addrs[index].address;
2147         end = start + node->addrs[index].size - 1;
2148         while (res) {
2149                 if (res->start == start && res->end == end &&
2150                     (res->flags & IORESOURCE_BUSY))
2151                         break;
2152                 if (res->start <= start && res->end >= end)
2153                         res = res->child;
2154                 else
2155                         res = res->sibling;
2156         }
2157         if (!res)
2158                 return -ENODEV;
2159
2160         if (res->name) {
2161                 kfree(res->name);
2162                 res->name = NULL;
2163         }
2164         release_resource(res);
2165         kfree(res);
2166
2167         return 0;
2168 }
2169 EXPORT_SYMBOL(release_OF_resource);
2170 #endif /* CONFIG_PCI */