Blackfin arch: Random read/write errors are a bad thing
[safe/jmp/linux-2.6] / arch / powerpc / kernel / process.c
1 /*
2  *  Derived from "arch/i386/kernel/process.c"
3  *    Copyright (C) 1995  Linus Torvalds
4  *
5  *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6  *  Paul Mackerras (paulus@cs.anu.edu.au)
7  *
8  *  PowerPC version
9  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
10  *
11  *  This program is free software; you can redistribute it and/or
12  *  modify it under the terms of the GNU General Public License
13  *  as published by the Free Software Foundation; either version
14  *  2 of the License, or (at your option) any later version.
15  */
16
17 #include <linux/errno.h>
18 #include <linux/sched.h>
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/smp.h>
22 #include <linux/stddef.h>
23 #include <linux/unistd.h>
24 #include <linux/ptrace.h>
25 #include <linux/slab.h>
26 #include <linux/user.h>
27 #include <linux/elf.h>
28 #include <linux/init.h>
29 #include <linux/prctl.h>
30 #include <linux/init_task.h>
31 #include <linux/module.h>
32 #include <linux/kallsyms.h>
33 #include <linux/mqueue.h>
34 #include <linux/hardirq.h>
35 #include <linux/utsname.h>
36 #include <linux/kernel_stat.h>
37
38 #include <asm/pgtable.h>
39 #include <asm/uaccess.h>
40 #include <asm/system.h>
41 #include <asm/io.h>
42 #include <asm/processor.h>
43 #include <asm/mmu.h>
44 #include <asm/prom.h>
45 #include <asm/machdep.h>
46 #include <asm/time.h>
47 #include <asm/syscalls.h>
48 #ifdef CONFIG_PPC64
49 #include <asm/firmware.h>
50 #endif
51 #include <linux/kprobes.h>
52 #include <linux/kdebug.h>
53
54 extern unsigned long _get_SP(void);
55
56 #ifndef CONFIG_SMP
57 struct task_struct *last_task_used_math = NULL;
58 struct task_struct *last_task_used_altivec = NULL;
59 struct task_struct *last_task_used_vsx = NULL;
60 struct task_struct *last_task_used_spe = NULL;
61 #endif
62
63 /*
64  * Make sure the floating-point register state in the
65  * the thread_struct is up to date for task tsk.
66  */
67 void flush_fp_to_thread(struct task_struct *tsk)
68 {
69         if (tsk->thread.regs) {
70                 /*
71                  * We need to disable preemption here because if we didn't,
72                  * another process could get scheduled after the regs->msr
73                  * test but before we have finished saving the FP registers
74                  * to the thread_struct.  That process could take over the
75                  * FPU, and then when we get scheduled again we would store
76                  * bogus values for the remaining FP registers.
77                  */
78                 preempt_disable();
79                 if (tsk->thread.regs->msr & MSR_FP) {
80 #ifdef CONFIG_SMP
81                         /*
82                          * This should only ever be called for current or
83                          * for a stopped child process.  Since we save away
84                          * the FP register state on context switch on SMP,
85                          * there is something wrong if a stopped child appears
86                          * to still have its FP state in the CPU registers.
87                          */
88                         BUG_ON(tsk != current);
89 #endif
90                         giveup_fpu(tsk);
91                 }
92                 preempt_enable();
93         }
94 }
95
96 void enable_kernel_fp(void)
97 {
98         WARN_ON(preemptible());
99
100 #ifdef CONFIG_SMP
101         if (current->thread.regs && (current->thread.regs->msr & MSR_FP))
102                 giveup_fpu(current);
103         else
104                 giveup_fpu(NULL);       /* just enables FP for kernel */
105 #else
106         giveup_fpu(last_task_used_math);
107 #endif /* CONFIG_SMP */
108 }
109 EXPORT_SYMBOL(enable_kernel_fp);
110
111 #ifdef CONFIG_ALTIVEC
112 void enable_kernel_altivec(void)
113 {
114         WARN_ON(preemptible());
115
116 #ifdef CONFIG_SMP
117         if (current->thread.regs && (current->thread.regs->msr & MSR_VEC))
118                 giveup_altivec(current);
119         else
120                 giveup_altivec(NULL);   /* just enable AltiVec for kernel - force */
121 #else
122         giveup_altivec(last_task_used_altivec);
123 #endif /* CONFIG_SMP */
124 }
125 EXPORT_SYMBOL(enable_kernel_altivec);
126
127 /*
128  * Make sure the VMX/Altivec register state in the
129  * the thread_struct is up to date for task tsk.
130  */
131 void flush_altivec_to_thread(struct task_struct *tsk)
132 {
133         if (tsk->thread.regs) {
134                 preempt_disable();
135                 if (tsk->thread.regs->msr & MSR_VEC) {
136 #ifdef CONFIG_SMP
137                         BUG_ON(tsk != current);
138 #endif
139                         giveup_altivec(tsk);
140                 }
141                 preempt_enable();
142         }
143 }
144 #endif /* CONFIG_ALTIVEC */
145
146 #ifdef CONFIG_VSX
147 #if 0
148 /* not currently used, but some crazy RAID module might want to later */
149 void enable_kernel_vsx(void)
150 {
151         WARN_ON(preemptible());
152
153 #ifdef CONFIG_SMP
154         if (current->thread.regs && (current->thread.regs->msr & MSR_VSX))
155                 giveup_vsx(current);
156         else
157                 giveup_vsx(NULL);       /* just enable vsx for kernel - force */
158 #else
159         giveup_vsx(last_task_used_vsx);
160 #endif /* CONFIG_SMP */
161 }
162 EXPORT_SYMBOL(enable_kernel_vsx);
163 #endif
164
165 void giveup_vsx(struct task_struct *tsk)
166 {
167         giveup_fpu(tsk);
168         giveup_altivec(tsk);
169         __giveup_vsx(tsk);
170 }
171
172 void flush_vsx_to_thread(struct task_struct *tsk)
173 {
174         if (tsk->thread.regs) {
175                 preempt_disable();
176                 if (tsk->thread.regs->msr & MSR_VSX) {
177 #ifdef CONFIG_SMP
178                         BUG_ON(tsk != current);
179 #endif
180                         giveup_vsx(tsk);
181                 }
182                 preempt_enable();
183         }
184 }
185 #endif /* CONFIG_VSX */
186
187 #ifdef CONFIG_SPE
188
189 void enable_kernel_spe(void)
190 {
191         WARN_ON(preemptible());
192
193 #ifdef CONFIG_SMP
194         if (current->thread.regs && (current->thread.regs->msr & MSR_SPE))
195                 giveup_spe(current);
196         else
197                 giveup_spe(NULL);       /* just enable SPE for kernel - force */
198 #else
199         giveup_spe(last_task_used_spe);
200 #endif /* __SMP __ */
201 }
202 EXPORT_SYMBOL(enable_kernel_spe);
203
204 void flush_spe_to_thread(struct task_struct *tsk)
205 {
206         if (tsk->thread.regs) {
207                 preempt_disable();
208                 if (tsk->thread.regs->msr & MSR_SPE) {
209 #ifdef CONFIG_SMP
210                         BUG_ON(tsk != current);
211 #endif
212                         giveup_spe(tsk);
213                 }
214                 preempt_enable();
215         }
216 }
217 #endif /* CONFIG_SPE */
218
219 #ifndef CONFIG_SMP
220 /*
221  * If we are doing lazy switching of CPU state (FP, altivec or SPE),
222  * and the current task has some state, discard it.
223  */
224 void discard_lazy_cpu_state(void)
225 {
226         preempt_disable();
227         if (last_task_used_math == current)
228                 last_task_used_math = NULL;
229 #ifdef CONFIG_ALTIVEC
230         if (last_task_used_altivec == current)
231                 last_task_used_altivec = NULL;
232 #endif /* CONFIG_ALTIVEC */
233 #ifdef CONFIG_VSX
234         if (last_task_used_vsx == current)
235                 last_task_used_vsx = NULL;
236 #endif /* CONFIG_VSX */
237 #ifdef CONFIG_SPE
238         if (last_task_used_spe == current)
239                 last_task_used_spe = NULL;
240 #endif
241         preempt_enable();
242 }
243 #endif /* CONFIG_SMP */
244
245 void do_dabr(struct pt_regs *regs, unsigned long address,
246                     unsigned long error_code)
247 {
248         siginfo_t info;
249
250         if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
251                         11, SIGSEGV) == NOTIFY_STOP)
252                 return;
253
254         if (debugger_dabr_match(regs))
255                 return;
256
257         /* Clear the DAC and struct entries.  One shot trigger */
258 #if defined(CONFIG_BOOKE)
259         mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~(DBSR_DAC1R | DBSR_DAC1W
260                                                         | DBCR0_IDM));
261 #endif
262
263         /* Clear the DABR */
264         set_dabr(0);
265
266         /* Deliver the signal to userspace */
267         info.si_signo = SIGTRAP;
268         info.si_errno = 0;
269         info.si_code = TRAP_HWBKPT;
270         info.si_addr = (void __user *)address;
271         force_sig_info(SIGTRAP, &info, current);
272 }
273
274 static DEFINE_PER_CPU(unsigned long, current_dabr);
275
276 int set_dabr(unsigned long dabr)
277 {
278         __get_cpu_var(current_dabr) = dabr;
279
280         if (ppc_md.set_dabr)
281                 return ppc_md.set_dabr(dabr);
282
283         /* XXX should we have a CPU_FTR_HAS_DABR ? */
284 #if defined(CONFIG_PPC64) || defined(CONFIG_6xx)
285         mtspr(SPRN_DABR, dabr);
286 #endif
287
288 #if defined(CONFIG_BOOKE)
289         mtspr(SPRN_DAC1, dabr);
290 #endif
291
292         return 0;
293 }
294
295 #ifdef CONFIG_PPC64
296 DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
297 #endif
298
299 struct task_struct *__switch_to(struct task_struct *prev,
300         struct task_struct *new)
301 {
302         struct thread_struct *new_thread, *old_thread;
303         unsigned long flags;
304         struct task_struct *last;
305
306 #ifdef CONFIG_SMP
307         /* avoid complexity of lazy save/restore of fpu
308          * by just saving it every time we switch out if
309          * this task used the fpu during the last quantum.
310          *
311          * If it tries to use the fpu again, it'll trap and
312          * reload its fp regs.  So we don't have to do a restore
313          * every switch, just a save.
314          *  -- Cort
315          */
316         if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP))
317                 giveup_fpu(prev);
318 #ifdef CONFIG_ALTIVEC
319         /*
320          * If the previous thread used altivec in the last quantum
321          * (thus changing altivec regs) then save them.
322          * We used to check the VRSAVE register but not all apps
323          * set it, so we don't rely on it now (and in fact we need
324          * to save & restore VSCR even if VRSAVE == 0).  -- paulus
325          *
326          * On SMP we always save/restore altivec regs just to avoid the
327          * complexity of changing processors.
328          *  -- Cort
329          */
330         if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC))
331                 giveup_altivec(prev);
332 #endif /* CONFIG_ALTIVEC */
333 #ifdef CONFIG_VSX
334         if (prev->thread.regs && (prev->thread.regs->msr & MSR_VSX))
335                 /* VMX and FPU registers are already save here */
336                 __giveup_vsx(prev);
337 #endif /* CONFIG_VSX */
338 #ifdef CONFIG_SPE
339         /*
340          * If the previous thread used spe in the last quantum
341          * (thus changing spe regs) then save them.
342          *
343          * On SMP we always save/restore spe regs just to avoid the
344          * complexity of changing processors.
345          */
346         if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE)))
347                 giveup_spe(prev);
348 #endif /* CONFIG_SPE */
349
350 #else  /* CONFIG_SMP */
351 #ifdef CONFIG_ALTIVEC
352         /* Avoid the trap.  On smp this this never happens since
353          * we don't set last_task_used_altivec -- Cort
354          */
355         if (new->thread.regs && last_task_used_altivec == new)
356                 new->thread.regs->msr |= MSR_VEC;
357 #endif /* CONFIG_ALTIVEC */
358 #ifdef CONFIG_VSX
359         if (new->thread.regs && last_task_used_vsx == new)
360                 new->thread.regs->msr |= MSR_VSX;
361 #endif /* CONFIG_VSX */
362 #ifdef CONFIG_SPE
363         /* Avoid the trap.  On smp this this never happens since
364          * we don't set last_task_used_spe
365          */
366         if (new->thread.regs && last_task_used_spe == new)
367                 new->thread.regs->msr |= MSR_SPE;
368 #endif /* CONFIG_SPE */
369
370 #endif /* CONFIG_SMP */
371
372         if (unlikely(__get_cpu_var(current_dabr) != new->thread.dabr))
373                 set_dabr(new->thread.dabr);
374
375 #if defined(CONFIG_BOOKE)
376         /* If new thread DAC (HW breakpoint) is the same then leave it */
377         if (new->thread.dabr)
378                 set_dabr(new->thread.dabr);
379 #endif
380
381         new_thread = &new->thread;
382         old_thread = &current->thread;
383
384 #ifdef CONFIG_PPC64
385         /*
386          * Collect processor utilization data per process
387          */
388         if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
389                 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
390                 long unsigned start_tb, current_tb;
391                 start_tb = old_thread->start_tb;
392                 cu->current_tb = current_tb = mfspr(SPRN_PURR);
393                 old_thread->accum_tb += (current_tb - start_tb);
394                 new_thread->start_tb = current_tb;
395         }
396 #endif
397
398         local_irq_save(flags);
399
400         account_system_vtime(current);
401         account_process_vtime(current);
402         calculate_steal_time();
403
404         /*
405          * We can't take a PMU exception inside _switch() since there is a
406          * window where the kernel stack SLB and the kernel stack are out
407          * of sync. Hard disable here.
408          */
409         hard_irq_disable();
410         last = _switch(old_thread, new_thread);
411
412         local_irq_restore(flags);
413
414         return last;
415 }
416
417 static int instructions_to_print = 16;
418
419 static void show_instructions(struct pt_regs *regs)
420 {
421         int i;
422         unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
423                         sizeof(int));
424
425         printk("Instruction dump:");
426
427         for (i = 0; i < instructions_to_print; i++) {
428                 int instr;
429
430                 if (!(i % 8))
431                         printk("\n");
432
433 #if !defined(CONFIG_BOOKE)
434                 /* If executing with the IMMU off, adjust pc rather
435                  * than print XXXXXXXX.
436                  */
437                 if (!(regs->msr & MSR_IR))
438                         pc = (unsigned long)phys_to_virt(pc);
439 #endif
440
441                 /* We use __get_user here *only* to avoid an OOPS on a
442                  * bad address because the pc *should* only be a
443                  * kernel address.
444                  */
445                 if (!__kernel_text_address(pc) ||
446                      __get_user(instr, (unsigned int __user *)pc)) {
447                         printk("XXXXXXXX ");
448                 } else {
449                         if (regs->nip == pc)
450                                 printk("<%08x> ", instr);
451                         else
452                                 printk("%08x ", instr);
453                 }
454
455                 pc += sizeof(int);
456         }
457
458         printk("\n");
459 }
460
461 static struct regbit {
462         unsigned long bit;
463         const char *name;
464 } msr_bits[] = {
465         {MSR_EE,        "EE"},
466         {MSR_PR,        "PR"},
467         {MSR_FP,        "FP"},
468         {MSR_VEC,       "VEC"},
469         {MSR_VSX,       "VSX"},
470         {MSR_ME,        "ME"},
471         {MSR_CE,        "CE"},
472         {MSR_DE,        "DE"},
473         {MSR_IR,        "IR"},
474         {MSR_DR,        "DR"},
475         {0,             NULL}
476 };
477
478 static void printbits(unsigned long val, struct regbit *bits)
479 {
480         const char *sep = "";
481
482         printk("<");
483         for (; bits->bit; ++bits)
484                 if (val & bits->bit) {
485                         printk("%s%s", sep, bits->name);
486                         sep = ",";
487                 }
488         printk(">");
489 }
490
491 #ifdef CONFIG_PPC64
492 #define REG             "%016lx"
493 #define REGS_PER_LINE   4
494 #define LAST_VOLATILE   13
495 #else
496 #define REG             "%08lx"
497 #define REGS_PER_LINE   8
498 #define LAST_VOLATILE   12
499 #endif
500
501 void show_regs(struct pt_regs * regs)
502 {
503         int i, trap;
504
505         printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
506                regs->nip, regs->link, regs->ctr);
507         printk("REGS: %p TRAP: %04lx   %s  (%s)\n",
508                regs, regs->trap, print_tainted(), init_utsname()->release);
509         printk("MSR: "REG" ", regs->msr);
510         printbits(regs->msr, msr_bits);
511         printk("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
512         trap = TRAP(regs);
513         if (trap == 0x300 || trap == 0x600)
514 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
515                 printk("DEAR: "REG", ESR: "REG"\n", regs->dar, regs->dsisr);
516 #else
517                 printk("DAR: "REG", DSISR: "REG"\n", regs->dar, regs->dsisr);
518 #endif
519         printk("TASK = %p[%d] '%s' THREAD: %p",
520                current, task_pid_nr(current), current->comm, task_thread_info(current));
521
522 #ifdef CONFIG_SMP
523         printk(" CPU: %d", raw_smp_processor_id());
524 #endif /* CONFIG_SMP */
525
526         for (i = 0;  i < 32;  i++) {
527                 if ((i % REGS_PER_LINE) == 0)
528                         printk("\n" KERN_INFO "GPR%02d: ", i);
529                 printk(REG " ", regs->gpr[i]);
530                 if (i == LAST_VOLATILE && !FULL_REGS(regs))
531                         break;
532         }
533         printk("\n");
534 #ifdef CONFIG_KALLSYMS
535         /*
536          * Lookup NIP late so we have the best change of getting the
537          * above info out without failing
538          */
539         printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
540         printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
541 #endif
542         show_stack(current, (unsigned long *) regs->gpr[1]);
543         if (!user_mode(regs))
544                 show_instructions(regs);
545 }
546
547 void exit_thread(void)
548 {
549         discard_lazy_cpu_state();
550 }
551
552 void flush_thread(void)
553 {
554 #ifdef CONFIG_PPC64
555         struct thread_info *t = current_thread_info();
556
557         if (test_ti_thread_flag(t, TIF_ABI_PENDING)) {
558                 clear_ti_thread_flag(t, TIF_ABI_PENDING);
559                 if (test_ti_thread_flag(t, TIF_32BIT))
560                         clear_ti_thread_flag(t, TIF_32BIT);
561                 else
562                         set_ti_thread_flag(t, TIF_32BIT);
563         }
564 #endif
565
566         discard_lazy_cpu_state();
567
568         if (current->thread.dabr) {
569                 current->thread.dabr = 0;
570                 set_dabr(0);
571
572 #if defined(CONFIG_BOOKE)
573                 current->thread.dbcr0 &= ~(DBSR_DAC1R | DBSR_DAC1W);
574 #endif
575         }
576 }
577
578 void
579 release_thread(struct task_struct *t)
580 {
581 }
582
583 /*
584  * This gets called before we allocate a new thread and copy
585  * the current task into it.
586  */
587 void prepare_to_copy(struct task_struct *tsk)
588 {
589         flush_fp_to_thread(current);
590         flush_altivec_to_thread(current);
591         flush_vsx_to_thread(current);
592         flush_spe_to_thread(current);
593 }
594
595 /*
596  * Copy a thread..
597  */
598 int copy_thread(int nr, unsigned long clone_flags, unsigned long usp,
599                 unsigned long unused, struct task_struct *p,
600                 struct pt_regs *regs)
601 {
602         struct pt_regs *childregs, *kregs;
603         extern void ret_from_fork(void);
604         unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
605
606         CHECK_FULL_REGS(regs);
607         /* Copy registers */
608         sp -= sizeof(struct pt_regs);
609         childregs = (struct pt_regs *) sp;
610         *childregs = *regs;
611         if ((childregs->msr & MSR_PR) == 0) {
612                 /* for kernel thread, set `current' and stackptr in new task */
613                 childregs->gpr[1] = sp + sizeof(struct pt_regs);
614 #ifdef CONFIG_PPC32
615                 childregs->gpr[2] = (unsigned long) p;
616 #else
617                 clear_tsk_thread_flag(p, TIF_32BIT);
618 #endif
619                 p->thread.regs = NULL;  /* no user register state */
620         } else {
621                 childregs->gpr[1] = usp;
622                 p->thread.regs = childregs;
623                 if (clone_flags & CLONE_SETTLS) {
624 #ifdef CONFIG_PPC64
625                         if (!test_thread_flag(TIF_32BIT))
626                                 childregs->gpr[13] = childregs->gpr[6];
627                         else
628 #endif
629                                 childregs->gpr[2] = childregs->gpr[6];
630                 }
631         }
632         childregs->gpr[3] = 0;  /* Result from fork() */
633         sp -= STACK_FRAME_OVERHEAD;
634
635         /*
636          * The way this works is that at some point in the future
637          * some task will call _switch to switch to the new task.
638          * That will pop off the stack frame created below and start
639          * the new task running at ret_from_fork.  The new task will
640          * do some house keeping and then return from the fork or clone
641          * system call, using the stack frame created above.
642          */
643         sp -= sizeof(struct pt_regs);
644         kregs = (struct pt_regs *) sp;
645         sp -= STACK_FRAME_OVERHEAD;
646         p->thread.ksp = sp;
647         p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
648                                 _ALIGN_UP(sizeof(struct thread_info), 16);
649
650 #ifdef CONFIG_PPC64
651         if (cpu_has_feature(CPU_FTR_SLB)) {
652                 unsigned long sp_vsid;
653                 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
654
655                 if (cpu_has_feature(CPU_FTR_1T_SEGMENT))
656                         sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
657                                 << SLB_VSID_SHIFT_1T;
658                 else
659                         sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
660                                 << SLB_VSID_SHIFT;
661                 sp_vsid |= SLB_VSID_KERNEL | llp;
662                 p->thread.ksp_vsid = sp_vsid;
663         }
664
665         /*
666          * The PPC64 ABI makes use of a TOC to contain function 
667          * pointers.  The function (ret_from_except) is actually a pointer
668          * to the TOC entry.  The first entry is a pointer to the actual
669          * function.
670          */
671         kregs->nip = *((unsigned long *)ret_from_fork);
672 #else
673         kregs->nip = (unsigned long)ret_from_fork;
674 #endif
675
676         return 0;
677 }
678
679 /*
680  * Set up a thread for executing a new program
681  */
682 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
683 {
684 #ifdef CONFIG_PPC64
685         unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
686 #endif
687
688         set_fs(USER_DS);
689
690         /*
691          * If we exec out of a kernel thread then thread.regs will not be
692          * set.  Do it now.
693          */
694         if (!current->thread.regs) {
695                 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
696                 current->thread.regs = regs - 1;
697         }
698
699         memset(regs->gpr, 0, sizeof(regs->gpr));
700         regs->ctr = 0;
701         regs->link = 0;
702         regs->xer = 0;
703         regs->ccr = 0;
704         regs->gpr[1] = sp;
705
706         /*
707          * We have just cleared all the nonvolatile GPRs, so make
708          * FULL_REGS(regs) return true.  This is necessary to allow
709          * ptrace to examine the thread immediately after exec.
710          */
711         regs->trap &= ~1UL;
712
713 #ifdef CONFIG_PPC32
714         regs->mq = 0;
715         regs->nip = start;
716         regs->msr = MSR_USER;
717 #else
718         if (!test_thread_flag(TIF_32BIT)) {
719                 unsigned long entry, toc;
720
721                 /* start is a relocated pointer to the function descriptor for
722                  * the elf _start routine.  The first entry in the function
723                  * descriptor is the entry address of _start and the second
724                  * entry is the TOC value we need to use.
725                  */
726                 __get_user(entry, (unsigned long __user *)start);
727                 __get_user(toc, (unsigned long __user *)start+1);
728
729                 /* Check whether the e_entry function descriptor entries
730                  * need to be relocated before we can use them.
731                  */
732                 if (load_addr != 0) {
733                         entry += load_addr;
734                         toc   += load_addr;
735                 }
736                 regs->nip = entry;
737                 regs->gpr[2] = toc;
738                 regs->msr = MSR_USER64;
739         } else {
740                 regs->nip = start;
741                 regs->gpr[2] = 0;
742                 regs->msr = MSR_USER32;
743         }
744 #endif
745
746         discard_lazy_cpu_state();
747 #ifdef CONFIG_VSX
748         current->thread.used_vsr = 0;
749 #endif
750         memset(current->thread.fpr, 0, sizeof(current->thread.fpr));
751         current->thread.fpscr.val = 0;
752 #ifdef CONFIG_ALTIVEC
753         memset(current->thread.vr, 0, sizeof(current->thread.vr));
754         memset(&current->thread.vscr, 0, sizeof(current->thread.vscr));
755         current->thread.vscr.u[3] = 0x00010000; /* Java mode disabled */
756         current->thread.vrsave = 0;
757         current->thread.used_vr = 0;
758 #endif /* CONFIG_ALTIVEC */
759 #ifdef CONFIG_SPE
760         memset(current->thread.evr, 0, sizeof(current->thread.evr));
761         current->thread.acc = 0;
762         current->thread.spefscr = 0;
763         current->thread.used_spe = 0;
764 #endif /* CONFIG_SPE */
765 }
766
767 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
768                 | PR_FP_EXC_RES | PR_FP_EXC_INV)
769
770 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
771 {
772         struct pt_regs *regs = tsk->thread.regs;
773
774         /* This is a bit hairy.  If we are an SPE enabled  processor
775          * (have embedded fp) we store the IEEE exception enable flags in
776          * fpexc_mode.  fpexc_mode is also used for setting FP exception
777          * mode (asyn, precise, disabled) for 'Classic' FP. */
778         if (val & PR_FP_EXC_SW_ENABLE) {
779 #ifdef CONFIG_SPE
780                 if (cpu_has_feature(CPU_FTR_SPE)) {
781                         tsk->thread.fpexc_mode = val &
782                                 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
783                         return 0;
784                 } else {
785                         return -EINVAL;
786                 }
787 #else
788                 return -EINVAL;
789 #endif
790         }
791
792         /* on a CONFIG_SPE this does not hurt us.  The bits that
793          * __pack_fe01 use do not overlap with bits used for
794          * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
795          * on CONFIG_SPE implementations are reserved so writing to
796          * them does not change anything */
797         if (val > PR_FP_EXC_PRECISE)
798                 return -EINVAL;
799         tsk->thread.fpexc_mode = __pack_fe01(val);
800         if (regs != NULL && (regs->msr & MSR_FP) != 0)
801                 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
802                         | tsk->thread.fpexc_mode;
803         return 0;
804 }
805
806 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
807 {
808         unsigned int val;
809
810         if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
811 #ifdef CONFIG_SPE
812                 if (cpu_has_feature(CPU_FTR_SPE))
813                         val = tsk->thread.fpexc_mode;
814                 else
815                         return -EINVAL;
816 #else
817                 return -EINVAL;
818 #endif
819         else
820                 val = __unpack_fe01(tsk->thread.fpexc_mode);
821         return put_user(val, (unsigned int __user *) adr);
822 }
823
824 int set_endian(struct task_struct *tsk, unsigned int val)
825 {
826         struct pt_regs *regs = tsk->thread.regs;
827
828         if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
829             (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
830                 return -EINVAL;
831
832         if (regs == NULL)
833                 return -EINVAL;
834
835         if (val == PR_ENDIAN_BIG)
836                 regs->msr &= ~MSR_LE;
837         else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
838                 regs->msr |= MSR_LE;
839         else
840                 return -EINVAL;
841
842         return 0;
843 }
844
845 int get_endian(struct task_struct *tsk, unsigned long adr)
846 {
847         struct pt_regs *regs = tsk->thread.regs;
848         unsigned int val;
849
850         if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
851             !cpu_has_feature(CPU_FTR_REAL_LE))
852                 return -EINVAL;
853
854         if (regs == NULL)
855                 return -EINVAL;
856
857         if (regs->msr & MSR_LE) {
858                 if (cpu_has_feature(CPU_FTR_REAL_LE))
859                         val = PR_ENDIAN_LITTLE;
860                 else
861                         val = PR_ENDIAN_PPC_LITTLE;
862         } else
863                 val = PR_ENDIAN_BIG;
864
865         return put_user(val, (unsigned int __user *)adr);
866 }
867
868 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
869 {
870         tsk->thread.align_ctl = val;
871         return 0;
872 }
873
874 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
875 {
876         return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
877 }
878
879 #define TRUNC_PTR(x)    ((typeof(x))(((unsigned long)(x)) & 0xffffffff))
880
881 int sys_clone(unsigned long clone_flags, unsigned long usp,
882               int __user *parent_tidp, void __user *child_threadptr,
883               int __user *child_tidp, int p6,
884               struct pt_regs *regs)
885 {
886         CHECK_FULL_REGS(regs);
887         if (usp == 0)
888                 usp = regs->gpr[1];     /* stack pointer for child */
889 #ifdef CONFIG_PPC64
890         if (test_thread_flag(TIF_32BIT)) {
891                 parent_tidp = TRUNC_PTR(parent_tidp);
892                 child_tidp = TRUNC_PTR(child_tidp);
893         }
894 #endif
895         return do_fork(clone_flags, usp, regs, 0, parent_tidp, child_tidp);
896 }
897
898 int sys_fork(unsigned long p1, unsigned long p2, unsigned long p3,
899              unsigned long p4, unsigned long p5, unsigned long p6,
900              struct pt_regs *regs)
901 {
902         CHECK_FULL_REGS(regs);
903         return do_fork(SIGCHLD, regs->gpr[1], regs, 0, NULL, NULL);
904 }
905
906 int sys_vfork(unsigned long p1, unsigned long p2, unsigned long p3,
907               unsigned long p4, unsigned long p5, unsigned long p6,
908               struct pt_regs *regs)
909 {
910         CHECK_FULL_REGS(regs);
911         return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->gpr[1],
912                         regs, 0, NULL, NULL);
913 }
914
915 int sys_execve(unsigned long a0, unsigned long a1, unsigned long a2,
916                unsigned long a3, unsigned long a4, unsigned long a5,
917                struct pt_regs *regs)
918 {
919         int error;
920         char *filename;
921
922         filename = getname((char __user *) a0);
923         error = PTR_ERR(filename);
924         if (IS_ERR(filename))
925                 goto out;
926         flush_fp_to_thread(current);
927         flush_altivec_to_thread(current);
928         flush_spe_to_thread(current);
929         error = do_execve(filename, (char __user * __user *) a1,
930                           (char __user * __user *) a2, regs);
931         putname(filename);
932 out:
933         return error;
934 }
935
936 #ifdef CONFIG_IRQSTACKS
937 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
938                                   unsigned long nbytes)
939 {
940         unsigned long stack_page;
941         unsigned long cpu = task_cpu(p);
942
943         /*
944          * Avoid crashing if the stack has overflowed and corrupted
945          * task_cpu(p), which is in the thread_info struct.
946          */
947         if (cpu < NR_CPUS && cpu_possible(cpu)) {
948                 stack_page = (unsigned long) hardirq_ctx[cpu];
949                 if (sp >= stack_page + sizeof(struct thread_struct)
950                     && sp <= stack_page + THREAD_SIZE - nbytes)
951                         return 1;
952
953                 stack_page = (unsigned long) softirq_ctx[cpu];
954                 if (sp >= stack_page + sizeof(struct thread_struct)
955                     && sp <= stack_page + THREAD_SIZE - nbytes)
956                         return 1;
957         }
958         return 0;
959 }
960
961 #else
962 #define valid_irq_stack(sp, p, nb)      0
963 #endif /* CONFIG_IRQSTACKS */
964
965 int validate_sp(unsigned long sp, struct task_struct *p,
966                        unsigned long nbytes)
967 {
968         unsigned long stack_page = (unsigned long)task_stack_page(p);
969
970         if (sp >= stack_page + sizeof(struct thread_struct)
971             && sp <= stack_page + THREAD_SIZE - nbytes)
972                 return 1;
973
974         return valid_irq_stack(sp, p, nbytes);
975 }
976
977 EXPORT_SYMBOL(validate_sp);
978
979 unsigned long get_wchan(struct task_struct *p)
980 {
981         unsigned long ip, sp;
982         int count = 0;
983
984         if (!p || p == current || p->state == TASK_RUNNING)
985                 return 0;
986
987         sp = p->thread.ksp;
988         if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
989                 return 0;
990
991         do {
992                 sp = *(unsigned long *)sp;
993                 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
994                         return 0;
995                 if (count > 0) {
996                         ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
997                         if (!in_sched_functions(ip))
998                                 return ip;
999                 }
1000         } while (count++ < 16);
1001         return 0;
1002 }
1003
1004 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
1005
1006 void show_stack(struct task_struct *tsk, unsigned long *stack)
1007 {
1008         unsigned long sp, ip, lr, newsp;
1009         int count = 0;
1010         int firstframe = 1;
1011
1012         sp = (unsigned long) stack;
1013         if (tsk == NULL)
1014                 tsk = current;
1015         if (sp == 0) {
1016                 if (tsk == current)
1017                         asm("mr %0,1" : "=r" (sp));
1018                 else
1019                         sp = tsk->thread.ksp;
1020         }
1021
1022         lr = 0;
1023         printk("Call Trace:\n");
1024         do {
1025                 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
1026                         return;
1027
1028                 stack = (unsigned long *) sp;
1029                 newsp = stack[0];
1030                 ip = stack[STACK_FRAME_LR_SAVE];
1031                 if (!firstframe || ip != lr) {
1032                         printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
1033                         if (firstframe)
1034                                 printk(" (unreliable)");
1035                         printk("\n");
1036                 }
1037                 firstframe = 0;
1038
1039                 /*
1040                  * See if this is an exception frame.
1041                  * We look for the "regshere" marker in the current frame.
1042                  */
1043                 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
1044                     && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
1045                         struct pt_regs *regs = (struct pt_regs *)
1046                                 (sp + STACK_FRAME_OVERHEAD);
1047                         lr = regs->link;
1048                         printk("--- Exception: %lx at %pS\n    LR = %pS\n",
1049                                regs->trap, (void *)regs->nip, (void *)lr);
1050                         firstframe = 1;
1051                 }
1052
1053                 sp = newsp;
1054         } while (count++ < kstack_depth_to_print);
1055 }
1056
1057 void dump_stack(void)
1058 {
1059         show_stack(current, NULL);
1060 }
1061 EXPORT_SYMBOL(dump_stack);
1062
1063 #ifdef CONFIG_PPC64
1064 void ppc64_runlatch_on(void)
1065 {
1066         unsigned long ctrl;
1067
1068         if (cpu_has_feature(CPU_FTR_CTRL) && !test_thread_flag(TIF_RUNLATCH)) {
1069                 HMT_medium();
1070
1071                 ctrl = mfspr(SPRN_CTRLF);
1072                 ctrl |= CTRL_RUNLATCH;
1073                 mtspr(SPRN_CTRLT, ctrl);
1074
1075                 set_thread_flag(TIF_RUNLATCH);
1076         }
1077 }
1078
1079 void ppc64_runlatch_off(void)
1080 {
1081         unsigned long ctrl;
1082
1083         if (cpu_has_feature(CPU_FTR_CTRL) && test_thread_flag(TIF_RUNLATCH)) {
1084                 HMT_medium();
1085
1086                 clear_thread_flag(TIF_RUNLATCH);
1087
1088                 ctrl = mfspr(SPRN_CTRLF);
1089                 ctrl &= ~CTRL_RUNLATCH;
1090                 mtspr(SPRN_CTRLT, ctrl);
1091         }
1092 }
1093 #endif
1094
1095 #if THREAD_SHIFT < PAGE_SHIFT
1096
1097 static struct kmem_cache *thread_info_cache;
1098
1099 struct thread_info *alloc_thread_info(struct task_struct *tsk)
1100 {
1101         struct thread_info *ti;
1102
1103         ti = kmem_cache_alloc(thread_info_cache, GFP_KERNEL);
1104         if (unlikely(ti == NULL))
1105                 return NULL;
1106 #ifdef CONFIG_DEBUG_STACK_USAGE
1107         memset(ti, 0, THREAD_SIZE);
1108 #endif
1109         return ti;
1110 }
1111
1112 void free_thread_info(struct thread_info *ti)
1113 {
1114         kmem_cache_free(thread_info_cache, ti);
1115 }
1116
1117 void thread_info_cache_init(void)
1118 {
1119         thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE,
1120                                               THREAD_SIZE, 0, NULL);
1121         BUG_ON(thread_info_cache == NULL);
1122 }
1123
1124 #endif /* THREAD_SHIFT < PAGE_SHIFT */