KVM: ia64: Re-organize data sturure of guests' data area
[safe/jmp/linux-2.6] / arch / ia64 / kvm / kvm-ia64.c
1 /*
2  * kvm_ia64.c: Basic KVM suppport On Itanium series processors
3  *
4  *
5  *      Copyright (C) 2007, Intel Corporation.
6  *      Xiantao Zhang  (xiantao.zhang@intel.com)
7  *
8  * This program is free software; you can redistribute it and/or modify it
9  * under the terms and conditions of the GNU General Public License,
10  * version 2, as published by the Free Software Foundation.
11  *
12  * This program is distributed in the hope it will be useful, but WITHOUT
13  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
15  * more details.
16  *
17  * You should have received a copy of the GNU General Public License along with
18  * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
19  * Place - Suite 330, Boston, MA 02111-1307 USA.
20  *
21  */
22
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/gfp.h>
27 #include <linux/fs.h>
28 #include <linux/smp.h>
29 #include <linux/kvm_host.h>
30 #include <linux/kvm.h>
31 #include <linux/bitops.h>
32 #include <linux/hrtimer.h>
33 #include <linux/uaccess.h>
34 #include <linux/intel-iommu.h>
35
36 #include <asm/pgtable.h>
37 #include <asm/gcc_intrin.h>
38 #include <asm/pal.h>
39 #include <asm/cacheflush.h>
40 #include <asm/div64.h>
41 #include <asm/tlb.h>
42 #include <asm/elf.h>
43
44 #include "misc.h"
45 #include "vti.h"
46 #include "iodev.h"
47 #include "ioapic.h"
48 #include "lapic.h"
49 #include "irq.h"
50
51 static unsigned long kvm_vmm_base;
52 static unsigned long kvm_vsa_base;
53 static unsigned long kvm_vm_buffer;
54 static unsigned long kvm_vm_buffer_size;
55 unsigned long kvm_vmm_gp;
56
57 static long vp_env_info;
58
59 static struct kvm_vmm_info *kvm_vmm_info;
60
61 static DEFINE_PER_CPU(struct kvm_vcpu *, last_vcpu);
62
63 struct kvm_stats_debugfs_item debugfs_entries[] = {
64         { NULL }
65 };
66
67 static void kvm_flush_icache(unsigned long start, unsigned long len)
68 {
69         int l;
70
71         for (l = 0; l < (len + 32); l += 32)
72                 ia64_fc(start + l);
73
74         ia64_sync_i();
75         ia64_srlz_i();
76 }
77
78 static void kvm_flush_tlb_all(void)
79 {
80         unsigned long i, j, count0, count1, stride0, stride1, addr;
81         long flags;
82
83         addr    = local_cpu_data->ptce_base;
84         count0  = local_cpu_data->ptce_count[0];
85         count1  = local_cpu_data->ptce_count[1];
86         stride0 = local_cpu_data->ptce_stride[0];
87         stride1 = local_cpu_data->ptce_stride[1];
88
89         local_irq_save(flags);
90         for (i = 0; i < count0; ++i) {
91                 for (j = 0; j < count1; ++j) {
92                         ia64_ptce(addr);
93                         addr += stride1;
94                 }
95                 addr += stride0;
96         }
97         local_irq_restore(flags);
98         ia64_srlz_i();                  /* srlz.i implies srlz.d */
99 }
100
101 long ia64_pal_vp_create(u64 *vpd, u64 *host_iva, u64 *opt_handler)
102 {
103         struct ia64_pal_retval iprv;
104
105         PAL_CALL_STK(iprv, PAL_VP_CREATE, (u64)vpd, (u64)host_iva,
106                         (u64)opt_handler);
107
108         return iprv.status;
109 }
110
111 static  DEFINE_SPINLOCK(vp_lock);
112
113 void kvm_arch_hardware_enable(void *garbage)
114 {
115         long  status;
116         long  tmp_base;
117         unsigned long pte;
118         unsigned long saved_psr;
119         int slot;
120
121         pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base),
122                                 PAGE_KERNEL));
123         local_irq_save(saved_psr);
124         slot = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT);
125         local_irq_restore(saved_psr);
126         if (slot < 0)
127                 return;
128
129         spin_lock(&vp_lock);
130         status = ia64_pal_vp_init_env(kvm_vsa_base ?
131                                 VP_INIT_ENV : VP_INIT_ENV_INITALIZE,
132                         __pa(kvm_vm_buffer), KVM_VM_BUFFER_BASE, &tmp_base);
133         if (status != 0) {
134                 printk(KERN_WARNING"kvm: Failed to Enable VT Support!!!!\n");
135                 return ;
136         }
137
138         if (!kvm_vsa_base) {
139                 kvm_vsa_base = tmp_base;
140                 printk(KERN_INFO"kvm: kvm_vsa_base:0x%lx\n", kvm_vsa_base);
141         }
142         spin_unlock(&vp_lock);
143         ia64_ptr_entry(0x3, slot);
144 }
145
146 void kvm_arch_hardware_disable(void *garbage)
147 {
148
149         long status;
150         int slot;
151         unsigned long pte;
152         unsigned long saved_psr;
153         unsigned long host_iva = ia64_getreg(_IA64_REG_CR_IVA);
154
155         pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base),
156                                 PAGE_KERNEL));
157
158         local_irq_save(saved_psr);
159         slot = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT);
160         local_irq_restore(saved_psr);
161         if (slot < 0)
162                 return;
163
164         status = ia64_pal_vp_exit_env(host_iva);
165         if (status)
166                 printk(KERN_DEBUG"kvm: Failed to disable VT support! :%ld\n",
167                                 status);
168         ia64_ptr_entry(0x3, slot);
169 }
170
171 void kvm_arch_check_processor_compat(void *rtn)
172 {
173         *(int *)rtn = 0;
174 }
175
176 int kvm_dev_ioctl_check_extension(long ext)
177 {
178
179         int r;
180
181         switch (ext) {
182         case KVM_CAP_IRQCHIP:
183         case KVM_CAP_USER_MEMORY:
184         case KVM_CAP_MP_STATE:
185
186                 r = 1;
187                 break;
188         case KVM_CAP_COALESCED_MMIO:
189                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
190                 break;
191         case KVM_CAP_IOMMU:
192                 r = intel_iommu_found();
193                 break;
194         default:
195                 r = 0;
196         }
197         return r;
198
199 }
200
201 static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
202                                         gpa_t addr, int len, int is_write)
203 {
204         struct kvm_io_device *dev;
205
206         dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr, len, is_write);
207
208         return dev;
209 }
210
211 static int handle_vm_error(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
212 {
213         kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
214         kvm_run->hw.hardware_exit_reason = 1;
215         return 0;
216 }
217
218 static int handle_mmio(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
219 {
220         struct kvm_mmio_req *p;
221         struct kvm_io_device *mmio_dev;
222
223         p = kvm_get_vcpu_ioreq(vcpu);
224
225         if ((p->addr & PAGE_MASK) == IOAPIC_DEFAULT_BASE_ADDRESS)
226                 goto mmio;
227         vcpu->mmio_needed = 1;
228         vcpu->mmio_phys_addr = kvm_run->mmio.phys_addr = p->addr;
229         vcpu->mmio_size = kvm_run->mmio.len = p->size;
230         vcpu->mmio_is_write = kvm_run->mmio.is_write = !p->dir;
231
232         if (vcpu->mmio_is_write)
233                 memcpy(vcpu->mmio_data, &p->data, p->size);
234         memcpy(kvm_run->mmio.data, &p->data, p->size);
235         kvm_run->exit_reason = KVM_EXIT_MMIO;
236         return 0;
237 mmio:
238         mmio_dev = vcpu_find_mmio_dev(vcpu, p->addr, p->size, !p->dir);
239         if (mmio_dev) {
240                 if (!p->dir)
241                         kvm_iodevice_write(mmio_dev, p->addr, p->size,
242                                                 &p->data);
243                 else
244                         kvm_iodevice_read(mmio_dev, p->addr, p->size,
245                                                 &p->data);
246
247         } else
248                 printk(KERN_ERR"kvm: No iodevice found! addr:%lx\n", p->addr);
249         p->state = STATE_IORESP_READY;
250
251         return 1;
252 }
253
254 static int handle_pal_call(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
255 {
256         struct exit_ctl_data *p;
257
258         p = kvm_get_exit_data(vcpu);
259
260         if (p->exit_reason == EXIT_REASON_PAL_CALL)
261                 return kvm_pal_emul(vcpu, kvm_run);
262         else {
263                 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
264                 kvm_run->hw.hardware_exit_reason = 2;
265                 return 0;
266         }
267 }
268
269 static int handle_sal_call(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
270 {
271         struct exit_ctl_data *p;
272
273         p = kvm_get_exit_data(vcpu);
274
275         if (p->exit_reason == EXIT_REASON_SAL_CALL) {
276                 kvm_sal_emul(vcpu);
277                 return 1;
278         } else {
279                 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
280                 kvm_run->hw.hardware_exit_reason = 3;
281                 return 0;
282         }
283
284 }
285
286 /*
287  *  offset: address offset to IPI space.
288  *  value:  deliver value.
289  */
290 static void vcpu_deliver_ipi(struct kvm_vcpu *vcpu, uint64_t dm,
291                                 uint64_t vector)
292 {
293         switch (dm) {
294         case SAPIC_FIXED:
295                 kvm_apic_set_irq(vcpu, vector, 0);
296                 break;
297         case SAPIC_NMI:
298                 kvm_apic_set_irq(vcpu, 2, 0);
299                 break;
300         case SAPIC_EXTINT:
301                 kvm_apic_set_irq(vcpu, 0, 0);
302                 break;
303         case SAPIC_INIT:
304         case SAPIC_PMI:
305         default:
306                 printk(KERN_ERR"kvm: Unimplemented Deliver reserved IPI!\n");
307                 break;
308         }
309 }
310
311 static struct kvm_vcpu *lid_to_vcpu(struct kvm *kvm, unsigned long id,
312                         unsigned long eid)
313 {
314         union ia64_lid lid;
315         int i;
316
317         for (i = 0; i < KVM_MAX_VCPUS; i++) {
318                 if (kvm->vcpus[i]) {
319                         lid.val = VCPU_LID(kvm->vcpus[i]);
320                         if (lid.id == id && lid.eid == eid)
321                                 return kvm->vcpus[i];
322                 }
323         }
324
325         return NULL;
326 }
327
328 static int handle_ipi(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
329 {
330         struct exit_ctl_data *p = kvm_get_exit_data(vcpu);
331         struct kvm_vcpu *target_vcpu;
332         struct kvm_pt_regs *regs;
333         union ia64_ipi_a addr = p->u.ipi_data.addr;
334         union ia64_ipi_d data = p->u.ipi_data.data;
335
336         target_vcpu = lid_to_vcpu(vcpu->kvm, addr.id, addr.eid);
337         if (!target_vcpu)
338                 return handle_vm_error(vcpu, kvm_run);
339
340         if (!target_vcpu->arch.launched) {
341                 regs = vcpu_regs(target_vcpu);
342
343                 regs->cr_iip = vcpu->kvm->arch.rdv_sal_data.boot_ip;
344                 regs->r1 = vcpu->kvm->arch.rdv_sal_data.boot_gp;
345
346                 target_vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
347                 if (waitqueue_active(&target_vcpu->wq))
348                         wake_up_interruptible(&target_vcpu->wq);
349         } else {
350                 vcpu_deliver_ipi(target_vcpu, data.dm, data.vector);
351                 if (target_vcpu != vcpu)
352                         kvm_vcpu_kick(target_vcpu);
353         }
354
355         return 1;
356 }
357
358 struct call_data {
359         struct kvm_ptc_g ptc_g_data;
360         struct kvm_vcpu *vcpu;
361 };
362
363 static void vcpu_global_purge(void *info)
364 {
365         struct call_data *p = (struct call_data *)info;
366         struct kvm_vcpu *vcpu = p->vcpu;
367
368         if (test_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
369                 return;
370
371         set_bit(KVM_REQ_PTC_G, &vcpu->requests);
372         if (vcpu->arch.ptc_g_count < MAX_PTC_G_NUM) {
373                 vcpu->arch.ptc_g_data[vcpu->arch.ptc_g_count++] =
374                                                         p->ptc_g_data;
375         } else {
376                 clear_bit(KVM_REQ_PTC_G, &vcpu->requests);
377                 vcpu->arch.ptc_g_count = 0;
378                 set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests);
379         }
380 }
381
382 static int handle_global_purge(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
383 {
384         struct exit_ctl_data *p = kvm_get_exit_data(vcpu);
385         struct kvm *kvm = vcpu->kvm;
386         struct call_data call_data;
387         int i;
388
389         call_data.ptc_g_data = p->u.ptc_g_data;
390
391         for (i = 0; i < KVM_MAX_VCPUS; i++) {
392                 if (!kvm->vcpus[i] || kvm->vcpus[i]->arch.mp_state ==
393                                                 KVM_MP_STATE_UNINITIALIZED ||
394                                         vcpu == kvm->vcpus[i])
395                         continue;
396
397                 if (waitqueue_active(&kvm->vcpus[i]->wq))
398                         wake_up_interruptible(&kvm->vcpus[i]->wq);
399
400                 if (kvm->vcpus[i]->cpu != -1) {
401                         call_data.vcpu = kvm->vcpus[i];
402                         smp_call_function_single(kvm->vcpus[i]->cpu,
403                                         vcpu_global_purge, &call_data, 1);
404                 } else
405                         printk(KERN_WARNING"kvm: Uninit vcpu received ipi!\n");
406
407         }
408         return 1;
409 }
410
411 static int handle_switch_rr6(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
412 {
413         return 1;
414 }
415
416 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
417 {
418
419         ktime_t kt;
420         long itc_diff;
421         unsigned long vcpu_now_itc;
422         unsigned long expires;
423         struct hrtimer *p_ht = &vcpu->arch.hlt_timer;
424         unsigned long cyc_per_usec = local_cpu_data->cyc_per_usec;
425         struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
426
427         if (irqchip_in_kernel(vcpu->kvm)) {
428
429                 vcpu_now_itc = ia64_getreg(_IA64_REG_AR_ITC) + vcpu->arch.itc_offset;
430
431                 if (time_after(vcpu_now_itc, vpd->itm)) {
432                         vcpu->arch.timer_check = 1;
433                         return 1;
434                 }
435                 itc_diff = vpd->itm - vcpu_now_itc;
436                 if (itc_diff < 0)
437                         itc_diff = -itc_diff;
438
439                 expires = div64_u64(itc_diff, cyc_per_usec);
440                 kt = ktime_set(0, 1000 * expires);
441
442                 down_read(&vcpu->kvm->slots_lock);
443                 vcpu->arch.ht_active = 1;
444                 hrtimer_start(p_ht, kt, HRTIMER_MODE_ABS);
445
446                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
447                 kvm_vcpu_block(vcpu);
448                 hrtimer_cancel(p_ht);
449                 vcpu->arch.ht_active = 0;
450
451                 if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests))
452                         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
453                                 vcpu->arch.mp_state =
454                                         KVM_MP_STATE_RUNNABLE;
455                 up_read(&vcpu->kvm->slots_lock);
456
457                 if (vcpu->arch.mp_state != KVM_MP_STATE_RUNNABLE)
458                         return -EINTR;
459                 return 1;
460         } else {
461                 printk(KERN_ERR"kvm: Unsupported userspace halt!");
462                 return 0;
463         }
464 }
465
466 static int handle_vm_shutdown(struct kvm_vcpu *vcpu,
467                 struct kvm_run *kvm_run)
468 {
469         kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
470         return 0;
471 }
472
473 static int handle_external_interrupt(struct kvm_vcpu *vcpu,
474                 struct kvm_run *kvm_run)
475 {
476         return 1;
477 }
478
479 static int (*kvm_vti_exit_handlers[])(struct kvm_vcpu *vcpu,
480                 struct kvm_run *kvm_run) = {
481         [EXIT_REASON_VM_PANIC]              = handle_vm_error,
482         [EXIT_REASON_MMIO_INSTRUCTION]      = handle_mmio,
483         [EXIT_REASON_PAL_CALL]              = handle_pal_call,
484         [EXIT_REASON_SAL_CALL]              = handle_sal_call,
485         [EXIT_REASON_SWITCH_RR6]            = handle_switch_rr6,
486         [EXIT_REASON_VM_DESTROY]            = handle_vm_shutdown,
487         [EXIT_REASON_EXTERNAL_INTERRUPT]    = handle_external_interrupt,
488         [EXIT_REASON_IPI]                   = handle_ipi,
489         [EXIT_REASON_PTC_G]                 = handle_global_purge,
490
491 };
492
493 static const int kvm_vti_max_exit_handlers =
494                 sizeof(kvm_vti_exit_handlers)/sizeof(*kvm_vti_exit_handlers);
495
496 static uint32_t kvm_get_exit_reason(struct kvm_vcpu *vcpu)
497 {
498         struct exit_ctl_data *p_exit_data;
499
500         p_exit_data = kvm_get_exit_data(vcpu);
501         return p_exit_data->exit_reason;
502 }
503
504 /*
505  * The guest has exited.  See if we can fix it or if we need userspace
506  * assistance.
507  */
508 static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
509 {
510         u32 exit_reason = kvm_get_exit_reason(vcpu);
511         vcpu->arch.last_exit = exit_reason;
512
513         if (exit_reason < kvm_vti_max_exit_handlers
514                         && kvm_vti_exit_handlers[exit_reason])
515                 return kvm_vti_exit_handlers[exit_reason](vcpu, kvm_run);
516         else {
517                 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
518                 kvm_run->hw.hardware_exit_reason = exit_reason;
519         }
520         return 0;
521 }
522
523 static inline void vti_set_rr6(unsigned long rr6)
524 {
525         ia64_set_rr(RR6, rr6);
526         ia64_srlz_i();
527 }
528
529 static int kvm_insert_vmm_mapping(struct kvm_vcpu *vcpu)
530 {
531         unsigned long pte;
532         struct kvm *kvm = vcpu->kvm;
533         int r;
534
535         /*Insert a pair of tr to map vmm*/
536         pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base), PAGE_KERNEL));
537         r = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT);
538         if (r < 0)
539                 goto out;
540         vcpu->arch.vmm_tr_slot = r;
541         /*Insert a pairt of tr to map data of vm*/
542         pte = pte_val(mk_pte_phys(__pa(kvm->arch.vm_base), PAGE_KERNEL));
543         r = ia64_itr_entry(0x3, KVM_VM_DATA_BASE,
544                                         pte, KVM_VM_DATA_SHIFT);
545         if (r < 0)
546                 goto out;
547         vcpu->arch.vm_tr_slot = r;
548         r = 0;
549 out:
550         return r;
551
552 }
553
554 static void kvm_purge_vmm_mapping(struct kvm_vcpu *vcpu)
555 {
556
557         ia64_ptr_entry(0x3, vcpu->arch.vmm_tr_slot);
558         ia64_ptr_entry(0x3, vcpu->arch.vm_tr_slot);
559
560 }
561
562 static int kvm_vcpu_pre_transition(struct kvm_vcpu *vcpu)
563 {
564         int cpu = smp_processor_id();
565
566         if (vcpu->arch.last_run_cpu != cpu ||
567                         per_cpu(last_vcpu, cpu) != vcpu) {
568                 per_cpu(last_vcpu, cpu) = vcpu;
569                 vcpu->arch.last_run_cpu = cpu;
570                 kvm_flush_tlb_all();
571         }
572
573         vcpu->arch.host_rr6 = ia64_get_rr(RR6);
574         vti_set_rr6(vcpu->arch.vmm_rr);
575         return kvm_insert_vmm_mapping(vcpu);
576 }
577 static void kvm_vcpu_post_transition(struct kvm_vcpu *vcpu)
578 {
579         kvm_purge_vmm_mapping(vcpu);
580         vti_set_rr6(vcpu->arch.host_rr6);
581 }
582
583 static int  vti_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
584 {
585         union context *host_ctx, *guest_ctx;
586         int r;
587
588         /*Get host and guest context with guest address space.*/
589         host_ctx = kvm_get_host_context(vcpu);
590         guest_ctx = kvm_get_guest_context(vcpu);
591
592         r = kvm_vcpu_pre_transition(vcpu);
593         if (r < 0)
594                 goto out;
595         kvm_vmm_info->tramp_entry(host_ctx, guest_ctx);
596         kvm_vcpu_post_transition(vcpu);
597         r = 0;
598 out:
599         return r;
600 }
601
602 static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
603 {
604         int r;
605
606 again:
607         preempt_disable();
608         local_irq_disable();
609
610         if (signal_pending(current)) {
611                 local_irq_enable();
612                 preempt_enable();
613                 r = -EINTR;
614                 kvm_run->exit_reason = KVM_EXIT_INTR;
615                 goto out;
616         }
617
618         vcpu->guest_mode = 1;
619         kvm_guest_enter();
620         down_read(&vcpu->kvm->slots_lock);
621         r = vti_vcpu_run(vcpu, kvm_run);
622         if (r < 0) {
623                 local_irq_enable();
624                 preempt_enable();
625                 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
626                 goto out;
627         }
628
629         vcpu->arch.launched = 1;
630         vcpu->guest_mode = 0;
631         local_irq_enable();
632
633         /*
634          * We must have an instruction between local_irq_enable() and
635          * kvm_guest_exit(), so the timer interrupt isn't delayed by
636          * the interrupt shadow.  The stat.exits increment will do nicely.
637          * But we need to prevent reordering, hence this barrier():
638          */
639         barrier();
640         kvm_guest_exit();
641         up_read(&vcpu->kvm->slots_lock);
642         preempt_enable();
643
644         r = kvm_handle_exit(kvm_run, vcpu);
645
646         if (r > 0) {
647                 if (!need_resched())
648                         goto again;
649         }
650
651 out:
652         if (r > 0) {
653                 kvm_resched(vcpu);
654                 goto again;
655         }
656
657         return r;
658 }
659
660 static void kvm_set_mmio_data(struct kvm_vcpu *vcpu)
661 {
662         struct kvm_mmio_req *p = kvm_get_vcpu_ioreq(vcpu);
663
664         if (!vcpu->mmio_is_write)
665                 memcpy(&p->data, vcpu->mmio_data, 8);
666         p->state = STATE_IORESP_READY;
667 }
668
669 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
670 {
671         int r;
672         sigset_t sigsaved;
673
674         vcpu_load(vcpu);
675
676         if (vcpu->sigset_active)
677                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
678
679         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
680                 kvm_vcpu_block(vcpu);
681                 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
682                 r = -EAGAIN;
683                 goto out;
684         }
685
686         if (vcpu->mmio_needed) {
687                 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
688                 kvm_set_mmio_data(vcpu);
689                 vcpu->mmio_read_completed = 1;
690                 vcpu->mmio_needed = 0;
691         }
692         r = __vcpu_run(vcpu, kvm_run);
693 out:
694         if (vcpu->sigset_active)
695                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
696
697         vcpu_put(vcpu);
698         return r;
699 }
700
701 static struct kvm *kvm_alloc_kvm(void)
702 {
703
704         struct kvm *kvm;
705         uint64_t  vm_base;
706
707         BUG_ON(sizeof(struct kvm) > KVM_VM_STRUCT_SIZE);
708
709         vm_base = __get_free_pages(GFP_KERNEL, get_order(KVM_VM_DATA_SIZE));
710
711         if (!vm_base)
712                 return ERR_PTR(-ENOMEM);
713
714         memset((void *)vm_base, 0, KVM_VM_DATA_SIZE);
715         kvm = (struct kvm *)(vm_base +
716                         offsetof(struct kvm_vm_data, kvm_vm_struct));
717         kvm->arch.vm_base = vm_base;
718         printk(KERN_DEBUG"kvm: vm's data area:0x%lx\n", vm_base);
719
720         return kvm;
721 }
722
723 struct kvm_io_range {
724         unsigned long start;
725         unsigned long size;
726         unsigned long type;
727 };
728
729 static const struct kvm_io_range io_ranges[] = {
730         {VGA_IO_START, VGA_IO_SIZE, GPFN_FRAME_BUFFER},
731         {MMIO_START, MMIO_SIZE, GPFN_LOW_MMIO},
732         {LEGACY_IO_START, LEGACY_IO_SIZE, GPFN_LEGACY_IO},
733         {IO_SAPIC_START, IO_SAPIC_SIZE, GPFN_IOSAPIC},
734         {PIB_START, PIB_SIZE, GPFN_PIB},
735 };
736
737 static void kvm_build_io_pmt(struct kvm *kvm)
738 {
739         unsigned long i, j;
740
741         /* Mark I/O ranges */
742         for (i = 0; i < (sizeof(io_ranges) / sizeof(struct kvm_io_range));
743                                                         i++) {
744                 for (j = io_ranges[i].start;
745                                 j < io_ranges[i].start + io_ranges[i].size;
746                                 j += PAGE_SIZE)
747                         kvm_set_pmt_entry(kvm, j >> PAGE_SHIFT,
748                                         io_ranges[i].type, 0);
749         }
750
751 }
752
753 /*Use unused rids to virtualize guest rid.*/
754 #define GUEST_PHYSICAL_RR0      0x1739
755 #define GUEST_PHYSICAL_RR4      0x2739
756 #define VMM_INIT_RR             0x1660
757
758 static void kvm_init_vm(struct kvm *kvm)
759 {
760         BUG_ON(!kvm);
761
762         kvm->arch.metaphysical_rr0 = GUEST_PHYSICAL_RR0;
763         kvm->arch.metaphysical_rr4 = GUEST_PHYSICAL_RR4;
764         kvm->arch.vmm_init_rr = VMM_INIT_RR;
765
766         /*
767          *Fill P2M entries for MMIO/IO ranges
768          */
769         kvm_build_io_pmt(kvm);
770
771         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
772
773         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
774         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
775 }
776
777 struct  kvm *kvm_arch_create_vm(void)
778 {
779         struct kvm *kvm = kvm_alloc_kvm();
780
781         if (IS_ERR(kvm))
782                 return ERR_PTR(-ENOMEM);
783         kvm_init_vm(kvm);
784
785         return kvm;
786
787 }
788
789 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm,
790                                         struct kvm_irqchip *chip)
791 {
792         int r;
793
794         r = 0;
795         switch (chip->chip_id) {
796         case KVM_IRQCHIP_IOAPIC:
797                 memcpy(&chip->chip.ioapic, ioapic_irqchip(kvm),
798                                 sizeof(struct kvm_ioapic_state));
799                 break;
800         default:
801                 r = -EINVAL;
802                 break;
803         }
804         return r;
805 }
806
807 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
808 {
809         int r;
810
811         r = 0;
812         switch (chip->chip_id) {
813         case KVM_IRQCHIP_IOAPIC:
814                 memcpy(ioapic_irqchip(kvm),
815                                 &chip->chip.ioapic,
816                                 sizeof(struct kvm_ioapic_state));
817                 break;
818         default:
819                 r = -EINVAL;
820                 break;
821         }
822         return r;
823 }
824
825 #define RESTORE_REGS(_x) vcpu->arch._x = regs->_x
826
827 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
828 {
829         int i;
830         struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
831         int r;
832
833         vcpu_load(vcpu);
834
835         for (i = 0; i < 16; i++) {
836                 vpd->vgr[i] = regs->vpd.vgr[i];
837                 vpd->vbgr[i] = regs->vpd.vbgr[i];
838         }
839         for (i = 0; i < 128; i++)
840                 vpd->vcr[i] = regs->vpd.vcr[i];
841         vpd->vhpi = regs->vpd.vhpi;
842         vpd->vnat = regs->vpd.vnat;
843         vpd->vbnat = regs->vpd.vbnat;
844         vpd->vpsr = regs->vpd.vpsr;
845
846         vpd->vpr = regs->vpd.vpr;
847
848         r = -EFAULT;
849         r = copy_from_user(&vcpu->arch.guest, regs->saved_guest,
850                                                 sizeof(union context));
851         if (r)
852                 goto out;
853         r = copy_from_user(vcpu + 1, regs->saved_stack +
854                         sizeof(struct kvm_vcpu),
855                         KVM_STK_OFFSET - sizeof(struct kvm_vcpu));
856         if (r)
857                 goto out;
858         vcpu->arch.exit_data =
859                 ((struct kvm_vcpu *)(regs->saved_stack))->arch.exit_data;
860
861         RESTORE_REGS(mp_state);
862         RESTORE_REGS(vmm_rr);
863         memcpy(vcpu->arch.itrs, regs->itrs, sizeof(struct thash_data) * NITRS);
864         memcpy(vcpu->arch.dtrs, regs->dtrs, sizeof(struct thash_data) * NDTRS);
865         RESTORE_REGS(itr_regions);
866         RESTORE_REGS(dtr_regions);
867         RESTORE_REGS(tc_regions);
868         RESTORE_REGS(irq_check);
869         RESTORE_REGS(itc_check);
870         RESTORE_REGS(timer_check);
871         RESTORE_REGS(timer_pending);
872         RESTORE_REGS(last_itc);
873         for (i = 0; i < 8; i++) {
874                 vcpu->arch.vrr[i] = regs->vrr[i];
875                 vcpu->arch.ibr[i] = regs->ibr[i];
876                 vcpu->arch.dbr[i] = regs->dbr[i];
877         }
878         for (i = 0; i < 4; i++)
879                 vcpu->arch.insvc[i] = regs->insvc[i];
880         RESTORE_REGS(xtp);
881         RESTORE_REGS(metaphysical_rr0);
882         RESTORE_REGS(metaphysical_rr4);
883         RESTORE_REGS(metaphysical_saved_rr0);
884         RESTORE_REGS(metaphysical_saved_rr4);
885         RESTORE_REGS(fp_psr);
886         RESTORE_REGS(saved_gp);
887
888         vcpu->arch.irq_new_pending = 1;
889         vcpu->arch.itc_offset = regs->saved_itc - ia64_getreg(_IA64_REG_AR_ITC);
890         set_bit(KVM_REQ_RESUME, &vcpu->requests);
891
892         vcpu_put(vcpu);
893         r = 0;
894 out:
895         return r;
896 }
897
898 long kvm_arch_vm_ioctl(struct file *filp,
899                 unsigned int ioctl, unsigned long arg)
900 {
901         struct kvm *kvm = filp->private_data;
902         void __user *argp = (void __user *)arg;
903         int r = -EINVAL;
904
905         switch (ioctl) {
906         case KVM_SET_MEMORY_REGION: {
907                 struct kvm_memory_region kvm_mem;
908                 struct kvm_userspace_memory_region kvm_userspace_mem;
909
910                 r = -EFAULT;
911                 if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
912                         goto out;
913                 kvm_userspace_mem.slot = kvm_mem.slot;
914                 kvm_userspace_mem.flags = kvm_mem.flags;
915                 kvm_userspace_mem.guest_phys_addr =
916                                         kvm_mem.guest_phys_addr;
917                 kvm_userspace_mem.memory_size = kvm_mem.memory_size;
918                 r = kvm_vm_ioctl_set_memory_region(kvm,
919                                         &kvm_userspace_mem, 0);
920                 if (r)
921                         goto out;
922                 break;
923                 }
924         case KVM_CREATE_IRQCHIP:
925                 r = -EFAULT;
926                 r = kvm_ioapic_init(kvm);
927                 if (r)
928                         goto out;
929                 break;
930         case KVM_IRQ_LINE: {
931                 struct kvm_irq_level irq_event;
932
933                 r = -EFAULT;
934                 if (copy_from_user(&irq_event, argp, sizeof irq_event))
935                         goto out;
936                 if (irqchip_in_kernel(kvm)) {
937                         mutex_lock(&kvm->lock);
938                         kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
939                                     irq_event.irq, irq_event.level);
940                         mutex_unlock(&kvm->lock);
941                         r = 0;
942                 }
943                 break;
944                 }
945         case KVM_GET_IRQCHIP: {
946                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
947                 struct kvm_irqchip chip;
948
949                 r = -EFAULT;
950                 if (copy_from_user(&chip, argp, sizeof chip))
951                                 goto out;
952                 r = -ENXIO;
953                 if (!irqchip_in_kernel(kvm))
954                         goto out;
955                 r = kvm_vm_ioctl_get_irqchip(kvm, &chip);
956                 if (r)
957                         goto out;
958                 r = -EFAULT;
959                 if (copy_to_user(argp, &chip, sizeof chip))
960                                 goto out;
961                 r = 0;
962                 break;
963                 }
964         case KVM_SET_IRQCHIP: {
965                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
966                 struct kvm_irqchip chip;
967
968                 r = -EFAULT;
969                 if (copy_from_user(&chip, argp, sizeof chip))
970                                 goto out;
971                 r = -ENXIO;
972                 if (!irqchip_in_kernel(kvm))
973                         goto out;
974                 r = kvm_vm_ioctl_set_irqchip(kvm, &chip);
975                 if (r)
976                         goto out;
977                 r = 0;
978                 break;
979                 }
980         default:
981                 ;
982         }
983 out:
984         return r;
985 }
986
987 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
988                 struct kvm_sregs *sregs)
989 {
990         return -EINVAL;
991 }
992
993 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
994                 struct kvm_sregs *sregs)
995 {
996         return -EINVAL;
997
998 }
999 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1000                 struct kvm_translation *tr)
1001 {
1002
1003         return -EINVAL;
1004 }
1005
1006 static int kvm_alloc_vmm_area(void)
1007 {
1008         if (!kvm_vmm_base && (kvm_vm_buffer_size < KVM_VM_BUFFER_SIZE)) {
1009                 kvm_vmm_base = __get_free_pages(GFP_KERNEL,
1010                                 get_order(KVM_VMM_SIZE));
1011                 if (!kvm_vmm_base)
1012                         return -ENOMEM;
1013
1014                 memset((void *)kvm_vmm_base, 0, KVM_VMM_SIZE);
1015                 kvm_vm_buffer = kvm_vmm_base + VMM_SIZE;
1016
1017                 printk(KERN_DEBUG"kvm:VMM's Base Addr:0x%lx, vm_buffer:0x%lx\n",
1018                                 kvm_vmm_base, kvm_vm_buffer);
1019         }
1020
1021         return 0;
1022 }
1023
1024 static void kvm_free_vmm_area(void)
1025 {
1026         if (kvm_vmm_base) {
1027                 /*Zero this area before free to avoid bits leak!!*/
1028                 memset((void *)kvm_vmm_base, 0, KVM_VMM_SIZE);
1029                 free_pages(kvm_vmm_base, get_order(KVM_VMM_SIZE));
1030                 kvm_vmm_base  = 0;
1031                 kvm_vm_buffer = 0;
1032                 kvm_vsa_base = 0;
1033         }
1034 }
1035
1036 static void vti_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1037 {
1038 }
1039
1040 static int vti_init_vpd(struct kvm_vcpu *vcpu)
1041 {
1042         int i;
1043         union cpuid3_t cpuid3;
1044         struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
1045
1046         if (IS_ERR(vpd))
1047                 return PTR_ERR(vpd);
1048
1049         /* CPUID init */
1050         for (i = 0; i < 5; i++)
1051                 vpd->vcpuid[i] = ia64_get_cpuid(i);
1052
1053         /* Limit the CPUID number to 5 */
1054         cpuid3.value = vpd->vcpuid[3];
1055         cpuid3.number = 4;      /* 5 - 1 */
1056         vpd->vcpuid[3] = cpuid3.value;
1057
1058         /*Set vac and vdc fields*/
1059         vpd->vac.a_from_int_cr = 1;
1060         vpd->vac.a_to_int_cr = 1;
1061         vpd->vac.a_from_psr = 1;
1062         vpd->vac.a_from_cpuid = 1;
1063         vpd->vac.a_cover = 1;
1064         vpd->vac.a_bsw = 1;
1065         vpd->vac.a_int = 1;
1066         vpd->vdc.d_vmsw = 1;
1067
1068         /*Set virtual buffer*/
1069         vpd->virt_env_vaddr = KVM_VM_BUFFER_BASE;
1070
1071         return 0;
1072 }
1073
1074 static int vti_create_vp(struct kvm_vcpu *vcpu)
1075 {
1076         long ret;
1077         struct vpd *vpd = vcpu->arch.vpd;
1078         unsigned long  vmm_ivt;
1079
1080         vmm_ivt = kvm_vmm_info->vmm_ivt;
1081
1082         printk(KERN_DEBUG "kvm: vcpu:%p,ivt: 0x%lx\n", vcpu, vmm_ivt);
1083
1084         ret = ia64_pal_vp_create((u64 *)vpd, (u64 *)vmm_ivt, 0);
1085
1086         if (ret) {
1087                 printk(KERN_ERR"kvm: ia64_pal_vp_create failed!\n");
1088                 return -EINVAL;
1089         }
1090         return 0;
1091 }
1092
1093 static void init_ptce_info(struct kvm_vcpu *vcpu)
1094 {
1095         ia64_ptce_info_t ptce = {0};
1096
1097         ia64_get_ptce(&ptce);
1098         vcpu->arch.ptce_base = ptce.base;
1099         vcpu->arch.ptce_count[0] = ptce.count[0];
1100         vcpu->arch.ptce_count[1] = ptce.count[1];
1101         vcpu->arch.ptce_stride[0] = ptce.stride[0];
1102         vcpu->arch.ptce_stride[1] = ptce.stride[1];
1103 }
1104
1105 static void kvm_migrate_hlt_timer(struct kvm_vcpu *vcpu)
1106 {
1107         struct hrtimer *p_ht = &vcpu->arch.hlt_timer;
1108
1109         if (hrtimer_cancel(p_ht))
1110                 hrtimer_start_expires(p_ht, HRTIMER_MODE_ABS);
1111 }
1112
1113 static enum hrtimer_restart hlt_timer_fn(struct hrtimer *data)
1114 {
1115         struct kvm_vcpu *vcpu;
1116         wait_queue_head_t *q;
1117
1118         vcpu  = container_of(data, struct kvm_vcpu, arch.hlt_timer);
1119         q = &vcpu->wq;
1120
1121         if (vcpu->arch.mp_state != KVM_MP_STATE_HALTED)
1122                 goto out;
1123
1124         if (waitqueue_active(q))
1125                 wake_up_interruptible(q);
1126
1127 out:
1128         vcpu->arch.timer_fired = 1;
1129         vcpu->arch.timer_check = 1;
1130         return HRTIMER_NORESTART;
1131 }
1132
1133 #define PALE_RESET_ENTRY    0x80000000ffffffb0UL
1134
1135 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
1136 {
1137         struct kvm_vcpu *v;
1138         int r;
1139         int i;
1140         long itc_offset;
1141         struct kvm *kvm = vcpu->kvm;
1142         struct kvm_pt_regs *regs = vcpu_regs(vcpu);
1143
1144         union context *p_ctx = &vcpu->arch.guest;
1145         struct kvm_vcpu *vmm_vcpu = to_guest(vcpu->kvm, vcpu);
1146
1147         /*Init vcpu context for first run.*/
1148         if (IS_ERR(vmm_vcpu))
1149                 return PTR_ERR(vmm_vcpu);
1150
1151         if (vcpu->vcpu_id == 0) {
1152                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
1153
1154                 /*Set entry address for first run.*/
1155                 regs->cr_iip = PALE_RESET_ENTRY;
1156
1157                 /*Initialize itc offset for vcpus*/
1158                 itc_offset = 0UL - ia64_getreg(_IA64_REG_AR_ITC);
1159                 for (i = 0; i < KVM_MAX_VCPUS; i++) {
1160                         v = (struct kvm_vcpu *)((char *)vcpu +
1161                                         sizeof(struct kvm_vcpu_data) * i);
1162                         v->arch.itc_offset = itc_offset;
1163                         v->arch.last_itc = 0;
1164                 }
1165         } else
1166                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
1167
1168         r = -ENOMEM;
1169         vcpu->arch.apic = kzalloc(sizeof(struct kvm_lapic), GFP_KERNEL);
1170         if (!vcpu->arch.apic)
1171                 goto out;
1172         vcpu->arch.apic->vcpu = vcpu;
1173
1174         p_ctx->gr[1] = 0;
1175         p_ctx->gr[12] = (unsigned long)((char *)vmm_vcpu + KVM_STK_OFFSET);
1176         p_ctx->gr[13] = (unsigned long)vmm_vcpu;
1177         p_ctx->psr = 0x1008522000UL;
1178         p_ctx->ar[40] = FPSR_DEFAULT; /*fpsr*/
1179         p_ctx->caller_unat = 0;
1180         p_ctx->pr = 0x0;
1181         p_ctx->ar[36] = 0x0; /*unat*/
1182         p_ctx->ar[19] = 0x0; /*rnat*/
1183         p_ctx->ar[18] = (unsigned long)vmm_vcpu +
1184                                 ((sizeof(struct kvm_vcpu)+15) & ~15);
1185         p_ctx->ar[64] = 0x0; /*pfs*/
1186         p_ctx->cr[0] = 0x7e04UL;
1187         p_ctx->cr[2] = (unsigned long)kvm_vmm_info->vmm_ivt;
1188         p_ctx->cr[8] = 0x3c;
1189
1190         /*Initilize region register*/
1191         p_ctx->rr[0] = 0x30;
1192         p_ctx->rr[1] = 0x30;
1193         p_ctx->rr[2] = 0x30;
1194         p_ctx->rr[3] = 0x30;
1195         p_ctx->rr[4] = 0x30;
1196         p_ctx->rr[5] = 0x30;
1197         p_ctx->rr[7] = 0x30;
1198
1199         /*Initilize branch register 0*/
1200         p_ctx->br[0] = *(unsigned long *)kvm_vmm_info->vmm_entry;
1201
1202         vcpu->arch.vmm_rr = kvm->arch.vmm_init_rr;
1203         vcpu->arch.metaphysical_rr0 = kvm->arch.metaphysical_rr0;
1204         vcpu->arch.metaphysical_rr4 = kvm->arch.metaphysical_rr4;
1205
1206         hrtimer_init(&vcpu->arch.hlt_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1207         vcpu->arch.hlt_timer.function = hlt_timer_fn;
1208
1209         vcpu->arch.last_run_cpu = -1;
1210         vcpu->arch.vpd = (struct vpd *)VPD_BASE(vcpu->vcpu_id);
1211         vcpu->arch.vsa_base = kvm_vsa_base;
1212         vcpu->arch.__gp = kvm_vmm_gp;
1213         vcpu->arch.dirty_log_lock_pa = __pa(&kvm->arch.dirty_log_lock);
1214         vcpu->arch.vhpt.hash = (struct thash_data *)VHPT_BASE(vcpu->vcpu_id);
1215         vcpu->arch.vtlb.hash = (struct thash_data *)VTLB_BASE(vcpu->vcpu_id);
1216         init_ptce_info(vcpu);
1217
1218         r = 0;
1219 out:
1220         return r;
1221 }
1222
1223 static int vti_vcpu_setup(struct kvm_vcpu *vcpu, int id)
1224 {
1225         unsigned long psr;
1226         int r;
1227
1228         local_irq_save(psr);
1229         r = kvm_insert_vmm_mapping(vcpu);
1230         if (r)
1231                 goto fail;
1232         r = kvm_vcpu_init(vcpu, vcpu->kvm, id);
1233         if (r)
1234                 goto fail;
1235
1236         r = vti_init_vpd(vcpu);
1237         if (r) {
1238                 printk(KERN_DEBUG"kvm: vpd init error!!\n");
1239                 goto uninit;
1240         }
1241
1242         r = vti_create_vp(vcpu);
1243         if (r)
1244                 goto uninit;
1245
1246         kvm_purge_vmm_mapping(vcpu);
1247         local_irq_restore(psr);
1248
1249         return 0;
1250 uninit:
1251         kvm_vcpu_uninit(vcpu);
1252 fail:
1253         local_irq_restore(psr);
1254         return r;
1255 }
1256
1257 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
1258                 unsigned int id)
1259 {
1260         struct kvm_vcpu *vcpu;
1261         unsigned long vm_base = kvm->arch.vm_base;
1262         int r;
1263         int cpu;
1264
1265         BUG_ON(sizeof(struct kvm_vcpu) > VCPU_STRUCT_SIZE/2);
1266
1267         r = -EINVAL;
1268         if (id >= KVM_MAX_VCPUS) {
1269                 printk(KERN_ERR"kvm: Can't configure vcpus > %ld",
1270                                 KVM_MAX_VCPUS);
1271                 goto fail;
1272         }
1273
1274         r = -ENOMEM;
1275         if (!vm_base) {
1276                 printk(KERN_ERR"kvm: Create vcpu[%d] error!\n", id);
1277                 goto fail;
1278         }
1279         vcpu = (struct kvm_vcpu *)(vm_base + offsetof(struct kvm_vm_data,
1280                                         vcpu_data[id].vcpu_struct));
1281         vcpu->kvm = kvm;
1282
1283         cpu = get_cpu();
1284         vti_vcpu_load(vcpu, cpu);
1285         r = vti_vcpu_setup(vcpu, id);
1286         put_cpu();
1287
1288         if (r) {
1289                 printk(KERN_DEBUG"kvm: vcpu_setup error!!\n");
1290                 goto fail;
1291         }
1292
1293         return vcpu;
1294 fail:
1295         return ERR_PTR(r);
1296 }
1297
1298 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
1299 {
1300         return 0;
1301 }
1302
1303 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1304 {
1305         return -EINVAL;
1306 }
1307
1308 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1309 {
1310         return -EINVAL;
1311 }
1312
1313 int kvm_arch_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
1314                 struct kvm_debug_guest *dbg)
1315 {
1316         return -EINVAL;
1317 }
1318
1319 static void free_kvm(struct kvm *kvm)
1320 {
1321         unsigned long vm_base = kvm->arch.vm_base;
1322
1323         if (vm_base) {
1324                 memset((void *)vm_base, 0, KVM_VM_DATA_SIZE);
1325                 free_pages(vm_base, get_order(KVM_VM_DATA_SIZE));
1326         }
1327
1328 }
1329
1330 static void kvm_release_vm_pages(struct kvm *kvm)
1331 {
1332         struct kvm_memory_slot *memslot;
1333         int i, j;
1334         unsigned long base_gfn;
1335
1336         for (i = 0; i < kvm->nmemslots; i++) {
1337                 memslot = &kvm->memslots[i];
1338                 base_gfn = memslot->base_gfn;
1339
1340                 for (j = 0; j < memslot->npages; j++) {
1341                         if (memslot->rmap[j])
1342                                 put_page((struct page *)memslot->rmap[j]);
1343                 }
1344         }
1345 }
1346
1347 void kvm_arch_destroy_vm(struct kvm *kvm)
1348 {
1349         kvm_iommu_unmap_guest(kvm);
1350 #ifdef  KVM_CAP_DEVICE_ASSIGNMENT
1351         kvm_free_all_assigned_devices(kvm);
1352 #endif
1353         kfree(kvm->arch.vioapic);
1354         kvm_release_vm_pages(kvm);
1355         kvm_free_physmem(kvm);
1356         free_kvm(kvm);
1357 }
1358
1359 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
1360 {
1361 }
1362
1363 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1364 {
1365         if (cpu != vcpu->cpu) {
1366                 vcpu->cpu = cpu;
1367                 if (vcpu->arch.ht_active)
1368                         kvm_migrate_hlt_timer(vcpu);
1369         }
1370 }
1371
1372 #define SAVE_REGS(_x)   regs->_x = vcpu->arch._x
1373
1374 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1375 {
1376         int i;
1377         int r;
1378         struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
1379         vcpu_load(vcpu);
1380
1381         for (i = 0; i < 16; i++) {
1382                 regs->vpd.vgr[i] = vpd->vgr[i];
1383                 regs->vpd.vbgr[i] = vpd->vbgr[i];
1384         }
1385         for (i = 0; i < 128; i++)
1386                 regs->vpd.vcr[i] = vpd->vcr[i];
1387         regs->vpd.vhpi = vpd->vhpi;
1388         regs->vpd.vnat = vpd->vnat;
1389         regs->vpd.vbnat = vpd->vbnat;
1390         regs->vpd.vpsr = vpd->vpsr;
1391         regs->vpd.vpr = vpd->vpr;
1392
1393         r = -EFAULT;
1394         r = copy_to_user(regs->saved_guest, &vcpu->arch.guest,
1395                                         sizeof(union context));
1396         if (r)
1397                 goto out;
1398         r = copy_to_user(regs->saved_stack, (void *)vcpu, KVM_STK_OFFSET);
1399         if (r)
1400                 goto out;
1401         SAVE_REGS(mp_state);
1402         SAVE_REGS(vmm_rr);
1403         memcpy(regs->itrs, vcpu->arch.itrs, sizeof(struct thash_data) * NITRS);
1404         memcpy(regs->dtrs, vcpu->arch.dtrs, sizeof(struct thash_data) * NDTRS);
1405         SAVE_REGS(itr_regions);
1406         SAVE_REGS(dtr_regions);
1407         SAVE_REGS(tc_regions);
1408         SAVE_REGS(irq_check);
1409         SAVE_REGS(itc_check);
1410         SAVE_REGS(timer_check);
1411         SAVE_REGS(timer_pending);
1412         SAVE_REGS(last_itc);
1413         for (i = 0; i < 8; i++) {
1414                 regs->vrr[i] = vcpu->arch.vrr[i];
1415                 regs->ibr[i] = vcpu->arch.ibr[i];
1416                 regs->dbr[i] = vcpu->arch.dbr[i];
1417         }
1418         for (i = 0; i < 4; i++)
1419                 regs->insvc[i] = vcpu->arch.insvc[i];
1420         regs->saved_itc = vcpu->arch.itc_offset + ia64_getreg(_IA64_REG_AR_ITC);
1421         SAVE_REGS(xtp);
1422         SAVE_REGS(metaphysical_rr0);
1423         SAVE_REGS(metaphysical_rr4);
1424         SAVE_REGS(metaphysical_saved_rr0);
1425         SAVE_REGS(metaphysical_saved_rr4);
1426         SAVE_REGS(fp_psr);
1427         SAVE_REGS(saved_gp);
1428         vcpu_put(vcpu);
1429         r = 0;
1430 out:
1431         return r;
1432 }
1433
1434 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
1435 {
1436
1437         hrtimer_cancel(&vcpu->arch.hlt_timer);
1438         kfree(vcpu->arch.apic);
1439 }
1440
1441
1442 long kvm_arch_vcpu_ioctl(struct file *filp,
1443                 unsigned int ioctl, unsigned long arg)
1444 {
1445         return -EINVAL;
1446 }
1447
1448 int kvm_arch_set_memory_region(struct kvm *kvm,
1449                 struct kvm_userspace_memory_region *mem,
1450                 struct kvm_memory_slot old,
1451                 int user_alloc)
1452 {
1453         unsigned long i;
1454         unsigned long pfn;
1455         int npages = mem->memory_size >> PAGE_SHIFT;
1456         struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];
1457         unsigned long base_gfn = memslot->base_gfn;
1458
1459         if (base_gfn + npages > (KVM_MAX_MEM_SIZE >> PAGE_SHIFT))
1460                 return -ENOMEM;
1461
1462         for (i = 0; i < npages; i++) {
1463                 pfn = gfn_to_pfn(kvm, base_gfn + i);
1464                 if (!kvm_is_mmio_pfn(pfn)) {
1465                         kvm_set_pmt_entry(kvm, base_gfn + i,
1466                                         pfn << PAGE_SHIFT,
1467                                 _PAGE_AR_RWX | _PAGE_MA_WB);
1468                         memslot->rmap[i] = (unsigned long)pfn_to_page(pfn);
1469                 } else {
1470                         kvm_set_pmt_entry(kvm, base_gfn + i,
1471                                         GPFN_PHYS_MMIO | (pfn << PAGE_SHIFT),
1472                                         _PAGE_MA_UC);
1473                         memslot->rmap[i] = 0;
1474                         }
1475         }
1476
1477         return 0;
1478 }
1479
1480 void kvm_arch_flush_shadow(struct kvm *kvm)
1481 {
1482 }
1483
1484 long kvm_arch_dev_ioctl(struct file *filp,
1485                 unsigned int ioctl, unsigned long arg)
1486 {
1487         return -EINVAL;
1488 }
1489
1490 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
1491 {
1492         kvm_vcpu_uninit(vcpu);
1493 }
1494
1495 static int vti_cpu_has_kvm_support(void)
1496 {
1497         long  avail = 1, status = 1, control = 1;
1498         long ret;
1499
1500         ret = ia64_pal_proc_get_features(&avail, &status, &control, 0);
1501         if (ret)
1502                 goto out;
1503
1504         if (!(avail & PAL_PROC_VM_BIT))
1505                 goto out;
1506
1507         printk(KERN_DEBUG"kvm: Hardware Supports VT\n");
1508
1509         ret = ia64_pal_vp_env_info(&kvm_vm_buffer_size, &vp_env_info);
1510         if (ret)
1511                 goto out;
1512         printk(KERN_DEBUG"kvm: VM Buffer Size:0x%lx\n", kvm_vm_buffer_size);
1513
1514         if (!(vp_env_info & VP_OPCODE)) {
1515                 printk(KERN_WARNING"kvm: No opcode ability on hardware, "
1516                                 "vm_env_info:0x%lx\n", vp_env_info);
1517         }
1518
1519         return 1;
1520 out:
1521         return 0;
1522 }
1523
1524 static int kvm_relocate_vmm(struct kvm_vmm_info *vmm_info,
1525                                                 struct module *module)
1526 {
1527         unsigned long module_base;
1528         unsigned long vmm_size;
1529
1530         unsigned long vmm_offset, func_offset, fdesc_offset;
1531         struct fdesc *p_fdesc;
1532
1533         BUG_ON(!module);
1534
1535         if (!kvm_vmm_base) {
1536                 printk("kvm: kvm area hasn't been initilized yet!!\n");
1537                 return -EFAULT;
1538         }
1539
1540         /*Calculate new position of relocated vmm module.*/
1541         module_base = (unsigned long)module->module_core;
1542         vmm_size = module->core_size;
1543         if (unlikely(vmm_size > KVM_VMM_SIZE))
1544                 return -EFAULT;
1545
1546         memcpy((void *)kvm_vmm_base, (void *)module_base, vmm_size);
1547         kvm_flush_icache(kvm_vmm_base, vmm_size);
1548
1549         /*Recalculate kvm_vmm_info based on new VMM*/
1550         vmm_offset = vmm_info->vmm_ivt - module_base;
1551         kvm_vmm_info->vmm_ivt = KVM_VMM_BASE + vmm_offset;
1552         printk(KERN_DEBUG"kvm: Relocated VMM's IVT Base Addr:%lx\n",
1553                         kvm_vmm_info->vmm_ivt);
1554
1555         fdesc_offset = (unsigned long)vmm_info->vmm_entry - module_base;
1556         kvm_vmm_info->vmm_entry = (kvm_vmm_entry *)(KVM_VMM_BASE +
1557                                                         fdesc_offset);
1558         func_offset = *(unsigned long *)vmm_info->vmm_entry - module_base;
1559         p_fdesc = (struct fdesc *)(kvm_vmm_base + fdesc_offset);
1560         p_fdesc->ip = KVM_VMM_BASE + func_offset;
1561         p_fdesc->gp = KVM_VMM_BASE+(p_fdesc->gp - module_base);
1562
1563         printk(KERN_DEBUG"kvm: Relocated VMM's Init Entry Addr:%lx\n",
1564                         KVM_VMM_BASE+func_offset);
1565
1566         fdesc_offset = (unsigned long)vmm_info->tramp_entry - module_base;
1567         kvm_vmm_info->tramp_entry = (kvm_tramp_entry *)(KVM_VMM_BASE +
1568                         fdesc_offset);
1569         func_offset = *(unsigned long *)vmm_info->tramp_entry - module_base;
1570         p_fdesc = (struct fdesc *)(kvm_vmm_base + fdesc_offset);
1571         p_fdesc->ip = KVM_VMM_BASE + func_offset;
1572         p_fdesc->gp = KVM_VMM_BASE + (p_fdesc->gp - module_base);
1573
1574         kvm_vmm_gp = p_fdesc->gp;
1575
1576         printk(KERN_DEBUG"kvm: Relocated VMM's Entry IP:%p\n",
1577                                                 kvm_vmm_info->vmm_entry);
1578         printk(KERN_DEBUG"kvm: Relocated VMM's Trampoline Entry IP:0x%lx\n",
1579                                                 KVM_VMM_BASE + func_offset);
1580
1581         return 0;
1582 }
1583
1584 int kvm_arch_init(void *opaque)
1585 {
1586         int r;
1587         struct kvm_vmm_info *vmm_info = (struct kvm_vmm_info *)opaque;
1588
1589         if (!vti_cpu_has_kvm_support()) {
1590                 printk(KERN_ERR "kvm: No Hardware Virtualization Support!\n");
1591                 r = -EOPNOTSUPP;
1592                 goto out;
1593         }
1594
1595         if (kvm_vmm_info) {
1596                 printk(KERN_ERR "kvm: Already loaded VMM module!\n");
1597                 r = -EEXIST;
1598                 goto out;
1599         }
1600
1601         r = -ENOMEM;
1602         kvm_vmm_info = kzalloc(sizeof(struct kvm_vmm_info), GFP_KERNEL);
1603         if (!kvm_vmm_info)
1604                 goto out;
1605
1606         if (kvm_alloc_vmm_area())
1607                 goto out_free0;
1608
1609         r = kvm_relocate_vmm(vmm_info, vmm_info->module);
1610         if (r)
1611                 goto out_free1;
1612
1613         return 0;
1614
1615 out_free1:
1616         kvm_free_vmm_area();
1617 out_free0:
1618         kfree(kvm_vmm_info);
1619 out:
1620         return r;
1621 }
1622
1623 void kvm_arch_exit(void)
1624 {
1625         kvm_free_vmm_area();
1626         kfree(kvm_vmm_info);
1627         kvm_vmm_info = NULL;
1628 }
1629
1630 static int kvm_ia64_sync_dirty_log(struct kvm *kvm,
1631                 struct kvm_dirty_log *log)
1632 {
1633         struct kvm_memory_slot *memslot;
1634         int r, i;
1635         long n, base;
1636         unsigned long *dirty_bitmap = (unsigned long *)(kvm->arch.vm_base +
1637                         offsetof(struct kvm_vm_data, kvm_mem_dirty_log));
1638
1639         r = -EINVAL;
1640         if (log->slot >= KVM_MEMORY_SLOTS)
1641                 goto out;
1642
1643         memslot = &kvm->memslots[log->slot];
1644         r = -ENOENT;
1645         if (!memslot->dirty_bitmap)
1646                 goto out;
1647
1648         n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
1649         base = memslot->base_gfn / BITS_PER_LONG;
1650
1651         for (i = 0; i < n/sizeof(long); ++i) {
1652                 memslot->dirty_bitmap[i] = dirty_bitmap[base + i];
1653                 dirty_bitmap[base + i] = 0;
1654         }
1655         r = 0;
1656 out:
1657         return r;
1658 }
1659
1660 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
1661                 struct kvm_dirty_log *log)
1662 {
1663         int r;
1664         int n;
1665         struct kvm_memory_slot *memslot;
1666         int is_dirty = 0;
1667
1668         spin_lock(&kvm->arch.dirty_log_lock);
1669
1670         r = kvm_ia64_sync_dirty_log(kvm, log);
1671         if (r)
1672                 goto out;
1673
1674         r = kvm_get_dirty_log(kvm, log, &is_dirty);
1675         if (r)
1676                 goto out;
1677
1678         /* If nothing is dirty, don't bother messing with page tables. */
1679         if (is_dirty) {
1680                 kvm_flush_remote_tlbs(kvm);
1681                 memslot = &kvm->memslots[log->slot];
1682                 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
1683                 memset(memslot->dirty_bitmap, 0, n);
1684         }
1685         r = 0;
1686 out:
1687         spin_unlock(&kvm->arch.dirty_log_lock);
1688         return r;
1689 }
1690
1691 int kvm_arch_hardware_setup(void)
1692 {
1693         return 0;
1694 }
1695
1696 void kvm_arch_hardware_unsetup(void)
1697 {
1698 }
1699
1700 static void vcpu_kick_intr(void *info)
1701 {
1702 #ifdef DEBUG
1703         struct kvm_vcpu *vcpu = (struct kvm_vcpu *)info;
1704         printk(KERN_DEBUG"vcpu_kick_intr %p \n", vcpu);
1705 #endif
1706 }
1707
1708 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
1709 {
1710         int ipi_pcpu = vcpu->cpu;
1711         int cpu = get_cpu();
1712
1713         if (waitqueue_active(&vcpu->wq))
1714                 wake_up_interruptible(&vcpu->wq);
1715
1716         if (vcpu->guest_mode && cpu != ipi_pcpu)
1717                 smp_call_function_single(ipi_pcpu, vcpu_kick_intr, vcpu, 0);
1718         put_cpu();
1719 }
1720
1721 int kvm_apic_set_irq(struct kvm_vcpu *vcpu, u8 vec, u8 trig)
1722 {
1723
1724         struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
1725
1726         if (!test_and_set_bit(vec, &vpd->irr[0])) {
1727                 vcpu->arch.irq_new_pending = 1;
1728                 kvm_vcpu_kick(vcpu);
1729                 return 1;
1730         }
1731         return 0;
1732 }
1733
1734 int kvm_apic_match_physical_addr(struct kvm_lapic *apic, u16 dest)
1735 {
1736         return apic->vcpu->vcpu_id == dest;
1737 }
1738
1739 int kvm_apic_match_logical_addr(struct kvm_lapic *apic, u8 mda)
1740 {
1741         return 0;
1742 }
1743
1744 struct kvm_vcpu *kvm_get_lowest_prio_vcpu(struct kvm *kvm, u8 vector,
1745                                        unsigned long bitmap)
1746 {
1747         struct kvm_vcpu *lvcpu = kvm->vcpus[0];
1748         int i;
1749
1750         for (i = 1; i < KVM_MAX_VCPUS; i++) {
1751                 if (!kvm->vcpus[i])
1752                         continue;
1753                 if (lvcpu->arch.xtp > kvm->vcpus[i]->arch.xtp)
1754                         lvcpu = kvm->vcpus[i];
1755         }
1756
1757         return lvcpu;
1758 }
1759
1760 static int find_highest_bits(int *dat)
1761 {
1762         u32  bits, bitnum;
1763         int i;
1764
1765         /* loop for all 256 bits */
1766         for (i = 7; i >= 0 ; i--) {
1767                 bits = dat[i];
1768                 if (bits) {
1769                         bitnum = fls(bits);
1770                         return i * 32 + bitnum - 1;
1771                 }
1772         }
1773
1774         return -1;
1775 }
1776
1777 int kvm_highest_pending_irq(struct kvm_vcpu *vcpu)
1778 {
1779     struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
1780
1781     if (vpd->irr[0] & (1UL << NMI_VECTOR))
1782                 return NMI_VECTOR;
1783     if (vpd->irr[0] & (1UL << ExtINT_VECTOR))
1784                 return ExtINT_VECTOR;
1785
1786     return find_highest_bits((int *)&vpd->irr[0]);
1787 }
1788
1789 int kvm_cpu_has_interrupt(struct kvm_vcpu *vcpu)
1790 {
1791         if (kvm_highest_pending_irq(vcpu) != -1)
1792                 return 1;
1793         return 0;
1794 }
1795
1796 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
1797 {
1798         return vcpu->arch.timer_fired;
1799 }
1800
1801 gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
1802 {
1803         return gfn;
1804 }
1805
1806 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
1807 {
1808         return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE;
1809 }
1810
1811 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
1812                                     struct kvm_mp_state *mp_state)
1813 {
1814         vcpu_load(vcpu);
1815         mp_state->mp_state = vcpu->arch.mp_state;
1816         vcpu_put(vcpu);
1817         return 0;
1818 }
1819
1820 static int vcpu_reset(struct kvm_vcpu *vcpu)
1821 {
1822         int r;
1823         long psr;
1824         local_irq_save(psr);
1825         r = kvm_insert_vmm_mapping(vcpu);
1826         if (r)
1827                 goto fail;
1828
1829         vcpu->arch.launched = 0;
1830         kvm_arch_vcpu_uninit(vcpu);
1831         r = kvm_arch_vcpu_init(vcpu);
1832         if (r)
1833                 goto fail;
1834
1835         kvm_purge_vmm_mapping(vcpu);
1836         r = 0;
1837 fail:
1838         local_irq_restore(psr);
1839         return r;
1840 }
1841
1842 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
1843                                     struct kvm_mp_state *mp_state)
1844 {
1845         int r = 0;
1846
1847         vcpu_load(vcpu);
1848         vcpu->arch.mp_state = mp_state->mp_state;
1849         if (vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)
1850                 r = vcpu_reset(vcpu);
1851         vcpu_put(vcpu);
1852         return r;
1853 }