rtc: add platform driver for EFI
[safe/jmp/linux-2.6] / arch / ia64 / kernel / time.c
1 /*
2  * linux/arch/ia64/kernel/time.c
3  *
4  * Copyright (C) 1998-2003 Hewlett-Packard Co
5  *      Stephane Eranian <eranian@hpl.hp.com>
6  *      David Mosberger <davidm@hpl.hp.com>
7  * Copyright (C) 1999 Don Dugger <don.dugger@intel.com>
8  * Copyright (C) 1999-2000 VA Linux Systems
9  * Copyright (C) 1999-2000 Walt Drummond <drummond@valinux.com>
10  */
11
12 #include <linux/cpu.h>
13 #include <linux/init.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/profile.h>
17 #include <linux/sched.h>
18 #include <linux/time.h>
19 #include <linux/interrupt.h>
20 #include <linux/efi.h>
21 #include <linux/timex.h>
22 #include <linux/clocksource.h>
23 #include <linux/platform_device.h>
24
25 #include <asm/machvec.h>
26 #include <asm/delay.h>
27 #include <asm/hw_irq.h>
28 #include <asm/paravirt.h>
29 #include <asm/ptrace.h>
30 #include <asm/sal.h>
31 #include <asm/sections.h>
32 #include <asm/system.h>
33
34 #include "fsyscall_gtod_data.h"
35
36 static cycle_t itc_get_cycles(void);
37
38 struct fsyscall_gtod_data_t fsyscall_gtod_data = {
39         .lock = SEQLOCK_UNLOCKED,
40 };
41
42 struct itc_jitter_data_t itc_jitter_data;
43
44 volatile int time_keeper_id = 0; /* smp_processor_id() of time-keeper */
45
46 #ifdef CONFIG_IA64_DEBUG_IRQ
47
48 unsigned long last_cli_ip;
49 EXPORT_SYMBOL(last_cli_ip);
50
51 #endif
52
53 #ifdef CONFIG_PARAVIRT
54 static void
55 paravirt_clocksource_resume(void)
56 {
57         if (pv_time_ops.clocksource_resume)
58                 pv_time_ops.clocksource_resume();
59 }
60 #endif
61
62 static struct clocksource clocksource_itc = {
63         .name           = "itc",
64         .rating         = 350,
65         .read           = itc_get_cycles,
66         .mask           = CLOCKSOURCE_MASK(64),
67         .mult           = 0, /*to be calculated*/
68         .shift          = 16,
69         .flags          = CLOCK_SOURCE_IS_CONTINUOUS,
70 #ifdef CONFIG_PARAVIRT
71         .resume         = paravirt_clocksource_resume,
72 #endif
73 };
74 static struct clocksource *itc_clocksource;
75
76 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
77
78 #include <linux/kernel_stat.h>
79
80 extern cputime_t cycle_to_cputime(u64 cyc);
81
82 /*
83  * Called from the context switch with interrupts disabled, to charge all
84  * accumulated times to the current process, and to prepare accounting on
85  * the next process.
86  */
87 void ia64_account_on_switch(struct task_struct *prev, struct task_struct *next)
88 {
89         struct thread_info *pi = task_thread_info(prev);
90         struct thread_info *ni = task_thread_info(next);
91         cputime_t delta_stime, delta_utime;
92         __u64 now;
93
94         now = ia64_get_itc();
95
96         delta_stime = cycle_to_cputime(pi->ac_stime + (now - pi->ac_stamp));
97         if (idle_task(smp_processor_id()) != prev)
98                 account_system_time(prev, 0, delta_stime, delta_stime);
99         else
100                 account_idle_time(delta_stime);
101
102         if (pi->ac_utime) {
103                 delta_utime = cycle_to_cputime(pi->ac_utime);
104                 account_user_time(prev, delta_utime, delta_utime);
105         }
106
107         pi->ac_stamp = ni->ac_stamp = now;
108         ni->ac_stime = ni->ac_utime = 0;
109 }
110
111 /*
112  * Account time for a transition between system, hard irq or soft irq state.
113  * Note that this function is called with interrupts enabled.
114  */
115 void account_system_vtime(struct task_struct *tsk)
116 {
117         struct thread_info *ti = task_thread_info(tsk);
118         unsigned long flags;
119         cputime_t delta_stime;
120         __u64 now;
121
122         local_irq_save(flags);
123
124         now = ia64_get_itc();
125
126         delta_stime = cycle_to_cputime(ti->ac_stime + (now - ti->ac_stamp));
127         if (irq_count() || idle_task(smp_processor_id()) != tsk)
128                 account_system_time(tsk, 0, delta_stime, delta_stime);
129         else
130                 account_idle_time(delta_stime);
131         ti->ac_stime = 0;
132
133         ti->ac_stamp = now;
134
135         local_irq_restore(flags);
136 }
137 EXPORT_SYMBOL_GPL(account_system_vtime);
138
139 /*
140  * Called from the timer interrupt handler to charge accumulated user time
141  * to the current process.  Must be called with interrupts disabled.
142  */
143 void account_process_tick(struct task_struct *p, int user_tick)
144 {
145         struct thread_info *ti = task_thread_info(p);
146         cputime_t delta_utime;
147
148         if (ti->ac_utime) {
149                 delta_utime = cycle_to_cputime(ti->ac_utime);
150                 account_user_time(p, delta_utime, delta_utime);
151                 ti->ac_utime = 0;
152         }
153 }
154
155 #endif /* CONFIG_VIRT_CPU_ACCOUNTING */
156
157 static irqreturn_t
158 timer_interrupt (int irq, void *dev_id)
159 {
160         unsigned long new_itm;
161
162         if (unlikely(cpu_is_offline(smp_processor_id()))) {
163                 return IRQ_HANDLED;
164         }
165
166         platform_timer_interrupt(irq, dev_id);
167
168         new_itm = local_cpu_data->itm_next;
169
170         if (!time_after(ia64_get_itc(), new_itm))
171                 printk(KERN_ERR "Oops: timer tick before it's due (itc=%lx,itm=%lx)\n",
172                        ia64_get_itc(), new_itm);
173
174         profile_tick(CPU_PROFILING);
175
176         if (paravirt_do_steal_accounting(&new_itm))
177                 goto skip_process_time_accounting;
178
179         while (1) {
180                 update_process_times(user_mode(get_irq_regs()));
181
182                 new_itm += local_cpu_data->itm_delta;
183
184                 if (smp_processor_id() == time_keeper_id) {
185                         /*
186                          * Here we are in the timer irq handler. We have irqs locally
187                          * disabled, but we don't know if the timer_bh is running on
188                          * another CPU. We need to avoid to SMP race by acquiring the
189                          * xtime_lock.
190                          */
191                         write_seqlock(&xtime_lock);
192                         do_timer(1);
193                         local_cpu_data->itm_next = new_itm;
194                         write_sequnlock(&xtime_lock);
195                 } else
196                         local_cpu_data->itm_next = new_itm;
197
198                 if (time_after(new_itm, ia64_get_itc()))
199                         break;
200
201                 /*
202                  * Allow IPIs to interrupt the timer loop.
203                  */
204                 local_irq_enable();
205                 local_irq_disable();
206         }
207
208 skip_process_time_accounting:
209
210         do {
211                 /*
212                  * If we're too close to the next clock tick for
213                  * comfort, we increase the safety margin by
214                  * intentionally dropping the next tick(s).  We do NOT
215                  * update itm.next because that would force us to call
216                  * do_timer() which in turn would let our clock run
217                  * too fast (with the potentially devastating effect
218                  * of losing monotony of time).
219                  */
220                 while (!time_after(new_itm, ia64_get_itc() + local_cpu_data->itm_delta/2))
221                         new_itm += local_cpu_data->itm_delta;
222                 ia64_set_itm(new_itm);
223                 /* double check, in case we got hit by a (slow) PMI: */
224         } while (time_after_eq(ia64_get_itc(), new_itm));
225         return IRQ_HANDLED;
226 }
227
228 /*
229  * Encapsulate access to the itm structure for SMP.
230  */
231 void
232 ia64_cpu_local_tick (void)
233 {
234         int cpu = smp_processor_id();
235         unsigned long shift = 0, delta;
236
237         /* arrange for the cycle counter to generate a timer interrupt: */
238         ia64_set_itv(IA64_TIMER_VECTOR);
239
240         delta = local_cpu_data->itm_delta;
241         /*
242          * Stagger the timer tick for each CPU so they don't occur all at (almost) the
243          * same time:
244          */
245         if (cpu) {
246                 unsigned long hi = 1UL << ia64_fls(cpu);
247                 shift = (2*(cpu - hi) + 1) * delta/hi/2;
248         }
249         local_cpu_data->itm_next = ia64_get_itc() + delta + shift;
250         ia64_set_itm(local_cpu_data->itm_next);
251 }
252
253 static int nojitter;
254
255 static int __init nojitter_setup(char *str)
256 {
257         nojitter = 1;
258         printk("Jitter checking for ITC timers disabled\n");
259         return 1;
260 }
261
262 __setup("nojitter", nojitter_setup);
263
264
265 void __devinit
266 ia64_init_itm (void)
267 {
268         unsigned long platform_base_freq, itc_freq;
269         struct pal_freq_ratio itc_ratio, proc_ratio;
270         long status, platform_base_drift, itc_drift;
271
272         /*
273          * According to SAL v2.6, we need to use a SAL call to determine the platform base
274          * frequency and then a PAL call to determine the frequency ratio between the ITC
275          * and the base frequency.
276          */
277         status = ia64_sal_freq_base(SAL_FREQ_BASE_PLATFORM,
278                                     &platform_base_freq, &platform_base_drift);
279         if (status != 0) {
280                 printk(KERN_ERR "SAL_FREQ_BASE_PLATFORM failed: %s\n", ia64_sal_strerror(status));
281         } else {
282                 status = ia64_pal_freq_ratios(&proc_ratio, NULL, &itc_ratio);
283                 if (status != 0)
284                         printk(KERN_ERR "PAL_FREQ_RATIOS failed with status=%ld\n", status);
285         }
286         if (status != 0) {
287                 /* invent "random" values */
288                 printk(KERN_ERR
289                        "SAL/PAL failed to obtain frequency info---inventing reasonable values\n");
290                 platform_base_freq = 100000000;
291                 platform_base_drift = -1;       /* no drift info */
292                 itc_ratio.num = 3;
293                 itc_ratio.den = 1;
294         }
295         if (platform_base_freq < 40000000) {
296                 printk(KERN_ERR "Platform base frequency %lu bogus---resetting to 75MHz!\n",
297                        platform_base_freq);
298                 platform_base_freq = 75000000;
299                 platform_base_drift = -1;
300         }
301         if (!proc_ratio.den)
302                 proc_ratio.den = 1;     /* avoid division by zero */
303         if (!itc_ratio.den)
304                 itc_ratio.den = 1;      /* avoid division by zero */
305
306         itc_freq = (platform_base_freq*itc_ratio.num)/itc_ratio.den;
307
308         local_cpu_data->itm_delta = (itc_freq + HZ/2) / HZ;
309         printk(KERN_DEBUG "CPU %d: base freq=%lu.%03luMHz, ITC ratio=%u/%u, "
310                "ITC freq=%lu.%03luMHz", smp_processor_id(),
311                platform_base_freq / 1000000, (platform_base_freq / 1000) % 1000,
312                itc_ratio.num, itc_ratio.den, itc_freq / 1000000, (itc_freq / 1000) % 1000);
313
314         if (platform_base_drift != -1) {
315                 itc_drift = platform_base_drift*itc_ratio.num/itc_ratio.den;
316                 printk("+/-%ldppm\n", itc_drift);
317         } else {
318                 itc_drift = -1;
319                 printk("\n");
320         }
321
322         local_cpu_data->proc_freq = (platform_base_freq*proc_ratio.num)/proc_ratio.den;
323         local_cpu_data->itc_freq = itc_freq;
324         local_cpu_data->cyc_per_usec = (itc_freq + USEC_PER_SEC/2) / USEC_PER_SEC;
325         local_cpu_data->nsec_per_cyc = ((NSEC_PER_SEC<<IA64_NSEC_PER_CYC_SHIFT)
326                                         + itc_freq/2)/itc_freq;
327
328         if (!(sal_platform_features & IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT)) {
329 #ifdef CONFIG_SMP
330                 /* On IA64 in an SMP configuration ITCs are never accurately synchronized.
331                  * Jitter compensation requires a cmpxchg which may limit
332                  * the scalability of the syscalls for retrieving time.
333                  * The ITC synchronization is usually successful to within a few
334                  * ITC ticks but this is not a sure thing. If you need to improve
335                  * timer performance in SMP situations then boot the kernel with the
336                  * "nojitter" option. However, doing so may result in time fluctuating (maybe
337                  * even going backward) if the ITC offsets between the individual CPUs
338                  * are too large.
339                  */
340                 if (!nojitter)
341                         itc_jitter_data.itc_jitter = 1;
342 #endif
343         } else
344                 /*
345                  * ITC is drifty and we have not synchronized the ITCs in smpboot.c.
346                  * ITC values may fluctuate significantly between processors.
347                  * Clock should not be used for hrtimers. Mark itc as only
348                  * useful for boot and testing.
349                  *
350                  * Note that jitter compensation is off! There is no point of
351                  * synchronizing ITCs since they may be large differentials
352                  * that change over time.
353                  *
354                  * The only way to fix this would be to repeatedly sync the
355                  * ITCs. Until that time we have to avoid ITC.
356                  */
357                 clocksource_itc.rating = 50;
358
359         paravirt_init_missing_ticks_accounting(smp_processor_id());
360
361         /* avoid softlock up message when cpu is unplug and plugged again. */
362         touch_softlockup_watchdog();
363
364         /* Setup the CPU local timer tick */
365         ia64_cpu_local_tick();
366
367         if (!itc_clocksource) {
368                 /* Sort out mult/shift values: */
369                 clocksource_itc.mult =
370                         clocksource_hz2mult(local_cpu_data->itc_freq,
371                                                 clocksource_itc.shift);
372                 clocksource_register(&clocksource_itc);
373                 itc_clocksource = &clocksource_itc;
374         }
375 }
376
377 static cycle_t itc_get_cycles(void)
378 {
379         u64 lcycle, now, ret;
380
381         if (!itc_jitter_data.itc_jitter)
382                 return get_cycles();
383
384         lcycle = itc_jitter_data.itc_lastcycle;
385         now = get_cycles();
386         if (lcycle && time_after(lcycle, now))
387                 return lcycle;
388
389         /*
390          * Keep track of the last timer value returned.
391          * In an SMP environment, you could lose out in contention of
392          * cmpxchg. If so, your cmpxchg returns new value which the
393          * winner of contention updated to. Use the new value instead.
394          */
395         ret = cmpxchg(&itc_jitter_data.itc_lastcycle, lcycle, now);
396         if (unlikely(ret != lcycle))
397                 return ret;
398
399         return now;
400 }
401
402
403 static struct irqaction timer_irqaction = {
404         .handler =      timer_interrupt,
405         .flags =        IRQF_DISABLED | IRQF_IRQPOLL,
406         .name =         "timer"
407 };
408
409 static struct platform_device rtc_efi_dev = {
410         .name = "rtc-efi",
411         .id = -1,
412 };
413
414 static int __init rtc_init(void)
415 {
416         if (platform_device_register(&rtc_efi_dev) < 0)
417                 printk(KERN_ERR "unable to register rtc device...\n");
418
419         /* not necessarily an error */
420         return 0;
421 }
422 module_init(rtc_init);
423
424 void __init
425 time_init (void)
426 {
427         register_percpu_irq(IA64_TIMER_VECTOR, &timer_irqaction);
428         efi_gettimeofday(&xtime);
429         ia64_init_itm();
430
431         /*
432          * Initialize wall_to_monotonic such that adding it to xtime will yield zero, the
433          * tv_nsec field must be normalized (i.e., 0 <= nsec < NSEC_PER_SEC).
434          */
435         set_normalized_timespec(&wall_to_monotonic, -xtime.tv_sec, -xtime.tv_nsec);
436 }
437
438 /*
439  * Generic udelay assumes that if preemption is allowed and the thread
440  * migrates to another CPU, that the ITC values are synchronized across
441  * all CPUs.
442  */
443 static void
444 ia64_itc_udelay (unsigned long usecs)
445 {
446         unsigned long start = ia64_get_itc();
447         unsigned long end = start + usecs*local_cpu_data->cyc_per_usec;
448
449         while (time_before(ia64_get_itc(), end))
450                 cpu_relax();
451 }
452
453 void (*ia64_udelay)(unsigned long usecs) = &ia64_itc_udelay;
454
455 void
456 udelay (unsigned long usecs)
457 {
458         (*ia64_udelay)(usecs);
459 }
460 EXPORT_SYMBOL(udelay);
461
462 /* IA64 doesn't cache the timezone */
463 void update_vsyscall_tz(void)
464 {
465 }
466
467 void update_vsyscall(struct timespec *wall, struct clocksource *c)
468 {
469         unsigned long flags;
470
471         write_seqlock_irqsave(&fsyscall_gtod_data.lock, flags);
472
473         /* copy fsyscall clock data */
474         fsyscall_gtod_data.clk_mask = c->mask;
475         fsyscall_gtod_data.clk_mult = c->mult;
476         fsyscall_gtod_data.clk_shift = c->shift;
477         fsyscall_gtod_data.clk_fsys_mmio = c->fsys_mmio;
478         fsyscall_gtod_data.clk_cycle_last = c->cycle_last;
479
480         /* copy kernel time structures */
481         fsyscall_gtod_data.wall_time.tv_sec = wall->tv_sec;
482         fsyscall_gtod_data.wall_time.tv_nsec = wall->tv_nsec;
483         fsyscall_gtod_data.monotonic_time.tv_sec = wall_to_monotonic.tv_sec
484                                                         + wall->tv_sec;
485         fsyscall_gtod_data.monotonic_time.tv_nsec = wall_to_monotonic.tv_nsec
486                                                         + wall->tv_nsec;
487
488         /* normalize */
489         while (fsyscall_gtod_data.monotonic_time.tv_nsec >= NSEC_PER_SEC) {
490                 fsyscall_gtod_data.monotonic_time.tv_nsec -= NSEC_PER_SEC;
491                 fsyscall_gtod_data.monotonic_time.tv_sec++;
492         }
493
494         write_sequnlock_irqrestore(&fsyscall_gtod_data.lock, flags);
495 }
496