4ee367817049aba6fcc1572cdd57fe6258e82604
[safe/jmp/linux-2.6] / arch / ia64 / kernel / time.c
1 /*
2  * linux/arch/ia64/kernel/time.c
3  *
4  * Copyright (C) 1998-2003 Hewlett-Packard Co
5  *      Stephane Eranian <eranian@hpl.hp.com>
6  *      David Mosberger <davidm@hpl.hp.com>
7  * Copyright (C) 1999 Don Dugger <don.dugger@intel.com>
8  * Copyright (C) 1999-2000 VA Linux Systems
9  * Copyright (C) 1999-2000 Walt Drummond <drummond@valinux.com>
10  */
11
12 #include <linux/cpu.h>
13 #include <linux/init.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/profile.h>
17 #include <linux/sched.h>
18 #include <linux/time.h>
19 #include <linux/interrupt.h>
20 #include <linux/efi.h>
21 #include <linux/timex.h>
22 #include <linux/clocksource.h>
23
24 #include <asm/machvec.h>
25 #include <asm/delay.h>
26 #include <asm/hw_irq.h>
27 #include <asm/paravirt.h>
28 #include <asm/ptrace.h>
29 #include <asm/sal.h>
30 #include <asm/sections.h>
31 #include <asm/system.h>
32
33 #include "fsyscall_gtod_data.h"
34
35 static cycle_t itc_get_cycles(void);
36
37 struct fsyscall_gtod_data_t fsyscall_gtod_data = {
38         .lock = SEQLOCK_UNLOCKED,
39 };
40
41 struct itc_jitter_data_t itc_jitter_data;
42
43 volatile int time_keeper_id = 0; /* smp_processor_id() of time-keeper */
44
45 #ifdef CONFIG_IA64_DEBUG_IRQ
46
47 unsigned long last_cli_ip;
48 EXPORT_SYMBOL(last_cli_ip);
49
50 #endif
51
52 #ifdef CONFIG_PARAVIRT
53 static void
54 paravirt_clocksource_resume(void)
55 {
56         if (pv_time_ops.clocksource_resume)
57                 pv_time_ops.clocksource_resume();
58 }
59 #endif
60
61 static struct clocksource clocksource_itc = {
62         .name           = "itc",
63         .rating         = 350,
64         .read           = itc_get_cycles,
65         .mask           = CLOCKSOURCE_MASK(64),
66         .mult           = 0, /*to be calculated*/
67         .shift          = 16,
68         .flags          = CLOCK_SOURCE_IS_CONTINUOUS,
69 #ifdef CONFIG_PARAVIRT
70         .resume         = paravirt_clocksource_resume,
71 #endif
72 };
73 static struct clocksource *itc_clocksource;
74
75 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
76
77 #include <linux/kernel_stat.h>
78
79 extern cputime_t cycle_to_cputime(u64 cyc);
80
81 /*
82  * Called from the context switch with interrupts disabled, to charge all
83  * accumulated times to the current process, and to prepare accounting on
84  * the next process.
85  */
86 void ia64_account_on_switch(struct task_struct *prev, struct task_struct *next)
87 {
88         struct thread_info *pi = task_thread_info(prev);
89         struct thread_info *ni = task_thread_info(next);
90         cputime_t delta_stime, delta_utime;
91         __u64 now;
92
93         now = ia64_get_itc();
94
95         delta_stime = cycle_to_cputime(pi->ac_stime + (now - pi->ac_stamp));
96         account_system_time(prev, 0, delta_stime, delta_stime);
97
98         if (pi->ac_utime) {
99                 delta_utime = cycle_to_cputime(pi->ac_utime);
100                 account_user_time(prev, delta_utime, delta_utime);
101         }
102
103         pi->ac_stamp = ni->ac_stamp = now;
104         ni->ac_stime = ni->ac_utime = 0;
105 }
106
107 /*
108  * Account time for a transition between system, hard irq or soft irq state.
109  * Note that this function is called with interrupts enabled.
110  */
111 void account_system_vtime(struct task_struct *tsk)
112 {
113         struct thread_info *ti = task_thread_info(tsk);
114         unsigned long flags;
115         cputime_t delta_stime;
116         __u64 now;
117
118         local_irq_save(flags);
119
120         now = ia64_get_itc();
121
122         delta_stime = cycle_to_cputime(ti->ac_stime + (now - ti->ac_stamp));
123         account_system_time(tsk, 0, delta_stime, delta_stime);
124         ti->ac_stime = 0;
125
126         ti->ac_stamp = now;
127
128         local_irq_restore(flags);
129 }
130 EXPORT_SYMBOL_GPL(account_system_vtime);
131
132 /*
133  * Called from the timer interrupt handler to charge accumulated user time
134  * to the current process.  Must be called with interrupts disabled.
135  */
136 void account_process_tick(struct task_struct *p, int user_tick)
137 {
138         struct thread_info *ti = task_thread_info(p);
139         cputime_t delta_utime;
140
141         if (ti->ac_utime) {
142                 delta_utime = cycle_to_cputime(ti->ac_utime);
143                 account_user_time(p, delta_utime, delta_utime);
144                 ti->ac_utime = 0;
145         }
146 }
147
148 #endif /* CONFIG_VIRT_CPU_ACCOUNTING */
149
150 static irqreturn_t
151 timer_interrupt (int irq, void *dev_id)
152 {
153         unsigned long new_itm;
154
155         if (unlikely(cpu_is_offline(smp_processor_id()))) {
156                 return IRQ_HANDLED;
157         }
158
159         platform_timer_interrupt(irq, dev_id);
160
161         new_itm = local_cpu_data->itm_next;
162
163         if (!time_after(ia64_get_itc(), new_itm))
164                 printk(KERN_ERR "Oops: timer tick before it's due (itc=%lx,itm=%lx)\n",
165                        ia64_get_itc(), new_itm);
166
167         profile_tick(CPU_PROFILING);
168
169         if (paravirt_do_steal_accounting(&new_itm))
170                 goto skip_process_time_accounting;
171
172         while (1) {
173                 update_process_times(user_mode(get_irq_regs()));
174
175                 new_itm += local_cpu_data->itm_delta;
176
177                 if (smp_processor_id() == time_keeper_id) {
178                         /*
179                          * Here we are in the timer irq handler. We have irqs locally
180                          * disabled, but we don't know if the timer_bh is running on
181                          * another CPU. We need to avoid to SMP race by acquiring the
182                          * xtime_lock.
183                          */
184                         write_seqlock(&xtime_lock);
185                         do_timer(1);
186                         local_cpu_data->itm_next = new_itm;
187                         write_sequnlock(&xtime_lock);
188                 } else
189                         local_cpu_data->itm_next = new_itm;
190
191                 if (time_after(new_itm, ia64_get_itc()))
192                         break;
193
194                 /*
195                  * Allow IPIs to interrupt the timer loop.
196                  */
197                 local_irq_enable();
198                 local_irq_disable();
199         }
200
201 skip_process_time_accounting:
202
203         do {
204                 /*
205                  * If we're too close to the next clock tick for
206                  * comfort, we increase the safety margin by
207                  * intentionally dropping the next tick(s).  We do NOT
208                  * update itm.next because that would force us to call
209                  * do_timer() which in turn would let our clock run
210                  * too fast (with the potentially devastating effect
211                  * of losing monotony of time).
212                  */
213                 while (!time_after(new_itm, ia64_get_itc() + local_cpu_data->itm_delta/2))
214                         new_itm += local_cpu_data->itm_delta;
215                 ia64_set_itm(new_itm);
216                 /* double check, in case we got hit by a (slow) PMI: */
217         } while (time_after_eq(ia64_get_itc(), new_itm));
218         return IRQ_HANDLED;
219 }
220
221 /*
222  * Encapsulate access to the itm structure for SMP.
223  */
224 void
225 ia64_cpu_local_tick (void)
226 {
227         int cpu = smp_processor_id();
228         unsigned long shift = 0, delta;
229
230         /* arrange for the cycle counter to generate a timer interrupt: */
231         ia64_set_itv(IA64_TIMER_VECTOR);
232
233         delta = local_cpu_data->itm_delta;
234         /*
235          * Stagger the timer tick for each CPU so they don't occur all at (almost) the
236          * same time:
237          */
238         if (cpu) {
239                 unsigned long hi = 1UL << ia64_fls(cpu);
240                 shift = (2*(cpu - hi) + 1) * delta/hi/2;
241         }
242         local_cpu_data->itm_next = ia64_get_itc() + delta + shift;
243         ia64_set_itm(local_cpu_data->itm_next);
244 }
245
246 static int nojitter;
247
248 static int __init nojitter_setup(char *str)
249 {
250         nojitter = 1;
251         printk("Jitter checking for ITC timers disabled\n");
252         return 1;
253 }
254
255 __setup("nojitter", nojitter_setup);
256
257
258 void __devinit
259 ia64_init_itm (void)
260 {
261         unsigned long platform_base_freq, itc_freq;
262         struct pal_freq_ratio itc_ratio, proc_ratio;
263         long status, platform_base_drift, itc_drift;
264
265         /*
266          * According to SAL v2.6, we need to use a SAL call to determine the platform base
267          * frequency and then a PAL call to determine the frequency ratio between the ITC
268          * and the base frequency.
269          */
270         status = ia64_sal_freq_base(SAL_FREQ_BASE_PLATFORM,
271                                     &platform_base_freq, &platform_base_drift);
272         if (status != 0) {
273                 printk(KERN_ERR "SAL_FREQ_BASE_PLATFORM failed: %s\n", ia64_sal_strerror(status));
274         } else {
275                 status = ia64_pal_freq_ratios(&proc_ratio, NULL, &itc_ratio);
276                 if (status != 0)
277                         printk(KERN_ERR "PAL_FREQ_RATIOS failed with status=%ld\n", status);
278         }
279         if (status != 0) {
280                 /* invent "random" values */
281                 printk(KERN_ERR
282                        "SAL/PAL failed to obtain frequency info---inventing reasonable values\n");
283                 platform_base_freq = 100000000;
284                 platform_base_drift = -1;       /* no drift info */
285                 itc_ratio.num = 3;
286                 itc_ratio.den = 1;
287         }
288         if (platform_base_freq < 40000000) {
289                 printk(KERN_ERR "Platform base frequency %lu bogus---resetting to 75MHz!\n",
290                        platform_base_freq);
291                 platform_base_freq = 75000000;
292                 platform_base_drift = -1;
293         }
294         if (!proc_ratio.den)
295                 proc_ratio.den = 1;     /* avoid division by zero */
296         if (!itc_ratio.den)
297                 itc_ratio.den = 1;      /* avoid division by zero */
298
299         itc_freq = (platform_base_freq*itc_ratio.num)/itc_ratio.den;
300
301         local_cpu_data->itm_delta = (itc_freq + HZ/2) / HZ;
302         printk(KERN_DEBUG "CPU %d: base freq=%lu.%03luMHz, ITC ratio=%u/%u, "
303                "ITC freq=%lu.%03luMHz", smp_processor_id(),
304                platform_base_freq / 1000000, (platform_base_freq / 1000) % 1000,
305                itc_ratio.num, itc_ratio.den, itc_freq / 1000000, (itc_freq / 1000) % 1000);
306
307         if (platform_base_drift != -1) {
308                 itc_drift = platform_base_drift*itc_ratio.num/itc_ratio.den;
309                 printk("+/-%ldppm\n", itc_drift);
310         } else {
311                 itc_drift = -1;
312                 printk("\n");
313         }
314
315         local_cpu_data->proc_freq = (platform_base_freq*proc_ratio.num)/proc_ratio.den;
316         local_cpu_data->itc_freq = itc_freq;
317         local_cpu_data->cyc_per_usec = (itc_freq + USEC_PER_SEC/2) / USEC_PER_SEC;
318         local_cpu_data->nsec_per_cyc = ((NSEC_PER_SEC<<IA64_NSEC_PER_CYC_SHIFT)
319                                         + itc_freq/2)/itc_freq;
320
321         if (!(sal_platform_features & IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT)) {
322 #ifdef CONFIG_SMP
323                 /* On IA64 in an SMP configuration ITCs are never accurately synchronized.
324                  * Jitter compensation requires a cmpxchg which may limit
325                  * the scalability of the syscalls for retrieving time.
326                  * The ITC synchronization is usually successful to within a few
327                  * ITC ticks but this is not a sure thing. If you need to improve
328                  * timer performance in SMP situations then boot the kernel with the
329                  * "nojitter" option. However, doing so may result in time fluctuating (maybe
330                  * even going backward) if the ITC offsets between the individual CPUs
331                  * are too large.
332                  */
333                 if (!nojitter)
334                         itc_jitter_data.itc_jitter = 1;
335 #endif
336         } else
337                 /*
338                  * ITC is drifty and we have not synchronized the ITCs in smpboot.c.
339                  * ITC values may fluctuate significantly between processors.
340                  * Clock should not be used for hrtimers. Mark itc as only
341                  * useful for boot and testing.
342                  *
343                  * Note that jitter compensation is off! There is no point of
344                  * synchronizing ITCs since they may be large differentials
345                  * that change over time.
346                  *
347                  * The only way to fix this would be to repeatedly sync the
348                  * ITCs. Until that time we have to avoid ITC.
349                  */
350                 clocksource_itc.rating = 50;
351
352         paravirt_init_missing_ticks_accounting(smp_processor_id());
353
354         /* avoid softlock up message when cpu is unplug and plugged again. */
355         touch_softlockup_watchdog();
356
357         /* Setup the CPU local timer tick */
358         ia64_cpu_local_tick();
359
360         if (!itc_clocksource) {
361                 /* Sort out mult/shift values: */
362                 clocksource_itc.mult =
363                         clocksource_hz2mult(local_cpu_data->itc_freq,
364                                                 clocksource_itc.shift);
365                 clocksource_register(&clocksource_itc);
366                 itc_clocksource = &clocksource_itc;
367         }
368 }
369
370 static cycle_t itc_get_cycles(void)
371 {
372         u64 lcycle, now, ret;
373
374         if (!itc_jitter_data.itc_jitter)
375                 return get_cycles();
376
377         lcycle = itc_jitter_data.itc_lastcycle;
378         now = get_cycles();
379         if (lcycle && time_after(lcycle, now))
380                 return lcycle;
381
382         /*
383          * Keep track of the last timer value returned.
384          * In an SMP environment, you could lose out in contention of
385          * cmpxchg. If so, your cmpxchg returns new value which the
386          * winner of contention updated to. Use the new value instead.
387          */
388         ret = cmpxchg(&itc_jitter_data.itc_lastcycle, lcycle, now);
389         if (unlikely(ret != lcycle))
390                 return ret;
391
392         return now;
393 }
394
395
396 static struct irqaction timer_irqaction = {
397         .handler =      timer_interrupt,
398         .flags =        IRQF_DISABLED | IRQF_IRQPOLL,
399         .name =         "timer"
400 };
401
402 void __init
403 time_init (void)
404 {
405         register_percpu_irq(IA64_TIMER_VECTOR, &timer_irqaction);
406         efi_gettimeofday(&xtime);
407         ia64_init_itm();
408
409         /*
410          * Initialize wall_to_monotonic such that adding it to xtime will yield zero, the
411          * tv_nsec field must be normalized (i.e., 0 <= nsec < NSEC_PER_SEC).
412          */
413         set_normalized_timespec(&wall_to_monotonic, -xtime.tv_sec, -xtime.tv_nsec);
414 }
415
416 /*
417  * Generic udelay assumes that if preemption is allowed and the thread
418  * migrates to another CPU, that the ITC values are synchronized across
419  * all CPUs.
420  */
421 static void
422 ia64_itc_udelay (unsigned long usecs)
423 {
424         unsigned long start = ia64_get_itc();
425         unsigned long end = start + usecs*local_cpu_data->cyc_per_usec;
426
427         while (time_before(ia64_get_itc(), end))
428                 cpu_relax();
429 }
430
431 void (*ia64_udelay)(unsigned long usecs) = &ia64_itc_udelay;
432
433 void
434 udelay (unsigned long usecs)
435 {
436         (*ia64_udelay)(usecs);
437 }
438 EXPORT_SYMBOL(udelay);
439
440 /* IA64 doesn't cache the timezone */
441 void update_vsyscall_tz(void)
442 {
443 }
444
445 void update_vsyscall(struct timespec *wall, struct clocksource *c)
446 {
447         unsigned long flags;
448
449         write_seqlock_irqsave(&fsyscall_gtod_data.lock, flags);
450
451         /* copy fsyscall clock data */
452         fsyscall_gtod_data.clk_mask = c->mask;
453         fsyscall_gtod_data.clk_mult = c->mult;
454         fsyscall_gtod_data.clk_shift = c->shift;
455         fsyscall_gtod_data.clk_fsys_mmio = c->fsys_mmio;
456         fsyscall_gtod_data.clk_cycle_last = c->cycle_last;
457
458         /* copy kernel time structures */
459         fsyscall_gtod_data.wall_time.tv_sec = wall->tv_sec;
460         fsyscall_gtod_data.wall_time.tv_nsec = wall->tv_nsec;
461         fsyscall_gtod_data.monotonic_time.tv_sec = wall_to_monotonic.tv_sec
462                                                         + wall->tv_sec;
463         fsyscall_gtod_data.monotonic_time.tv_nsec = wall_to_monotonic.tv_nsec
464                                                         + wall->tv_nsec;
465
466         /* normalize */
467         while (fsyscall_gtod_data.monotonic_time.tv_nsec >= NSEC_PER_SEC) {
468                 fsyscall_gtod_data.monotonic_time.tv_nsec -= NSEC_PER_SEC;
469                 fsyscall_gtod_data.monotonic_time.tv_sec++;
470         }
471
472         write_sequnlock_irqrestore(&fsyscall_gtod_data.lock, flags);
473 }
474