Pull miscellaneous into release branch
[safe/jmp/linux-2.6] / arch / ia64 / kernel / mca.c
1 /*
2  * File:        mca.c
3  * Purpose:     Generic MCA handling layer
4  *
5  * Copyright (C) 2003 Hewlett-Packard Co
6  *      David Mosberger-Tang <davidm@hpl.hp.com>
7  *
8  * Copyright (C) 2002 Dell Inc.
9  * Copyright (C) Matt Domsch <Matt_Domsch@dell.com>
10  *
11  * Copyright (C) 2002 Intel
12  * Copyright (C) Jenna Hall <jenna.s.hall@intel.com>
13  *
14  * Copyright (C) 2001 Intel
15  * Copyright (C) Fred Lewis <frederick.v.lewis@intel.com>
16  *
17  * Copyright (C) 2000 Intel
18  * Copyright (C) Chuck Fleckenstein <cfleck@co.intel.com>
19  *
20  * Copyright (C) 1999, 2004-2008 Silicon Graphics, Inc.
21  * Copyright (C) Vijay Chander <vijay@engr.sgi.com>
22  *
23  * Copyright (C) 2006 FUJITSU LIMITED
24  * Copyright (C) Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
25  *
26  * 2000-03-29 Chuck Fleckenstein <cfleck@co.intel.com>
27  *            Fixed PAL/SAL update issues, began MCA bug fixes, logging issues,
28  *            added min save state dump, added INIT handler.
29  *
30  * 2001-01-03 Fred Lewis <frederick.v.lewis@intel.com>
31  *            Added setup of CMCI and CPEI IRQs, logging of corrected platform
32  *            errors, completed code for logging of corrected & uncorrected
33  *            machine check errors, and updated for conformance with Nov. 2000
34  *            revision of the SAL 3.0 spec.
35  *
36  * 2002-01-04 Jenna Hall <jenna.s.hall@intel.com>
37  *            Aligned MCA stack to 16 bytes, added platform vs. CPU error flag,
38  *            set SAL default return values, changed error record structure to
39  *            linked list, added init call to sal_get_state_info_size().
40  *
41  * 2002-03-25 Matt Domsch <Matt_Domsch@dell.com>
42  *            GUID cleanups.
43  *
44  * 2003-04-15 David Mosberger-Tang <davidm@hpl.hp.com>
45  *            Added INIT backtrace support.
46  *
47  * 2003-12-08 Keith Owens <kaos@sgi.com>
48  *            smp_call_function() must not be called from interrupt context
49  *            (can deadlock on tasklist_lock).
50  *            Use keventd to call smp_call_function().
51  *
52  * 2004-02-01 Keith Owens <kaos@sgi.com>
53  *            Avoid deadlock when using printk() for MCA and INIT records.
54  *            Delete all record printing code, moved to salinfo_decode in user
55  *            space.  Mark variables and functions static where possible.
56  *            Delete dead variables and functions.  Reorder to remove the need
57  *            for forward declarations and to consolidate related code.
58  *
59  * 2005-08-12 Keith Owens <kaos@sgi.com>
60  *            Convert MCA/INIT handlers to use per event stacks and SAL/OS
61  *            state.
62  *
63  * 2005-10-07 Keith Owens <kaos@sgi.com>
64  *            Add notify_die() hooks.
65  *
66  * 2006-09-15 Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
67  *            Add printing support for MCA/INIT.
68  *
69  * 2007-04-27 Russ Anderson <rja@sgi.com>
70  *            Support multiple cpus going through OS_MCA in the same event.
71  */
72 #include <linux/jiffies.h>
73 #include <linux/types.h>
74 #include <linux/init.h>
75 #include <linux/sched.h>
76 #include <linux/interrupt.h>
77 #include <linux/irq.h>
78 #include <linux/bootmem.h>
79 #include <linux/acpi.h>
80 #include <linux/timer.h>
81 #include <linux/module.h>
82 #include <linux/kernel.h>
83 #include <linux/smp.h>
84 #include <linux/workqueue.h>
85 #include <linux/cpumask.h>
86 #include <linux/kdebug.h>
87 #include <linux/cpu.h>
88
89 #include <asm/delay.h>
90 #include <asm/machvec.h>
91 #include <asm/meminit.h>
92 #include <asm/page.h>
93 #include <asm/ptrace.h>
94 #include <asm/system.h>
95 #include <asm/sal.h>
96 #include <asm/mca.h>
97 #include <asm/kexec.h>
98
99 #include <asm/irq.h>
100 #include <asm/hw_irq.h>
101 #include <asm/tlb.h>
102
103 #include "mca_drv.h"
104 #include "entry.h"
105
106 #if defined(IA64_MCA_DEBUG_INFO)
107 # define IA64_MCA_DEBUG(fmt...) printk(fmt)
108 #else
109 # define IA64_MCA_DEBUG(fmt...)
110 #endif
111
112 /* Used by mca_asm.S */
113 DEFINE_PER_CPU(u64, ia64_mca_data); /* == __per_cpu_mca[smp_processor_id()] */
114 DEFINE_PER_CPU(u64, ia64_mca_per_cpu_pte); /* PTE to map per-CPU area */
115 DEFINE_PER_CPU(u64, ia64_mca_pal_pte);      /* PTE to map PAL code */
116 DEFINE_PER_CPU(u64, ia64_mca_pal_base);    /* vaddr PAL code granule */
117 DEFINE_PER_CPU(u64, ia64_mca_tr_reload);   /* Flag for TR reload */
118
119 unsigned long __per_cpu_mca[NR_CPUS];
120
121 /* In mca_asm.S */
122 extern void                     ia64_os_init_dispatch_monarch (void);
123 extern void                     ia64_os_init_dispatch_slave (void);
124
125 static int monarch_cpu = -1;
126
127 static ia64_mc_info_t           ia64_mc_info;
128
129 #define MAX_CPE_POLL_INTERVAL (15*60*HZ) /* 15 minutes */
130 #define MIN_CPE_POLL_INTERVAL (2*60*HZ)  /* 2 minutes */
131 #define CMC_POLL_INTERVAL     (1*60*HZ)  /* 1 minute */
132 #define CPE_HISTORY_LENGTH    5
133 #define CMC_HISTORY_LENGTH    5
134
135 #ifdef CONFIG_ACPI
136 static struct timer_list cpe_poll_timer;
137 #endif
138 static struct timer_list cmc_poll_timer;
139 /*
140  * This variable tells whether we are currently in polling mode.
141  * Start with this in the wrong state so we won't play w/ timers
142  * before the system is ready.
143  */
144 static int cmc_polling_enabled = 1;
145
146 /*
147  * Clearing this variable prevents CPE polling from getting activated
148  * in mca_late_init.  Use it if your system doesn't provide a CPEI,
149  * but encounters problems retrieving CPE logs.  This should only be
150  * necessary for debugging.
151  */
152 static int cpe_poll_enabled = 1;
153
154 extern void salinfo_log_wakeup(int type, u8 *buffer, u64 size, int irqsafe);
155
156 static int mca_init __initdata;
157
158 /*
159  * limited & delayed printing support for MCA/INIT handler
160  */
161
162 #define mprintk(fmt...) ia64_mca_printk(fmt)
163
164 #define MLOGBUF_SIZE (512+256*NR_CPUS)
165 #define MLOGBUF_MSGMAX 256
166 static char mlogbuf[MLOGBUF_SIZE];
167 static DEFINE_SPINLOCK(mlogbuf_wlock);  /* mca context only */
168 static DEFINE_SPINLOCK(mlogbuf_rlock);  /* normal context only */
169 static unsigned long mlogbuf_start;
170 static unsigned long mlogbuf_end;
171 static unsigned int mlogbuf_finished = 0;
172 static unsigned long mlogbuf_timestamp = 0;
173
174 static int loglevel_save = -1;
175 #define BREAK_LOGLEVEL(__console_loglevel)              \
176         oops_in_progress = 1;                           \
177         if (loglevel_save < 0)                          \
178                 loglevel_save = __console_loglevel;     \
179         __console_loglevel = 15;
180
181 #define RESTORE_LOGLEVEL(__console_loglevel)            \
182         if (loglevel_save >= 0) {                       \
183                 __console_loglevel = loglevel_save;     \
184                 loglevel_save = -1;                     \
185         }                                               \
186         mlogbuf_finished = 0;                           \
187         oops_in_progress = 0;
188
189 /*
190  * Push messages into buffer, print them later if not urgent.
191  */
192 void ia64_mca_printk(const char *fmt, ...)
193 {
194         va_list args;
195         int printed_len;
196         char temp_buf[MLOGBUF_MSGMAX];
197         char *p;
198
199         va_start(args, fmt);
200         printed_len = vscnprintf(temp_buf, sizeof(temp_buf), fmt, args);
201         va_end(args);
202
203         /* Copy the output into mlogbuf */
204         if (oops_in_progress) {
205                 /* mlogbuf was abandoned, use printk directly instead. */
206                 printk(temp_buf);
207         } else {
208                 spin_lock(&mlogbuf_wlock);
209                 for (p = temp_buf; *p; p++) {
210                         unsigned long next = (mlogbuf_end + 1) % MLOGBUF_SIZE;
211                         if (next != mlogbuf_start) {
212                                 mlogbuf[mlogbuf_end] = *p;
213                                 mlogbuf_end = next;
214                         } else {
215                                 /* buffer full */
216                                 break;
217                         }
218                 }
219                 mlogbuf[mlogbuf_end] = '\0';
220                 spin_unlock(&mlogbuf_wlock);
221         }
222 }
223 EXPORT_SYMBOL(ia64_mca_printk);
224
225 /*
226  * Print buffered messages.
227  *  NOTE: call this after returning normal context. (ex. from salinfod)
228  */
229 void ia64_mlogbuf_dump(void)
230 {
231         char temp_buf[MLOGBUF_MSGMAX];
232         char *p;
233         unsigned long index;
234         unsigned long flags;
235         unsigned int printed_len;
236
237         /* Get output from mlogbuf */
238         while (mlogbuf_start != mlogbuf_end) {
239                 temp_buf[0] = '\0';
240                 p = temp_buf;
241                 printed_len = 0;
242
243                 spin_lock_irqsave(&mlogbuf_rlock, flags);
244
245                 index = mlogbuf_start;
246                 while (index != mlogbuf_end) {
247                         *p = mlogbuf[index];
248                         index = (index + 1) % MLOGBUF_SIZE;
249                         if (!*p)
250                                 break;
251                         p++;
252                         if (++printed_len >= MLOGBUF_MSGMAX - 1)
253                                 break;
254                 }
255                 *p = '\0';
256                 if (temp_buf[0])
257                         printk(temp_buf);
258                 mlogbuf_start = index;
259
260                 mlogbuf_timestamp = 0;
261                 spin_unlock_irqrestore(&mlogbuf_rlock, flags);
262         }
263 }
264 EXPORT_SYMBOL(ia64_mlogbuf_dump);
265
266 /*
267  * Call this if system is going to down or if immediate flushing messages to
268  * console is required. (ex. recovery was failed, crash dump is going to be
269  * invoked, long-wait rendezvous etc.)
270  *  NOTE: this should be called from monarch.
271  */
272 static void ia64_mlogbuf_finish(int wait)
273 {
274         BREAK_LOGLEVEL(console_loglevel);
275
276         spin_lock_init(&mlogbuf_rlock);
277         ia64_mlogbuf_dump();
278         printk(KERN_EMERG "mlogbuf_finish: printing switched to urgent mode, "
279                 "MCA/INIT might be dodgy or fail.\n");
280
281         if (!wait)
282                 return;
283
284         /* wait for console */
285         printk("Delaying for 5 seconds...\n");
286         udelay(5*1000000);
287
288         mlogbuf_finished = 1;
289 }
290
291 /*
292  * Print buffered messages from INIT context.
293  */
294 static void ia64_mlogbuf_dump_from_init(void)
295 {
296         if (mlogbuf_finished)
297                 return;
298
299         if (mlogbuf_timestamp &&
300                         time_before(jiffies, mlogbuf_timestamp + 30 * HZ)) {
301                 printk(KERN_ERR "INIT: mlogbuf_dump is interrupted by INIT "
302                         " and the system seems to be messed up.\n");
303                 ia64_mlogbuf_finish(0);
304                 return;
305         }
306
307         if (!spin_trylock(&mlogbuf_rlock)) {
308                 printk(KERN_ERR "INIT: mlogbuf_dump is interrupted by INIT. "
309                         "Generated messages other than stack dump will be "
310                         "buffered to mlogbuf and will be printed later.\n");
311                 printk(KERN_ERR "INIT: If messages would not printed after "
312                         "this INIT, wait 30sec and assert INIT again.\n");
313                 if (!mlogbuf_timestamp)
314                         mlogbuf_timestamp = jiffies;
315                 return;
316         }
317         spin_unlock(&mlogbuf_rlock);
318         ia64_mlogbuf_dump();
319 }
320
321 static void inline
322 ia64_mca_spin(const char *func)
323 {
324         if (monarch_cpu == smp_processor_id())
325                 ia64_mlogbuf_finish(0);
326         mprintk(KERN_EMERG "%s: spinning here, not returning to SAL\n", func);
327         while (1)
328                 cpu_relax();
329 }
330 /*
331  * IA64_MCA log support
332  */
333 #define IA64_MAX_LOGS           2       /* Double-buffering for nested MCAs */
334 #define IA64_MAX_LOG_TYPES      4   /* MCA, INIT, CMC, CPE */
335
336 typedef struct ia64_state_log_s
337 {
338         spinlock_t      isl_lock;
339         int             isl_index;
340         unsigned long   isl_count;
341         ia64_err_rec_t  *isl_log[IA64_MAX_LOGS]; /* need space to store header + error log */
342 } ia64_state_log_t;
343
344 static ia64_state_log_t ia64_state_log[IA64_MAX_LOG_TYPES];
345
346 #define IA64_LOG_ALLOCATE(it, size) \
347         {ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)] = \
348                 (ia64_err_rec_t *)alloc_bootmem(size); \
349         ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)] = \
350                 (ia64_err_rec_t *)alloc_bootmem(size);}
351 #define IA64_LOG_LOCK_INIT(it) spin_lock_init(&ia64_state_log[it].isl_lock)
352 #define IA64_LOG_LOCK(it)      spin_lock_irqsave(&ia64_state_log[it].isl_lock, s)
353 #define IA64_LOG_UNLOCK(it)    spin_unlock_irqrestore(&ia64_state_log[it].isl_lock,s)
354 #define IA64_LOG_NEXT_INDEX(it)    ia64_state_log[it].isl_index
355 #define IA64_LOG_CURR_INDEX(it)    1 - ia64_state_log[it].isl_index
356 #define IA64_LOG_INDEX_INC(it) \
357     {ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index; \
358     ia64_state_log[it].isl_count++;}
359 #define IA64_LOG_INDEX_DEC(it) \
360     ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index
361 #define IA64_LOG_NEXT_BUFFER(it)   (void *)((ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)]))
362 #define IA64_LOG_CURR_BUFFER(it)   (void *)((ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)]))
363 #define IA64_LOG_COUNT(it)         ia64_state_log[it].isl_count
364
365 /*
366  * ia64_log_init
367  *      Reset the OS ia64 log buffer
368  * Inputs   :   info_type   (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
369  * Outputs      :       None
370  */
371 static void __init
372 ia64_log_init(int sal_info_type)
373 {
374         u64     max_size = 0;
375
376         IA64_LOG_NEXT_INDEX(sal_info_type) = 0;
377         IA64_LOG_LOCK_INIT(sal_info_type);
378
379         // SAL will tell us the maximum size of any error record of this type
380         max_size = ia64_sal_get_state_info_size(sal_info_type);
381         if (!max_size)
382                 /* alloc_bootmem() doesn't like zero-sized allocations! */
383                 return;
384
385         // set up OS data structures to hold error info
386         IA64_LOG_ALLOCATE(sal_info_type, max_size);
387         memset(IA64_LOG_CURR_BUFFER(sal_info_type), 0, max_size);
388         memset(IA64_LOG_NEXT_BUFFER(sal_info_type), 0, max_size);
389 }
390
391 /*
392  * ia64_log_get
393  *
394  *      Get the current MCA log from SAL and copy it into the OS log buffer.
395  *
396  *  Inputs  :   info_type   (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
397  *              irq_safe    whether you can use printk at this point
398  *  Outputs :   size        (total record length)
399  *              *buffer     (ptr to error record)
400  *
401  */
402 static u64
403 ia64_log_get(int sal_info_type, u8 **buffer, int irq_safe)
404 {
405         sal_log_record_header_t     *log_buffer;
406         u64                         total_len = 0;
407         unsigned long               s;
408
409         IA64_LOG_LOCK(sal_info_type);
410
411         /* Get the process state information */
412         log_buffer = IA64_LOG_NEXT_BUFFER(sal_info_type);
413
414         total_len = ia64_sal_get_state_info(sal_info_type, (u64 *)log_buffer);
415
416         if (total_len) {
417                 IA64_LOG_INDEX_INC(sal_info_type);
418                 IA64_LOG_UNLOCK(sal_info_type);
419                 if (irq_safe) {
420                         IA64_MCA_DEBUG("%s: SAL error record type %d retrieved. Record length = %ld\n",
421                                        __func__, sal_info_type, total_len);
422                 }
423                 *buffer = (u8 *) log_buffer;
424                 return total_len;
425         } else {
426                 IA64_LOG_UNLOCK(sal_info_type);
427                 return 0;
428         }
429 }
430
431 /*
432  *  ia64_mca_log_sal_error_record
433  *
434  *  This function retrieves a specified error record type from SAL
435  *  and wakes up any processes waiting for error records.
436  *
437  *  Inputs  :   sal_info_type   (Type of error record MCA/CMC/CPE)
438  *              FIXME: remove MCA and irq_safe.
439  */
440 static void
441 ia64_mca_log_sal_error_record(int sal_info_type)
442 {
443         u8 *buffer;
444         sal_log_record_header_t *rh;
445         u64 size;
446         int irq_safe = sal_info_type != SAL_INFO_TYPE_MCA;
447 #ifdef IA64_MCA_DEBUG_INFO
448         static const char * const rec_name[] = { "MCA", "INIT", "CMC", "CPE" };
449 #endif
450
451         size = ia64_log_get(sal_info_type, &buffer, irq_safe);
452         if (!size)
453                 return;
454
455         salinfo_log_wakeup(sal_info_type, buffer, size, irq_safe);
456
457         if (irq_safe)
458                 IA64_MCA_DEBUG("CPU %d: SAL log contains %s error record\n",
459                         smp_processor_id(),
460                         sal_info_type < ARRAY_SIZE(rec_name) ? rec_name[sal_info_type] : "UNKNOWN");
461
462         /* Clear logs from corrected errors in case there's no user-level logger */
463         rh = (sal_log_record_header_t *)buffer;
464         if (rh->severity == sal_log_severity_corrected)
465                 ia64_sal_clear_state_info(sal_info_type);
466 }
467
468 /*
469  * search_mca_table
470  *  See if the MCA surfaced in an instruction range
471  *  that has been tagged as recoverable.
472  *
473  *  Inputs
474  *      first   First address range to check
475  *      last    Last address range to check
476  *      ip      Instruction pointer, address we are looking for
477  *
478  * Return value:
479  *      1 on Success (in the table)/ 0 on Failure (not in the  table)
480  */
481 int
482 search_mca_table (const struct mca_table_entry *first,
483                 const struct mca_table_entry *last,
484                 unsigned long ip)
485 {
486         const struct mca_table_entry *curr;
487         u64 curr_start, curr_end;
488
489         curr = first;
490         while (curr <= last) {
491                 curr_start = (u64) &curr->start_addr + curr->start_addr;
492                 curr_end = (u64) &curr->end_addr + curr->end_addr;
493
494                 if ((ip >= curr_start) && (ip <= curr_end)) {
495                         return 1;
496                 }
497                 curr++;
498         }
499         return 0;
500 }
501
502 /* Given an address, look for it in the mca tables. */
503 int mca_recover_range(unsigned long addr)
504 {
505         extern struct mca_table_entry __start___mca_table[];
506         extern struct mca_table_entry __stop___mca_table[];
507
508         return search_mca_table(__start___mca_table, __stop___mca_table-1, addr);
509 }
510 EXPORT_SYMBOL_GPL(mca_recover_range);
511
512 #ifdef CONFIG_ACPI
513
514 int cpe_vector = -1;
515 int ia64_cpe_irq = -1;
516
517 static irqreturn_t
518 ia64_mca_cpe_int_handler (int cpe_irq, void *arg)
519 {
520         static unsigned long    cpe_history[CPE_HISTORY_LENGTH];
521         static int              index;
522         static DEFINE_SPINLOCK(cpe_history_lock);
523
524         IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
525                        __func__, cpe_irq, smp_processor_id());
526
527         /* SAL spec states this should run w/ interrupts enabled */
528         local_irq_enable();
529
530         spin_lock(&cpe_history_lock);
531         if (!cpe_poll_enabled && cpe_vector >= 0) {
532
533                 int i, count = 1; /* we know 1 happened now */
534                 unsigned long now = jiffies;
535
536                 for (i = 0; i < CPE_HISTORY_LENGTH; i++) {
537                         if (now - cpe_history[i] <= HZ)
538                                 count++;
539                 }
540
541                 IA64_MCA_DEBUG(KERN_INFO "CPE threshold %d/%d\n", count, CPE_HISTORY_LENGTH);
542                 if (count >= CPE_HISTORY_LENGTH) {
543
544                         cpe_poll_enabled = 1;
545                         spin_unlock(&cpe_history_lock);
546                         disable_irq_nosync(local_vector_to_irq(IA64_CPE_VECTOR));
547
548                         /*
549                          * Corrected errors will still be corrected, but
550                          * make sure there's a log somewhere that indicates
551                          * something is generating more than we can handle.
552                          */
553                         printk(KERN_WARNING "WARNING: Switching to polling CPE handler; error records may be lost\n");
554
555                         mod_timer(&cpe_poll_timer, jiffies + MIN_CPE_POLL_INTERVAL);
556
557                         /* lock already released, get out now */
558                         goto out;
559                 } else {
560                         cpe_history[index++] = now;
561                         if (index == CPE_HISTORY_LENGTH)
562                                 index = 0;
563                 }
564         }
565         spin_unlock(&cpe_history_lock);
566 out:
567         /* Get the CPE error record and log it */
568         ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CPE);
569
570         return IRQ_HANDLED;
571 }
572
573 #endif /* CONFIG_ACPI */
574
575 #ifdef CONFIG_ACPI
576 /*
577  * ia64_mca_register_cpev
578  *
579  *  Register the corrected platform error vector with SAL.
580  *
581  *  Inputs
582  *      cpev        Corrected Platform Error Vector number
583  *
584  *  Outputs
585  *      None
586  */
587 void
588 ia64_mca_register_cpev (int cpev)
589 {
590         /* Register the CPE interrupt vector with SAL */
591         struct ia64_sal_retval isrv;
592
593         isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_CPE_INT, SAL_MC_PARAM_MECHANISM_INT, cpev, 0, 0);
594         if (isrv.status) {
595                 printk(KERN_ERR "Failed to register Corrected Platform "
596                        "Error interrupt vector with SAL (status %ld)\n", isrv.status);
597                 return;
598         }
599
600         IA64_MCA_DEBUG("%s: corrected platform error "
601                        "vector %#x registered\n", __func__, cpev);
602 }
603 #endif /* CONFIG_ACPI */
604
605 /*
606  * ia64_mca_cmc_vector_setup
607  *
608  *  Setup the corrected machine check vector register in the processor.
609  *  (The interrupt is masked on boot. ia64_mca_late_init unmask this.)
610  *  This function is invoked on a per-processor basis.
611  *
612  * Inputs
613  *      None
614  *
615  * Outputs
616  *      None
617  */
618 void __cpuinit
619 ia64_mca_cmc_vector_setup (void)
620 {
621         cmcv_reg_t      cmcv;
622
623         cmcv.cmcv_regval        = 0;
624         cmcv.cmcv_mask          = 1;        /* Mask/disable interrupt at first */
625         cmcv.cmcv_vector        = IA64_CMC_VECTOR;
626         ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
627
628         IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x registered.\n",
629                        __func__, smp_processor_id(), IA64_CMC_VECTOR);
630
631         IA64_MCA_DEBUG("%s: CPU %d CMCV = %#016lx\n",
632                        __func__, smp_processor_id(), ia64_getreg(_IA64_REG_CR_CMCV));
633 }
634
635 /*
636  * ia64_mca_cmc_vector_disable
637  *
638  *  Mask the corrected machine check vector register in the processor.
639  *  This function is invoked on a per-processor basis.
640  *
641  * Inputs
642  *      dummy(unused)
643  *
644  * Outputs
645  *      None
646  */
647 static void
648 ia64_mca_cmc_vector_disable (void *dummy)
649 {
650         cmcv_reg_t      cmcv;
651
652         cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV);
653
654         cmcv.cmcv_mask = 1; /* Mask/disable interrupt */
655         ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
656
657         IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x disabled.\n",
658                        __func__, smp_processor_id(), cmcv.cmcv_vector);
659 }
660
661 /*
662  * ia64_mca_cmc_vector_enable
663  *
664  *  Unmask the corrected machine check vector register in the processor.
665  *  This function is invoked on a per-processor basis.
666  *
667  * Inputs
668  *      dummy(unused)
669  *
670  * Outputs
671  *      None
672  */
673 static void
674 ia64_mca_cmc_vector_enable (void *dummy)
675 {
676         cmcv_reg_t      cmcv;
677
678         cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV);
679
680         cmcv.cmcv_mask = 0; /* Unmask/enable interrupt */
681         ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
682
683         IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x enabled.\n",
684                        __func__, smp_processor_id(), cmcv.cmcv_vector);
685 }
686
687 /*
688  * ia64_mca_cmc_vector_disable_keventd
689  *
690  * Called via keventd (smp_call_function() is not safe in interrupt context) to
691  * disable the cmc interrupt vector.
692  */
693 static void
694 ia64_mca_cmc_vector_disable_keventd(struct work_struct *unused)
695 {
696         on_each_cpu(ia64_mca_cmc_vector_disable, NULL, 1, 0);
697 }
698
699 /*
700  * ia64_mca_cmc_vector_enable_keventd
701  *
702  * Called via keventd (smp_call_function() is not safe in interrupt context) to
703  * enable the cmc interrupt vector.
704  */
705 static void
706 ia64_mca_cmc_vector_enable_keventd(struct work_struct *unused)
707 {
708         on_each_cpu(ia64_mca_cmc_vector_enable, NULL, 1, 0);
709 }
710
711 /*
712  * ia64_mca_wakeup
713  *
714  *      Send an inter-cpu interrupt to wake-up a particular cpu.
715  *
716  *  Inputs  :   cpuid
717  *  Outputs :   None
718  */
719 static void
720 ia64_mca_wakeup(int cpu)
721 {
722         platform_send_ipi(cpu, IA64_MCA_WAKEUP_VECTOR, IA64_IPI_DM_INT, 0);
723 }
724
725 /*
726  * ia64_mca_wakeup_all
727  *
728  *      Wakeup all the slave cpus which have rendez'ed previously.
729  *
730  *  Inputs  :   None
731  *  Outputs :   None
732  */
733 static void
734 ia64_mca_wakeup_all(void)
735 {
736         int cpu;
737
738         /* Clear the Rendez checkin flag for all cpus */
739         for_each_online_cpu(cpu) {
740                 if (ia64_mc_info.imi_rendez_checkin[cpu] == IA64_MCA_RENDEZ_CHECKIN_DONE)
741                         ia64_mca_wakeup(cpu);
742         }
743
744 }
745
746 /*
747  * ia64_mca_rendez_interrupt_handler
748  *
749  *      This is handler used to put slave processors into spinloop
750  *      while the monarch processor does the mca handling and later
751  *      wake each slave up once the monarch is done.  The state
752  *      IA64_MCA_RENDEZ_CHECKIN_DONE indicates the cpu is rendez'ed
753  *      in SAL.  The state IA64_MCA_RENDEZ_CHECKIN_NOTDONE indicates
754  *      the cpu has come out of OS rendezvous.
755  *
756  *  Inputs  :   None
757  *  Outputs :   None
758  */
759 static irqreturn_t
760 ia64_mca_rendez_int_handler(int rendez_irq, void *arg)
761 {
762         unsigned long flags;
763         int cpu = smp_processor_id();
764         struct ia64_mca_notify_die nd =
765                 { .sos = NULL, .monarch_cpu = &monarch_cpu };
766
767         /* Mask all interrupts */
768         local_irq_save(flags);
769         if (notify_die(DIE_MCA_RENDZVOUS_ENTER, "MCA", get_irq_regs(),
770                        (long)&nd, 0, 0) == NOTIFY_STOP)
771                 ia64_mca_spin(__func__);
772
773         ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_DONE;
774         /* Register with the SAL monarch that the slave has
775          * reached SAL
776          */
777         ia64_sal_mc_rendez();
778
779         if (notify_die(DIE_MCA_RENDZVOUS_PROCESS, "MCA", get_irq_regs(),
780                        (long)&nd, 0, 0) == NOTIFY_STOP)
781                 ia64_mca_spin(__func__);
782
783         /* Wait for the monarch cpu to exit. */
784         while (monarch_cpu != -1)
785                cpu_relax();     /* spin until monarch leaves */
786
787         if (notify_die(DIE_MCA_RENDZVOUS_LEAVE, "MCA", get_irq_regs(),
788                        (long)&nd, 0, 0) == NOTIFY_STOP)
789                 ia64_mca_spin(__func__);
790
791         ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
792         /* Enable all interrupts */
793         local_irq_restore(flags);
794         return IRQ_HANDLED;
795 }
796
797 /*
798  * ia64_mca_wakeup_int_handler
799  *
800  *      The interrupt handler for processing the inter-cpu interrupt to the
801  *      slave cpu which was spinning in the rendez loop.
802  *      Since this spinning is done by turning off the interrupts and
803  *      polling on the wakeup-interrupt bit in the IRR, there is
804  *      nothing useful to be done in the handler.
805  *
806  *  Inputs  :   wakeup_irq  (Wakeup-interrupt bit)
807  *      arg             (Interrupt handler specific argument)
808  *  Outputs :   None
809  *
810  */
811 static irqreturn_t
812 ia64_mca_wakeup_int_handler(int wakeup_irq, void *arg)
813 {
814         return IRQ_HANDLED;
815 }
816
817 /* Function pointer for extra MCA recovery */
818 int (*ia64_mca_ucmc_extension)
819         (void*,struct ia64_sal_os_state*)
820         = NULL;
821
822 int
823 ia64_reg_MCA_extension(int (*fn)(void *, struct ia64_sal_os_state *))
824 {
825         if (ia64_mca_ucmc_extension)
826                 return 1;
827
828         ia64_mca_ucmc_extension = fn;
829         return 0;
830 }
831
832 void
833 ia64_unreg_MCA_extension(void)
834 {
835         if (ia64_mca_ucmc_extension)
836                 ia64_mca_ucmc_extension = NULL;
837 }
838
839 EXPORT_SYMBOL(ia64_reg_MCA_extension);
840 EXPORT_SYMBOL(ia64_unreg_MCA_extension);
841
842
843 static inline void
844 copy_reg(const u64 *fr, u64 fnat, u64 *tr, u64 *tnat)
845 {
846         u64 fslot, tslot, nat;
847         *tr = *fr;
848         fslot = ((unsigned long)fr >> 3) & 63;
849         tslot = ((unsigned long)tr >> 3) & 63;
850         *tnat &= ~(1UL << tslot);
851         nat = (fnat >> fslot) & 1;
852         *tnat |= (nat << tslot);
853 }
854
855 /* Change the comm field on the MCA/INT task to include the pid that
856  * was interrupted, it makes for easier debugging.  If that pid was 0
857  * (swapper or nested MCA/INIT) then use the start of the previous comm
858  * field suffixed with its cpu.
859  */
860
861 static void
862 ia64_mca_modify_comm(const struct task_struct *previous_current)
863 {
864         char *p, comm[sizeof(current->comm)];
865         if (previous_current->pid)
866                 snprintf(comm, sizeof(comm), "%s %d",
867                         current->comm, previous_current->pid);
868         else {
869                 int l;
870                 if ((p = strchr(previous_current->comm, ' ')))
871                         l = p - previous_current->comm;
872                 else
873                         l = strlen(previous_current->comm);
874                 snprintf(comm, sizeof(comm), "%s %*s %d",
875                         current->comm, l, previous_current->comm,
876                         task_thread_info(previous_current)->cpu);
877         }
878         memcpy(current->comm, comm, sizeof(current->comm));
879 }
880
881 /* On entry to this routine, we are running on the per cpu stack, see
882  * mca_asm.h.  The original stack has not been touched by this event.  Some of
883  * the original stack's registers will be in the RBS on this stack.  This stack
884  * also contains a partial pt_regs and switch_stack, the rest of the data is in
885  * PAL minstate.
886  *
887  * The first thing to do is modify the original stack to look like a blocked
888  * task so we can run backtrace on the original task.  Also mark the per cpu
889  * stack as current to ensure that we use the correct task state, it also means
890  * that we can do backtrace on the MCA/INIT handler code itself.
891  */
892
893 static struct task_struct *
894 ia64_mca_modify_original_stack(struct pt_regs *regs,
895                 const struct switch_stack *sw,
896                 struct ia64_sal_os_state *sos,
897                 const char *type)
898 {
899         char *p;
900         ia64_va va;
901         extern char ia64_leave_kernel[];        /* Need asm address, not function descriptor */
902         const pal_min_state_area_t *ms = sos->pal_min_state;
903         struct task_struct *previous_current;
904         struct pt_regs *old_regs;
905         struct switch_stack *old_sw;
906         unsigned size = sizeof(struct pt_regs) +
907                         sizeof(struct switch_stack) + 16;
908         u64 *old_bspstore, *old_bsp;
909         u64 *new_bspstore, *new_bsp;
910         u64 old_unat, old_rnat, new_rnat, nat;
911         u64 slots, loadrs = regs->loadrs;
912         u64 r12 = ms->pmsa_gr[12-1], r13 = ms->pmsa_gr[13-1];
913         u64 ar_bspstore = regs->ar_bspstore;
914         u64 ar_bsp = regs->ar_bspstore + (loadrs >> 16);
915         const u64 *bank;
916         const char *msg;
917         int cpu = smp_processor_id();
918
919         previous_current = curr_task(cpu);
920         set_curr_task(cpu, current);
921         if ((p = strchr(current->comm, ' ')))
922                 *p = '\0';
923
924         /* Best effort attempt to cope with MCA/INIT delivered while in
925          * physical mode.
926          */
927         regs->cr_ipsr = ms->pmsa_ipsr;
928         if (ia64_psr(regs)->dt == 0) {
929                 va.l = r12;
930                 if (va.f.reg == 0) {
931                         va.f.reg = 7;
932                         r12 = va.l;
933                 }
934                 va.l = r13;
935                 if (va.f.reg == 0) {
936                         va.f.reg = 7;
937                         r13 = va.l;
938                 }
939         }
940         if (ia64_psr(regs)->rt == 0) {
941                 va.l = ar_bspstore;
942                 if (va.f.reg == 0) {
943                         va.f.reg = 7;
944                         ar_bspstore = va.l;
945                 }
946                 va.l = ar_bsp;
947                 if (va.f.reg == 0) {
948                         va.f.reg = 7;
949                         ar_bsp = va.l;
950                 }
951         }
952
953         /* mca_asm.S ia64_old_stack() cannot assume that the dirty registers
954          * have been copied to the old stack, the old stack may fail the
955          * validation tests below.  So ia64_old_stack() must restore the dirty
956          * registers from the new stack.  The old and new bspstore probably
957          * have different alignments, so loadrs calculated on the old bsp
958          * cannot be used to restore from the new bsp.  Calculate a suitable
959          * loadrs for the new stack and save it in the new pt_regs, where
960          * ia64_old_stack() can get it.
961          */
962         old_bspstore = (u64 *)ar_bspstore;
963         old_bsp = (u64 *)ar_bsp;
964         slots = ia64_rse_num_regs(old_bspstore, old_bsp);
965         new_bspstore = (u64 *)((u64)current + IA64_RBS_OFFSET);
966         new_bsp = ia64_rse_skip_regs(new_bspstore, slots);
967         regs->loadrs = (new_bsp - new_bspstore) * 8 << 16;
968
969         /* Verify the previous stack state before we change it */
970         if (user_mode(regs)) {
971                 msg = "occurred in user space";
972                 /* previous_current is guaranteed to be valid when the task was
973                  * in user space, so ...
974                  */
975                 ia64_mca_modify_comm(previous_current);
976                 goto no_mod;
977         }
978
979         if (r13 != sos->prev_IA64_KR_CURRENT) {
980                 msg = "inconsistent previous current and r13";
981                 goto no_mod;
982         }
983
984         if (!mca_recover_range(ms->pmsa_iip)) {
985                 if ((r12 - r13) >= KERNEL_STACK_SIZE) {
986                         msg = "inconsistent r12 and r13";
987                         goto no_mod;
988                 }
989                 if ((ar_bspstore - r13) >= KERNEL_STACK_SIZE) {
990                         msg = "inconsistent ar.bspstore and r13";
991                         goto no_mod;
992                 }
993                 va.p = old_bspstore;
994                 if (va.f.reg < 5) {
995                         msg = "old_bspstore is in the wrong region";
996                         goto no_mod;
997                 }
998                 if ((ar_bsp - r13) >= KERNEL_STACK_SIZE) {
999                         msg = "inconsistent ar.bsp and r13";
1000                         goto no_mod;
1001                 }
1002                 size += (ia64_rse_skip_regs(old_bspstore, slots) - old_bspstore) * 8;
1003                 if (ar_bspstore + size > r12) {
1004                         msg = "no room for blocked state";
1005                         goto no_mod;
1006                 }
1007         }
1008
1009         ia64_mca_modify_comm(previous_current);
1010
1011         /* Make the original task look blocked.  First stack a struct pt_regs,
1012          * describing the state at the time of interrupt.  mca_asm.S built a
1013          * partial pt_regs, copy it and fill in the blanks using minstate.
1014          */
1015         p = (char *)r12 - sizeof(*regs);
1016         old_regs = (struct pt_regs *)p;
1017         memcpy(old_regs, regs, sizeof(*regs));
1018         /* If ipsr.ic then use pmsa_{iip,ipsr,ifs}, else use
1019          * pmsa_{xip,xpsr,xfs}
1020          */
1021         if (ia64_psr(regs)->ic) {
1022                 old_regs->cr_iip = ms->pmsa_iip;
1023                 old_regs->cr_ipsr = ms->pmsa_ipsr;
1024                 old_regs->cr_ifs = ms->pmsa_ifs;
1025         } else {
1026                 old_regs->cr_iip = ms->pmsa_xip;
1027                 old_regs->cr_ipsr = ms->pmsa_xpsr;
1028                 old_regs->cr_ifs = ms->pmsa_xfs;
1029         }
1030         old_regs->pr = ms->pmsa_pr;
1031         old_regs->b0 = ms->pmsa_br0;
1032         old_regs->loadrs = loadrs;
1033         old_regs->ar_rsc = ms->pmsa_rsc;
1034         old_unat = old_regs->ar_unat;
1035         copy_reg(&ms->pmsa_gr[1-1], ms->pmsa_nat_bits, &old_regs->r1, &old_unat);
1036         copy_reg(&ms->pmsa_gr[2-1], ms->pmsa_nat_bits, &old_regs->r2, &old_unat);
1037         copy_reg(&ms->pmsa_gr[3-1], ms->pmsa_nat_bits, &old_regs->r3, &old_unat);
1038         copy_reg(&ms->pmsa_gr[8-1], ms->pmsa_nat_bits, &old_regs->r8, &old_unat);
1039         copy_reg(&ms->pmsa_gr[9-1], ms->pmsa_nat_bits, &old_regs->r9, &old_unat);
1040         copy_reg(&ms->pmsa_gr[10-1], ms->pmsa_nat_bits, &old_regs->r10, &old_unat);
1041         copy_reg(&ms->pmsa_gr[11-1], ms->pmsa_nat_bits, &old_regs->r11, &old_unat);
1042         copy_reg(&ms->pmsa_gr[12-1], ms->pmsa_nat_bits, &old_regs->r12, &old_unat);
1043         copy_reg(&ms->pmsa_gr[13-1], ms->pmsa_nat_bits, &old_regs->r13, &old_unat);
1044         copy_reg(&ms->pmsa_gr[14-1], ms->pmsa_nat_bits, &old_regs->r14, &old_unat);
1045         copy_reg(&ms->pmsa_gr[15-1], ms->pmsa_nat_bits, &old_regs->r15, &old_unat);
1046         if (ia64_psr(old_regs)->bn)
1047                 bank = ms->pmsa_bank1_gr;
1048         else
1049                 bank = ms->pmsa_bank0_gr;
1050         copy_reg(&bank[16-16], ms->pmsa_nat_bits, &old_regs->r16, &old_unat);
1051         copy_reg(&bank[17-16], ms->pmsa_nat_bits, &old_regs->r17, &old_unat);
1052         copy_reg(&bank[18-16], ms->pmsa_nat_bits, &old_regs->r18, &old_unat);
1053         copy_reg(&bank[19-16], ms->pmsa_nat_bits, &old_regs->r19, &old_unat);
1054         copy_reg(&bank[20-16], ms->pmsa_nat_bits, &old_regs->r20, &old_unat);
1055         copy_reg(&bank[21-16], ms->pmsa_nat_bits, &old_regs->r21, &old_unat);
1056         copy_reg(&bank[22-16], ms->pmsa_nat_bits, &old_regs->r22, &old_unat);
1057         copy_reg(&bank[23-16], ms->pmsa_nat_bits, &old_regs->r23, &old_unat);
1058         copy_reg(&bank[24-16], ms->pmsa_nat_bits, &old_regs->r24, &old_unat);
1059         copy_reg(&bank[25-16], ms->pmsa_nat_bits, &old_regs->r25, &old_unat);
1060         copy_reg(&bank[26-16], ms->pmsa_nat_bits, &old_regs->r26, &old_unat);
1061         copy_reg(&bank[27-16], ms->pmsa_nat_bits, &old_regs->r27, &old_unat);
1062         copy_reg(&bank[28-16], ms->pmsa_nat_bits, &old_regs->r28, &old_unat);
1063         copy_reg(&bank[29-16], ms->pmsa_nat_bits, &old_regs->r29, &old_unat);
1064         copy_reg(&bank[30-16], ms->pmsa_nat_bits, &old_regs->r30, &old_unat);
1065         copy_reg(&bank[31-16], ms->pmsa_nat_bits, &old_regs->r31, &old_unat);
1066
1067         /* Next stack a struct switch_stack.  mca_asm.S built a partial
1068          * switch_stack, copy it and fill in the blanks using pt_regs and
1069          * minstate.
1070          *
1071          * In the synthesized switch_stack, b0 points to ia64_leave_kernel,
1072          * ar.pfs is set to 0.
1073          *
1074          * unwind.c::unw_unwind() does special processing for interrupt frames.
1075          * It checks if the PRED_NON_SYSCALL predicate is set, if the predicate
1076          * is clear then unw_unwind() does _not_ adjust bsp over pt_regs.  Not
1077          * that this is documented, of course.  Set PRED_NON_SYSCALL in the
1078          * switch_stack on the original stack so it will unwind correctly when
1079          * unwind.c reads pt_regs.
1080          *
1081          * thread.ksp is updated to point to the synthesized switch_stack.
1082          */
1083         p -= sizeof(struct switch_stack);
1084         old_sw = (struct switch_stack *)p;
1085         memcpy(old_sw, sw, sizeof(*sw));
1086         old_sw->caller_unat = old_unat;
1087         old_sw->ar_fpsr = old_regs->ar_fpsr;
1088         copy_reg(&ms->pmsa_gr[4-1], ms->pmsa_nat_bits, &old_sw->r4, &old_unat);
1089         copy_reg(&ms->pmsa_gr[5-1], ms->pmsa_nat_bits, &old_sw->r5, &old_unat);
1090         copy_reg(&ms->pmsa_gr[6-1], ms->pmsa_nat_bits, &old_sw->r6, &old_unat);
1091         copy_reg(&ms->pmsa_gr[7-1], ms->pmsa_nat_bits, &old_sw->r7, &old_unat);
1092         old_sw->b0 = (u64)ia64_leave_kernel;
1093         old_sw->b1 = ms->pmsa_br1;
1094         old_sw->ar_pfs = 0;
1095         old_sw->ar_unat = old_unat;
1096         old_sw->pr = old_regs->pr | (1UL << PRED_NON_SYSCALL);
1097         previous_current->thread.ksp = (u64)p - 16;
1098
1099         /* Finally copy the original stack's registers back to its RBS.
1100          * Registers from ar.bspstore through ar.bsp at the time of the event
1101          * are in the current RBS, copy them back to the original stack.  The
1102          * copy must be done register by register because the original bspstore
1103          * and the current one have different alignments, so the saved RNAT
1104          * data occurs at different places.
1105          *
1106          * mca_asm does cover, so the old_bsp already includes all registers at
1107          * the time of MCA/INIT.  It also does flushrs, so all registers before
1108          * this function have been written to backing store on the MCA/INIT
1109          * stack.
1110          */
1111         new_rnat = ia64_get_rnat(ia64_rse_rnat_addr(new_bspstore));
1112         old_rnat = regs->ar_rnat;
1113         while (slots--) {
1114                 if (ia64_rse_is_rnat_slot(new_bspstore)) {
1115                         new_rnat = ia64_get_rnat(new_bspstore++);
1116                 }
1117                 if (ia64_rse_is_rnat_slot(old_bspstore)) {
1118                         *old_bspstore++ = old_rnat;
1119                         old_rnat = 0;
1120                 }
1121                 nat = (new_rnat >> ia64_rse_slot_num(new_bspstore)) & 1UL;
1122                 old_rnat &= ~(1UL << ia64_rse_slot_num(old_bspstore));
1123                 old_rnat |= (nat << ia64_rse_slot_num(old_bspstore));
1124                 *old_bspstore++ = *new_bspstore++;
1125         }
1126         old_sw->ar_bspstore = (unsigned long)old_bspstore;
1127         old_sw->ar_rnat = old_rnat;
1128
1129         sos->prev_task = previous_current;
1130         return previous_current;
1131
1132 no_mod:
1133         printk(KERN_INFO "cpu %d, %s %s, original stack not modified\n",
1134                         smp_processor_id(), type, msg);
1135         return previous_current;
1136 }
1137
1138 /* The monarch/slave interaction is based on monarch_cpu and requires that all
1139  * slaves have entered rendezvous before the monarch leaves.  If any cpu has
1140  * not entered rendezvous yet then wait a bit.  The assumption is that any
1141  * slave that has not rendezvoused after a reasonable time is never going to do
1142  * so.  In this context, slave includes cpus that respond to the MCA rendezvous
1143  * interrupt, as well as cpus that receive the INIT slave event.
1144  */
1145
1146 static void
1147 ia64_wait_for_slaves(int monarch, const char *type)
1148 {
1149         int c, i , wait;
1150
1151         /*
1152          * wait 5 seconds total for slaves (arbitrary)
1153          */
1154         for (i = 0; i < 5000; i++) {
1155                 wait = 0;
1156                 for_each_online_cpu(c) {
1157                         if (c == monarch)
1158                                 continue;
1159                         if (ia64_mc_info.imi_rendez_checkin[c]
1160                                         == IA64_MCA_RENDEZ_CHECKIN_NOTDONE) {
1161                                 udelay(1000);           /* short wait */
1162                                 wait = 1;
1163                                 break;
1164                         }
1165                 }
1166                 if (!wait)
1167                         goto all_in;
1168         }
1169
1170         /*
1171          * Maybe slave(s) dead. Print buffered messages immediately.
1172          */
1173         ia64_mlogbuf_finish(0);
1174         mprintk(KERN_INFO "OS %s slave did not rendezvous on cpu", type);
1175         for_each_online_cpu(c) {
1176                 if (c == monarch)
1177                         continue;
1178                 if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE)
1179                         mprintk(" %d", c);
1180         }
1181         mprintk("\n");
1182         return;
1183
1184 all_in:
1185         mprintk(KERN_INFO "All OS %s slaves have reached rendezvous\n", type);
1186         return;
1187 }
1188
1189 /*  mca_insert_tr
1190  *
1191  *  Switch rid when TR reload and needed!
1192  *  iord: 1: itr, 2: itr;
1193  *
1194 */
1195 static void mca_insert_tr(u64 iord)
1196 {
1197
1198         int i;
1199         u64 old_rr;
1200         struct ia64_tr_entry *p;
1201         unsigned long psr;
1202         int cpu = smp_processor_id();
1203
1204         psr = ia64_clear_ic();
1205         for (i = IA64_TR_ALLOC_BASE; i < IA64_TR_ALLOC_MAX; i++) {
1206                 p = &__per_cpu_idtrs[cpu][iord-1][i];
1207                 if (p->pte & 0x1) {
1208                         old_rr = ia64_get_rr(p->ifa);
1209                         if (old_rr != p->rr) {
1210                                 ia64_set_rr(p->ifa, p->rr);
1211                                 ia64_srlz_d();
1212                         }
1213                         ia64_ptr(iord, p->ifa, p->itir >> 2);
1214                         ia64_srlz_i();
1215                         if (iord & 0x1) {
1216                                 ia64_itr(0x1, i, p->ifa, p->pte, p->itir >> 2);
1217                                 ia64_srlz_i();
1218                         }
1219                         if (iord & 0x2) {
1220                                 ia64_itr(0x2, i, p->ifa, p->pte, p->itir >> 2);
1221                                 ia64_srlz_i();
1222                         }
1223                         if (old_rr != p->rr) {
1224                                 ia64_set_rr(p->ifa, old_rr);
1225                                 ia64_srlz_d();
1226                         }
1227                 }
1228         }
1229         ia64_set_psr(psr);
1230 }
1231
1232 /*
1233  * ia64_mca_handler
1234  *
1235  *      This is uncorrectable machine check handler called from OS_MCA
1236  *      dispatch code which is in turn called from SAL_CHECK().
1237  *      This is the place where the core of OS MCA handling is done.
1238  *      Right now the logs are extracted and displayed in a well-defined
1239  *      format. This handler code is supposed to be run only on the
1240  *      monarch processor. Once the monarch is done with MCA handling
1241  *      further MCA logging is enabled by clearing logs.
1242  *      Monarch also has the duty of sending wakeup-IPIs to pull the
1243  *      slave processors out of rendezvous spinloop.
1244  *
1245  *      If multiple processors call into OS_MCA, the first will become
1246  *      the monarch.  Subsequent cpus will be recorded in the mca_cpu
1247  *      bitmask.  After the first monarch has processed its MCA, it
1248  *      will wake up the next cpu in the mca_cpu bitmask and then go
1249  *      into the rendezvous loop.  When all processors have serviced
1250  *      their MCA, the last monarch frees up the rest of the processors.
1251  */
1252 void
1253 ia64_mca_handler(struct pt_regs *regs, struct switch_stack *sw,
1254                  struct ia64_sal_os_state *sos)
1255 {
1256         int recover, cpu = smp_processor_id();
1257         struct task_struct *previous_current;
1258         struct ia64_mca_notify_die nd =
1259                 { .sos = sos, .monarch_cpu = &monarch_cpu };
1260         static atomic_t mca_count;
1261         static cpumask_t mca_cpu;
1262
1263         if (atomic_add_return(1, &mca_count) == 1) {
1264                 monarch_cpu = cpu;
1265                 sos->monarch = 1;
1266         } else {
1267                 cpu_set(cpu, mca_cpu);
1268                 sos->monarch = 0;
1269         }
1270         mprintk(KERN_INFO "Entered OS MCA handler. PSP=%lx cpu=%d "
1271                 "monarch=%ld\n", sos->proc_state_param, cpu, sos->monarch);
1272
1273         previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "MCA");
1274
1275         if (notify_die(DIE_MCA_MONARCH_ENTER, "MCA", regs, (long)&nd, 0, 0)
1276                         == NOTIFY_STOP)
1277                 ia64_mca_spin(__func__);
1278
1279         ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_CONCURRENT_MCA;
1280         if (sos->monarch) {
1281                 ia64_wait_for_slaves(cpu, "MCA");
1282
1283                 /* Wakeup all the processors which are spinning in the
1284                  * rendezvous loop.  They will leave SAL, then spin in the OS
1285                  * with interrupts disabled until this monarch cpu leaves the
1286                  * MCA handler.  That gets control back to the OS so we can
1287                  * backtrace the other cpus, backtrace when spinning in SAL
1288                  * does not work.
1289                  */
1290                 ia64_mca_wakeup_all();
1291                 if (notify_die(DIE_MCA_MONARCH_PROCESS, "MCA", regs, (long)&nd, 0, 0)
1292                                 == NOTIFY_STOP)
1293                         ia64_mca_spin(__func__);
1294         } else {
1295                 while (cpu_isset(cpu, mca_cpu))
1296                         cpu_relax();    /* spin until monarch wakes us */
1297         }
1298
1299         /* Get the MCA error record and log it */
1300         ia64_mca_log_sal_error_record(SAL_INFO_TYPE_MCA);
1301
1302         /* MCA error recovery */
1303         recover = (ia64_mca_ucmc_extension
1304                 && ia64_mca_ucmc_extension(
1305                         IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA),
1306                         sos));
1307
1308         if (recover) {
1309                 sal_log_record_header_t *rh = IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA);
1310                 rh->severity = sal_log_severity_corrected;
1311                 ia64_sal_clear_state_info(SAL_INFO_TYPE_MCA);
1312                 sos->os_status = IA64_MCA_CORRECTED;
1313         } else {
1314                 /* Dump buffered message to console */
1315                 ia64_mlogbuf_finish(1);
1316         }
1317
1318         if (__get_cpu_var(ia64_mca_tr_reload)) {
1319                 mca_insert_tr(0x1); /*Reload dynamic itrs*/
1320                 mca_insert_tr(0x2); /*Reload dynamic itrs*/
1321         }
1322
1323         if (notify_die(DIE_MCA_MONARCH_LEAVE, "MCA", regs, (long)&nd, 0, recover)
1324                         == NOTIFY_STOP)
1325                 ia64_mca_spin(__func__);
1326
1327         if (atomic_dec_return(&mca_count) > 0) {
1328                 int i;
1329
1330                 /* wake up the next monarch cpu,
1331                  * and put this cpu in the rendez loop.
1332                  */
1333                 for_each_online_cpu(i) {
1334                         if (cpu_isset(i, mca_cpu)) {
1335                                 monarch_cpu = i;
1336                                 cpu_clear(i, mca_cpu);  /* wake next cpu */
1337                                 while (monarch_cpu != -1)
1338                                         cpu_relax();    /* spin until last cpu leaves */
1339                                 set_curr_task(cpu, previous_current);
1340                                 ia64_mc_info.imi_rendez_checkin[cpu]
1341                                                 = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1342                                 return;
1343                         }
1344                 }
1345         }
1346         set_curr_task(cpu, previous_current);
1347         ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1348         monarch_cpu = -1;       /* This frees the slaves and previous monarchs */
1349 }
1350
1351 static DECLARE_WORK(cmc_disable_work, ia64_mca_cmc_vector_disable_keventd);
1352 static DECLARE_WORK(cmc_enable_work, ia64_mca_cmc_vector_enable_keventd);
1353
1354 /*
1355  * ia64_mca_cmc_int_handler
1356  *
1357  *  This is corrected machine check interrupt handler.
1358  *      Right now the logs are extracted and displayed in a well-defined
1359  *      format.
1360  *
1361  * Inputs
1362  *      interrupt number
1363  *      client data arg ptr
1364  *
1365  * Outputs
1366  *      None
1367  */
1368 static irqreturn_t
1369 ia64_mca_cmc_int_handler(int cmc_irq, void *arg)
1370 {
1371         static unsigned long    cmc_history[CMC_HISTORY_LENGTH];
1372         static int              index;
1373         static DEFINE_SPINLOCK(cmc_history_lock);
1374
1375         IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
1376                        __func__, cmc_irq, smp_processor_id());
1377
1378         /* SAL spec states this should run w/ interrupts enabled */
1379         local_irq_enable();
1380
1381         spin_lock(&cmc_history_lock);
1382         if (!cmc_polling_enabled) {
1383                 int i, count = 1; /* we know 1 happened now */
1384                 unsigned long now = jiffies;
1385
1386                 for (i = 0; i < CMC_HISTORY_LENGTH; i++) {
1387                         if (now - cmc_history[i] <= HZ)
1388                                 count++;
1389                 }
1390
1391                 IA64_MCA_DEBUG(KERN_INFO "CMC threshold %d/%d\n", count, CMC_HISTORY_LENGTH);
1392                 if (count >= CMC_HISTORY_LENGTH) {
1393
1394                         cmc_polling_enabled = 1;
1395                         spin_unlock(&cmc_history_lock);
1396                         /* If we're being hit with CMC interrupts, we won't
1397                          * ever execute the schedule_work() below.  Need to
1398                          * disable CMC interrupts on this processor now.
1399                          */
1400                         ia64_mca_cmc_vector_disable(NULL);
1401                         schedule_work(&cmc_disable_work);
1402
1403                         /*
1404                          * Corrected errors will still be corrected, but
1405                          * make sure there's a log somewhere that indicates
1406                          * something is generating more than we can handle.
1407                          */
1408                         printk(KERN_WARNING "WARNING: Switching to polling CMC handler; error records may be lost\n");
1409
1410                         mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
1411
1412                         /* lock already released, get out now */
1413                         goto out;
1414                 } else {
1415                         cmc_history[index++] = now;
1416                         if (index == CMC_HISTORY_LENGTH)
1417                                 index = 0;
1418                 }
1419         }
1420         spin_unlock(&cmc_history_lock);
1421 out:
1422         /* Get the CMC error record and log it */
1423         ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CMC);
1424
1425         return IRQ_HANDLED;
1426 }
1427
1428 /*
1429  *  ia64_mca_cmc_int_caller
1430  *
1431  *      Triggered by sw interrupt from CMC polling routine.  Calls
1432  *      real interrupt handler and either triggers a sw interrupt
1433  *      on the next cpu or does cleanup at the end.
1434  *
1435  * Inputs
1436  *      interrupt number
1437  *      client data arg ptr
1438  * Outputs
1439  *      handled
1440  */
1441 static irqreturn_t
1442 ia64_mca_cmc_int_caller(int cmc_irq, void *arg)
1443 {
1444         static int start_count = -1;
1445         unsigned int cpuid;
1446
1447         cpuid = smp_processor_id();
1448
1449         /* If first cpu, update count */
1450         if (start_count == -1)
1451                 start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CMC);
1452
1453         ia64_mca_cmc_int_handler(cmc_irq, arg);
1454
1455         for (++cpuid ; cpuid < NR_CPUS && !cpu_online(cpuid) ; cpuid++);
1456
1457         if (cpuid < NR_CPUS) {
1458                 platform_send_ipi(cpuid, IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0);
1459         } else {
1460                 /* If no log record, switch out of polling mode */
1461                 if (start_count == IA64_LOG_COUNT(SAL_INFO_TYPE_CMC)) {
1462
1463                         printk(KERN_WARNING "Returning to interrupt driven CMC handler\n");
1464                         schedule_work(&cmc_enable_work);
1465                         cmc_polling_enabled = 0;
1466
1467                 } else {
1468
1469                         mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
1470                 }
1471
1472                 start_count = -1;
1473         }
1474
1475         return IRQ_HANDLED;
1476 }
1477
1478 /*
1479  *  ia64_mca_cmc_poll
1480  *
1481  *      Poll for Corrected Machine Checks (CMCs)
1482  *
1483  * Inputs   :   dummy(unused)
1484  * Outputs  :   None
1485  *
1486  */
1487 static void
1488 ia64_mca_cmc_poll (unsigned long dummy)
1489 {
1490         /* Trigger a CMC interrupt cascade  */
1491         platform_send_ipi(first_cpu(cpu_online_map), IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0);
1492 }
1493
1494 /*
1495  *  ia64_mca_cpe_int_caller
1496  *
1497  *      Triggered by sw interrupt from CPE polling routine.  Calls
1498  *      real interrupt handler and either triggers a sw interrupt
1499  *      on the next cpu or does cleanup at the end.
1500  *
1501  * Inputs
1502  *      interrupt number
1503  *      client data arg ptr
1504  * Outputs
1505  *      handled
1506  */
1507 #ifdef CONFIG_ACPI
1508
1509 static irqreturn_t
1510 ia64_mca_cpe_int_caller(int cpe_irq, void *arg)
1511 {
1512         static int start_count = -1;
1513         static int poll_time = MIN_CPE_POLL_INTERVAL;
1514         unsigned int cpuid;
1515
1516         cpuid = smp_processor_id();
1517
1518         /* If first cpu, update count */
1519         if (start_count == -1)
1520                 start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CPE);
1521
1522         ia64_mca_cpe_int_handler(cpe_irq, arg);
1523
1524         for (++cpuid ; cpuid < NR_CPUS && !cpu_online(cpuid) ; cpuid++);
1525
1526         if (cpuid < NR_CPUS) {
1527                 platform_send_ipi(cpuid, IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0);
1528         } else {
1529                 /*
1530                  * If a log was recorded, increase our polling frequency,
1531                  * otherwise, backoff or return to interrupt mode.
1532                  */
1533                 if (start_count != IA64_LOG_COUNT(SAL_INFO_TYPE_CPE)) {
1534                         poll_time = max(MIN_CPE_POLL_INTERVAL, poll_time / 2);
1535                 } else if (cpe_vector < 0) {
1536                         poll_time = min(MAX_CPE_POLL_INTERVAL, poll_time * 2);
1537                 } else {
1538                         poll_time = MIN_CPE_POLL_INTERVAL;
1539
1540                         printk(KERN_WARNING "Returning to interrupt driven CPE handler\n");
1541                         enable_irq(local_vector_to_irq(IA64_CPE_VECTOR));
1542                         cpe_poll_enabled = 0;
1543                 }
1544
1545                 if (cpe_poll_enabled)
1546                         mod_timer(&cpe_poll_timer, jiffies + poll_time);
1547                 start_count = -1;
1548         }
1549
1550         return IRQ_HANDLED;
1551 }
1552
1553 /*
1554  *  ia64_mca_cpe_poll
1555  *
1556  *      Poll for Corrected Platform Errors (CPEs), trigger interrupt
1557  *      on first cpu, from there it will trickle through all the cpus.
1558  *
1559  * Inputs   :   dummy(unused)
1560  * Outputs  :   None
1561  *
1562  */
1563 static void
1564 ia64_mca_cpe_poll (unsigned long dummy)
1565 {
1566         /* Trigger a CPE interrupt cascade  */
1567         platform_send_ipi(first_cpu(cpu_online_map), IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0);
1568 }
1569
1570 #endif /* CONFIG_ACPI */
1571
1572 static int
1573 default_monarch_init_process(struct notifier_block *self, unsigned long val, void *data)
1574 {
1575         int c;
1576         struct task_struct *g, *t;
1577         if (val != DIE_INIT_MONARCH_PROCESS)
1578                 return NOTIFY_DONE;
1579 #ifdef CONFIG_KEXEC
1580         if (atomic_read(&kdump_in_progress))
1581                 return NOTIFY_DONE;
1582 #endif
1583
1584         /*
1585          * FIXME: mlogbuf will brim over with INIT stack dumps.
1586          * To enable show_stack from INIT, we use oops_in_progress which should
1587          * be used in real oops. This would cause something wrong after INIT.
1588          */
1589         BREAK_LOGLEVEL(console_loglevel);
1590         ia64_mlogbuf_dump_from_init();
1591
1592         printk(KERN_ERR "Processes interrupted by INIT -");
1593         for_each_online_cpu(c) {
1594                 struct ia64_sal_os_state *s;
1595                 t = __va(__per_cpu_mca[c] + IA64_MCA_CPU_INIT_STACK_OFFSET);
1596                 s = (struct ia64_sal_os_state *)((char *)t + MCA_SOS_OFFSET);
1597                 g = s->prev_task;
1598                 if (g) {
1599                         if (g->pid)
1600                                 printk(" %d", g->pid);
1601                         else
1602                                 printk(" %d (cpu %d task 0x%p)", g->pid, task_cpu(g), g);
1603                 }
1604         }
1605         printk("\n\n");
1606         if (read_trylock(&tasklist_lock)) {
1607                 do_each_thread (g, t) {
1608                         printk("\nBacktrace of pid %d (%s)\n", t->pid, t->comm);
1609                         show_stack(t, NULL);
1610                 } while_each_thread (g, t);
1611                 read_unlock(&tasklist_lock);
1612         }
1613         /* FIXME: This will not restore zapped printk locks. */
1614         RESTORE_LOGLEVEL(console_loglevel);
1615         return NOTIFY_DONE;
1616 }
1617
1618 /*
1619  * C portion of the OS INIT handler
1620  *
1621  * Called from ia64_os_init_dispatch
1622  *
1623  * Inputs: pointer to pt_regs where processor info was saved.  SAL/OS state for
1624  * this event.  This code is used for both monarch and slave INIT events, see
1625  * sos->monarch.
1626  *
1627  * All INIT events switch to the INIT stack and change the previous process to
1628  * blocked status.  If one of the INIT events is the monarch then we are
1629  * probably processing the nmi button/command.  Use the monarch cpu to dump all
1630  * the processes.  The slave INIT events all spin until the monarch cpu
1631  * returns.  We can also get INIT slave events for MCA, in which case the MCA
1632  * process is the monarch.
1633  */
1634
1635 void
1636 ia64_init_handler(struct pt_regs *regs, struct switch_stack *sw,
1637                   struct ia64_sal_os_state *sos)
1638 {
1639         static atomic_t slaves;
1640         static atomic_t monarchs;
1641         struct task_struct *previous_current;
1642         int cpu = smp_processor_id();
1643         struct ia64_mca_notify_die nd =
1644                 { .sos = sos, .monarch_cpu = &monarch_cpu };
1645
1646         (void) notify_die(DIE_INIT_ENTER, "INIT", regs, (long)&nd, 0, 0);
1647
1648         mprintk(KERN_INFO "Entered OS INIT handler. PSP=%lx cpu=%d monarch=%ld\n",
1649                 sos->proc_state_param, cpu, sos->monarch);
1650         salinfo_log_wakeup(SAL_INFO_TYPE_INIT, NULL, 0, 0);
1651
1652         previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "INIT");
1653         sos->os_status = IA64_INIT_RESUME;
1654
1655         /* FIXME: Workaround for broken proms that drive all INIT events as
1656          * slaves.  The last slave that enters is promoted to be a monarch.
1657          * Remove this code in September 2006, that gives platforms a year to
1658          * fix their proms and get their customers updated.
1659          */
1660         if (!sos->monarch && atomic_add_return(1, &slaves) == num_online_cpus()) {
1661                 mprintk(KERN_WARNING "%s: Promoting cpu %d to monarch.\n",
1662                         __func__, cpu);
1663                 atomic_dec(&slaves);
1664                 sos->monarch = 1;
1665         }
1666
1667         /* FIXME: Workaround for broken proms that drive all INIT events as
1668          * monarchs.  Second and subsequent monarchs are demoted to slaves.
1669          * Remove this code in September 2006, that gives platforms a year to
1670          * fix their proms and get their customers updated.
1671          */
1672         if (sos->monarch && atomic_add_return(1, &monarchs) > 1) {
1673                 mprintk(KERN_WARNING "%s: Demoting cpu %d to slave.\n",
1674                                __func__, cpu);
1675                 atomic_dec(&monarchs);
1676                 sos->monarch = 0;
1677         }
1678
1679         if (!sos->monarch) {
1680                 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_INIT;
1681                 while (monarch_cpu == -1)
1682                        cpu_relax();     /* spin until monarch enters */
1683                 if (notify_die(DIE_INIT_SLAVE_ENTER, "INIT", regs, (long)&nd, 0, 0)
1684                                 == NOTIFY_STOP)
1685                         ia64_mca_spin(__func__);
1686                 if (notify_die(DIE_INIT_SLAVE_PROCESS, "INIT", regs, (long)&nd, 0, 0)
1687                                 == NOTIFY_STOP)
1688                         ia64_mca_spin(__func__);
1689                 while (monarch_cpu != -1)
1690                        cpu_relax();     /* spin until monarch leaves */
1691                 if (notify_die(DIE_INIT_SLAVE_LEAVE, "INIT", regs, (long)&nd, 0, 0)
1692                                 == NOTIFY_STOP)
1693                         ia64_mca_spin(__func__);
1694                 mprintk("Slave on cpu %d returning to normal service.\n", cpu);
1695                 set_curr_task(cpu, previous_current);
1696                 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1697                 atomic_dec(&slaves);
1698                 return;
1699         }
1700
1701         monarch_cpu = cpu;
1702         if (notify_die(DIE_INIT_MONARCH_ENTER, "INIT", regs, (long)&nd, 0, 0)
1703                         == NOTIFY_STOP)
1704                 ia64_mca_spin(__func__);
1705
1706         /*
1707          * Wait for a bit.  On some machines (e.g., HP's zx2000 and zx6000, INIT can be
1708          * generated via the BMC's command-line interface, but since the console is on the
1709          * same serial line, the user will need some time to switch out of the BMC before
1710          * the dump begins.
1711          */
1712         mprintk("Delaying for 5 seconds...\n");
1713         udelay(5*1000000);
1714         ia64_wait_for_slaves(cpu, "INIT");
1715         /* If nobody intercepts DIE_INIT_MONARCH_PROCESS then we drop through
1716          * to default_monarch_init_process() above and just print all the
1717          * tasks.
1718          */
1719         if (notify_die(DIE_INIT_MONARCH_PROCESS, "INIT", regs, (long)&nd, 0, 0)
1720                         == NOTIFY_STOP)
1721                 ia64_mca_spin(__func__);
1722         if (notify_die(DIE_INIT_MONARCH_LEAVE, "INIT", regs, (long)&nd, 0, 0)
1723                         == NOTIFY_STOP)
1724                 ia64_mca_spin(__func__);
1725         mprintk("\nINIT dump complete.  Monarch on cpu %d returning to normal service.\n", cpu);
1726         atomic_dec(&monarchs);
1727         set_curr_task(cpu, previous_current);
1728         monarch_cpu = -1;
1729         return;
1730 }
1731
1732 static int __init
1733 ia64_mca_disable_cpe_polling(char *str)
1734 {
1735         cpe_poll_enabled = 0;
1736         return 1;
1737 }
1738
1739 __setup("disable_cpe_poll", ia64_mca_disable_cpe_polling);
1740
1741 static struct irqaction cmci_irqaction = {
1742         .handler =      ia64_mca_cmc_int_handler,
1743         .flags =        IRQF_DISABLED,
1744         .name =         "cmc_hndlr"
1745 };
1746
1747 static struct irqaction cmcp_irqaction = {
1748         .handler =      ia64_mca_cmc_int_caller,
1749         .flags =        IRQF_DISABLED,
1750         .name =         "cmc_poll"
1751 };
1752
1753 static struct irqaction mca_rdzv_irqaction = {
1754         .handler =      ia64_mca_rendez_int_handler,
1755         .flags =        IRQF_DISABLED,
1756         .name =         "mca_rdzv"
1757 };
1758
1759 static struct irqaction mca_wkup_irqaction = {
1760         .handler =      ia64_mca_wakeup_int_handler,
1761         .flags =        IRQF_DISABLED,
1762         .name =         "mca_wkup"
1763 };
1764
1765 #ifdef CONFIG_ACPI
1766 static struct irqaction mca_cpe_irqaction = {
1767         .handler =      ia64_mca_cpe_int_handler,
1768         .flags =        IRQF_DISABLED,
1769         .name =         "cpe_hndlr"
1770 };
1771
1772 static struct irqaction mca_cpep_irqaction = {
1773         .handler =      ia64_mca_cpe_int_caller,
1774         .flags =        IRQF_DISABLED,
1775         .name =         "cpe_poll"
1776 };
1777 #endif /* CONFIG_ACPI */
1778
1779 /* Minimal format of the MCA/INIT stacks.  The pseudo processes that run on
1780  * these stacks can never sleep, they cannot return from the kernel to user
1781  * space, they do not appear in a normal ps listing.  So there is no need to
1782  * format most of the fields.
1783  */
1784
1785 static void __cpuinit
1786 format_mca_init_stack(void *mca_data, unsigned long offset,
1787                 const char *type, int cpu)
1788 {
1789         struct task_struct *p = (struct task_struct *)((char *)mca_data + offset);
1790         struct thread_info *ti;
1791         memset(p, 0, KERNEL_STACK_SIZE);
1792         ti = task_thread_info(p);
1793         ti->flags = _TIF_MCA_INIT;
1794         ti->preempt_count = 1;
1795         ti->task = p;
1796         ti->cpu = cpu;
1797         p->stack = ti;
1798         p->state = TASK_UNINTERRUPTIBLE;
1799         cpu_set(cpu, p->cpus_allowed);
1800         INIT_LIST_HEAD(&p->tasks);
1801         p->parent = p->real_parent = p->group_leader = p;
1802         INIT_LIST_HEAD(&p->children);
1803         INIT_LIST_HEAD(&p->sibling);
1804         strncpy(p->comm, type, sizeof(p->comm)-1);
1805 }
1806
1807 /* Caller prevents this from being called after init */
1808 static void * __init_refok mca_bootmem(void)
1809 {
1810         return __alloc_bootmem(sizeof(struct ia64_mca_cpu),
1811                             KERNEL_STACK_SIZE, 0);
1812 }
1813
1814 /* Do per-CPU MCA-related initialization.  */
1815 void __cpuinit
1816 ia64_mca_cpu_init(void *cpu_data)
1817 {
1818         void *pal_vaddr;
1819         void *data;
1820         long sz = sizeof(struct ia64_mca_cpu);
1821         int cpu = smp_processor_id();
1822         static int first_time = 1;
1823
1824         /*
1825          * Structure will already be allocated if cpu has been online,
1826          * then offlined.
1827          */
1828         if (__per_cpu_mca[cpu]) {
1829                 data = __va(__per_cpu_mca[cpu]);
1830         } else {
1831                 if (first_time) {
1832                         data = mca_bootmem();
1833                         first_time = 0;
1834                 } else
1835                         data = page_address(alloc_pages_node(numa_node_id(),
1836                                         GFP_KERNEL, get_order(sz)));
1837                 if (!data)
1838                         panic("Could not allocate MCA memory for cpu %d\n",
1839                                         cpu);
1840         }
1841         format_mca_init_stack(data, offsetof(struct ia64_mca_cpu, mca_stack),
1842                 "MCA", cpu);
1843         format_mca_init_stack(data, offsetof(struct ia64_mca_cpu, init_stack),
1844                 "INIT", cpu);
1845         __get_cpu_var(ia64_mca_data) = __per_cpu_mca[cpu] = __pa(data);
1846
1847         /*
1848          * Stash away a copy of the PTE needed to map the per-CPU page.
1849          * We may need it during MCA recovery.
1850          */
1851         __get_cpu_var(ia64_mca_per_cpu_pte) =
1852                 pte_val(mk_pte_phys(__pa(cpu_data), PAGE_KERNEL));
1853
1854         /*
1855          * Also, stash away a copy of the PAL address and the PTE
1856          * needed to map it.
1857          */
1858         pal_vaddr = efi_get_pal_addr();
1859         if (!pal_vaddr)
1860                 return;
1861         __get_cpu_var(ia64_mca_pal_base) =
1862                 GRANULEROUNDDOWN((unsigned long) pal_vaddr);
1863         __get_cpu_var(ia64_mca_pal_pte) = pte_val(mk_pte_phys(__pa(pal_vaddr),
1864                                                               PAGE_KERNEL));
1865 }
1866
1867 static void __cpuinit ia64_mca_cmc_vector_adjust(void *dummy)
1868 {
1869         unsigned long flags;
1870
1871         local_irq_save(flags);
1872         if (!cmc_polling_enabled)
1873                 ia64_mca_cmc_vector_enable(NULL);
1874         local_irq_restore(flags);
1875 }
1876
1877 static int __cpuinit mca_cpu_callback(struct notifier_block *nfb,
1878                                       unsigned long action,
1879                                       void *hcpu)
1880 {
1881         int hotcpu = (unsigned long) hcpu;
1882
1883         switch (action) {
1884         case CPU_ONLINE:
1885         case CPU_ONLINE_FROZEN:
1886                 smp_call_function_single(hotcpu, ia64_mca_cmc_vector_adjust,
1887                                          NULL, 1, 0);
1888                 break;
1889         }
1890         return NOTIFY_OK;
1891 }
1892
1893 static struct notifier_block mca_cpu_notifier __cpuinitdata = {
1894         .notifier_call = mca_cpu_callback
1895 };
1896
1897 /*
1898  * ia64_mca_init
1899  *
1900  *  Do all the system level mca specific initialization.
1901  *
1902  *      1. Register spinloop and wakeup request interrupt vectors
1903  *
1904  *      2. Register OS_MCA handler entry point
1905  *
1906  *      3. Register OS_INIT handler entry point
1907  *
1908  *  4. Initialize MCA/CMC/INIT related log buffers maintained by the OS.
1909  *
1910  *  Note that this initialization is done very early before some kernel
1911  *  services are available.
1912  *
1913  *  Inputs  :   None
1914  *
1915  *  Outputs :   None
1916  */
1917 void __init
1918 ia64_mca_init(void)
1919 {
1920         ia64_fptr_t *init_hldlr_ptr_monarch = (ia64_fptr_t *)ia64_os_init_dispatch_monarch;
1921         ia64_fptr_t *init_hldlr_ptr_slave = (ia64_fptr_t *)ia64_os_init_dispatch_slave;
1922         ia64_fptr_t *mca_hldlr_ptr = (ia64_fptr_t *)ia64_os_mca_dispatch;
1923         int i;
1924         s64 rc;
1925         struct ia64_sal_retval isrv;
1926         u64 timeout = IA64_MCA_RENDEZ_TIMEOUT;  /* platform specific */
1927         static struct notifier_block default_init_monarch_nb = {
1928                 .notifier_call = default_monarch_init_process,
1929                 .priority = 0/* we need to notified last */
1930         };
1931
1932         IA64_MCA_DEBUG("%s: begin\n", __func__);
1933
1934         /* Clear the Rendez checkin flag for all cpus */
1935         for(i = 0 ; i < NR_CPUS; i++)
1936                 ia64_mc_info.imi_rendez_checkin[i] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1937
1938         /*
1939          * Register the rendezvous spinloop and wakeup mechanism with SAL
1940          */
1941
1942         /* Register the rendezvous interrupt vector with SAL */
1943         while (1) {
1944                 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_INT,
1945                                               SAL_MC_PARAM_MECHANISM_INT,
1946                                               IA64_MCA_RENDEZ_VECTOR,
1947                                               timeout,
1948                                               SAL_MC_PARAM_RZ_ALWAYS);
1949                 rc = isrv.status;
1950                 if (rc == 0)
1951                         break;
1952                 if (rc == -2) {
1953                         printk(KERN_INFO "Increasing MCA rendezvous timeout from "
1954                                 "%ld to %ld milliseconds\n", timeout, isrv.v0);
1955                         timeout = isrv.v0;
1956                         (void) notify_die(DIE_MCA_NEW_TIMEOUT, "MCA", NULL, timeout, 0, 0);
1957                         continue;
1958                 }
1959                 printk(KERN_ERR "Failed to register rendezvous interrupt "
1960                        "with SAL (status %ld)\n", rc);
1961                 return;
1962         }
1963
1964         /* Register the wakeup interrupt vector with SAL */
1965         isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_WAKEUP,
1966                                       SAL_MC_PARAM_MECHANISM_INT,
1967                                       IA64_MCA_WAKEUP_VECTOR,
1968                                       0, 0);
1969         rc = isrv.status;
1970         if (rc) {
1971                 printk(KERN_ERR "Failed to register wakeup interrupt with SAL "
1972                        "(status %ld)\n", rc);
1973                 return;
1974         }
1975
1976         IA64_MCA_DEBUG("%s: registered MCA rendezvous spinloop and wakeup mech.\n", __func__);
1977
1978         ia64_mc_info.imi_mca_handler        = ia64_tpa(mca_hldlr_ptr->fp);
1979         /*
1980          * XXX - disable SAL checksum by setting size to 0; should be
1981          *      ia64_tpa(ia64_os_mca_dispatch_end) - ia64_tpa(ia64_os_mca_dispatch);
1982          */
1983         ia64_mc_info.imi_mca_handler_size       = 0;
1984
1985         /* Register the os mca handler with SAL */
1986         if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_MCA,
1987                                        ia64_mc_info.imi_mca_handler,
1988                                        ia64_tpa(mca_hldlr_ptr->gp),
1989                                        ia64_mc_info.imi_mca_handler_size,
1990                                        0, 0, 0)))
1991         {
1992                 printk(KERN_ERR "Failed to register OS MCA handler with SAL "
1993                        "(status %ld)\n", rc);
1994                 return;
1995         }
1996
1997         IA64_MCA_DEBUG("%s: registered OS MCA handler with SAL at 0x%lx, gp = 0x%lx\n", __func__,
1998                        ia64_mc_info.imi_mca_handler, ia64_tpa(mca_hldlr_ptr->gp));
1999
2000         /*
2001          * XXX - disable SAL checksum by setting size to 0, should be
2002          * size of the actual init handler in mca_asm.S.
2003          */
2004         ia64_mc_info.imi_monarch_init_handler           = ia64_tpa(init_hldlr_ptr_monarch->fp);
2005         ia64_mc_info.imi_monarch_init_handler_size      = 0;
2006         ia64_mc_info.imi_slave_init_handler             = ia64_tpa(init_hldlr_ptr_slave->fp);
2007         ia64_mc_info.imi_slave_init_handler_size        = 0;
2008
2009         IA64_MCA_DEBUG("%s: OS INIT handler at %lx\n", __func__,
2010                        ia64_mc_info.imi_monarch_init_handler);
2011
2012         /* Register the os init handler with SAL */
2013         if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_INIT,
2014                                        ia64_mc_info.imi_monarch_init_handler,
2015                                        ia64_tpa(ia64_getreg(_IA64_REG_GP)),
2016                                        ia64_mc_info.imi_monarch_init_handler_size,
2017                                        ia64_mc_info.imi_slave_init_handler,
2018                                        ia64_tpa(ia64_getreg(_IA64_REG_GP)),
2019                                        ia64_mc_info.imi_slave_init_handler_size)))
2020         {
2021                 printk(KERN_ERR "Failed to register m/s INIT handlers with SAL "
2022                        "(status %ld)\n", rc);
2023                 return;
2024         }
2025         if (register_die_notifier(&default_init_monarch_nb)) {
2026                 printk(KERN_ERR "Failed to register default monarch INIT process\n");
2027                 return;
2028         }
2029
2030         IA64_MCA_DEBUG("%s: registered OS INIT handler with SAL\n", __func__);
2031
2032         /*
2033          *  Configure the CMCI/P vector and handler. Interrupts for CMC are
2034          *  per-processor, so AP CMC interrupts are setup in smp_callin() (smpboot.c).
2035          */
2036         register_percpu_irq(IA64_CMC_VECTOR, &cmci_irqaction);
2037         register_percpu_irq(IA64_CMCP_VECTOR, &cmcp_irqaction);
2038         ia64_mca_cmc_vector_setup();       /* Setup vector on BSP */
2039
2040         /* Setup the MCA rendezvous interrupt vector */
2041         register_percpu_irq(IA64_MCA_RENDEZ_VECTOR, &mca_rdzv_irqaction);
2042
2043         /* Setup the MCA wakeup interrupt vector */
2044         register_percpu_irq(IA64_MCA_WAKEUP_VECTOR, &mca_wkup_irqaction);
2045
2046 #ifdef CONFIG_ACPI
2047         /* Setup the CPEI/P handler */
2048         register_percpu_irq(IA64_CPEP_VECTOR, &mca_cpep_irqaction);
2049 #endif
2050
2051         /* Initialize the areas set aside by the OS to buffer the
2052          * platform/processor error states for MCA/INIT/CMC
2053          * handling.
2054          */
2055         ia64_log_init(SAL_INFO_TYPE_MCA);
2056         ia64_log_init(SAL_INFO_TYPE_INIT);
2057         ia64_log_init(SAL_INFO_TYPE_CMC);
2058         ia64_log_init(SAL_INFO_TYPE_CPE);
2059
2060         mca_init = 1;
2061         printk(KERN_INFO "MCA related initialization done\n");
2062 }
2063
2064 /*
2065  * ia64_mca_late_init
2066  *
2067  *      Opportunity to setup things that require initialization later
2068  *      than ia64_mca_init.  Setup a timer to poll for CPEs if the
2069  *      platform doesn't support an interrupt driven mechanism.
2070  *
2071  *  Inputs  :   None
2072  *  Outputs :   Status
2073  */
2074 static int __init
2075 ia64_mca_late_init(void)
2076 {
2077         if (!mca_init)
2078                 return 0;
2079
2080         register_hotcpu_notifier(&mca_cpu_notifier);
2081
2082         /* Setup the CMCI/P vector and handler */
2083         init_timer(&cmc_poll_timer);
2084         cmc_poll_timer.function = ia64_mca_cmc_poll;
2085
2086         /* Unmask/enable the vector */
2087         cmc_polling_enabled = 0;
2088         schedule_work(&cmc_enable_work);
2089
2090         IA64_MCA_DEBUG("%s: CMCI/P setup and enabled.\n", __func__);
2091
2092 #ifdef CONFIG_ACPI
2093         /* Setup the CPEI/P vector and handler */
2094         cpe_vector = acpi_request_vector(ACPI_INTERRUPT_CPEI);
2095         init_timer(&cpe_poll_timer);
2096         cpe_poll_timer.function = ia64_mca_cpe_poll;
2097
2098         {
2099                 irq_desc_t *desc;
2100                 unsigned int irq;
2101
2102                 if (cpe_vector >= 0) {
2103                         /* If platform supports CPEI, enable the irq. */
2104                         irq = local_vector_to_irq(cpe_vector);
2105                         if (irq > 0) {
2106                                 cpe_poll_enabled = 0;
2107                                 desc = irq_desc + irq;
2108                                 desc->status |= IRQ_PER_CPU;
2109                                 setup_irq(irq, &mca_cpe_irqaction);
2110                                 ia64_cpe_irq = irq;
2111                                 ia64_mca_register_cpev(cpe_vector);
2112                                 IA64_MCA_DEBUG("%s: CPEI/P setup and enabled.\n",
2113                                         __func__);
2114                                 return 0;
2115                         }
2116                         printk(KERN_ERR "%s: Failed to find irq for CPE "
2117                                         "interrupt handler, vector %d\n",
2118                                         __func__, cpe_vector);
2119                 }
2120                 /* If platform doesn't support CPEI, get the timer going. */
2121                 if (cpe_poll_enabled) {
2122                         ia64_mca_cpe_poll(0UL);
2123                         IA64_MCA_DEBUG("%s: CPEP setup and enabled.\n", __func__);
2124                 }
2125         }
2126 #endif
2127
2128         return 0;
2129 }
2130
2131 device_initcall(ia64_mca_late_init);