[IA64] arch/ia64/kernel/: use time_* macros
[safe/jmp/linux-2.6] / arch / ia64 / kernel / mca.c
1 /*
2  * File:        mca.c
3  * Purpose:     Generic MCA handling layer
4  *
5  * Copyright (C) 2003 Hewlett-Packard Co
6  *      David Mosberger-Tang <davidm@hpl.hp.com>
7  *
8  * Copyright (C) 2002 Dell Inc.
9  * Copyright (C) Matt Domsch <Matt_Domsch@dell.com>
10  *
11  * Copyright (C) 2002 Intel
12  * Copyright (C) Jenna Hall <jenna.s.hall@intel.com>
13  *
14  * Copyright (C) 2001 Intel
15  * Copyright (C) Fred Lewis <frederick.v.lewis@intel.com>
16  *
17  * Copyright (C) 2000 Intel
18  * Copyright (C) Chuck Fleckenstein <cfleck@co.intel.com>
19  *
20  * Copyright (C) 1999, 2004-2008 Silicon Graphics, Inc.
21  * Copyright (C) Vijay Chander <vijay@engr.sgi.com>
22  *
23  * Copyright (C) 2006 FUJITSU LIMITED
24  * Copyright (C) Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
25  *
26  * 2000-03-29 Chuck Fleckenstein <cfleck@co.intel.com>
27  *            Fixed PAL/SAL update issues, began MCA bug fixes, logging issues,
28  *            added min save state dump, added INIT handler.
29  *
30  * 2001-01-03 Fred Lewis <frederick.v.lewis@intel.com>
31  *            Added setup of CMCI and CPEI IRQs, logging of corrected platform
32  *            errors, completed code for logging of corrected & uncorrected
33  *            machine check errors, and updated for conformance with Nov. 2000
34  *            revision of the SAL 3.0 spec.
35  *
36  * 2002-01-04 Jenna Hall <jenna.s.hall@intel.com>
37  *            Aligned MCA stack to 16 bytes, added platform vs. CPU error flag,
38  *            set SAL default return values, changed error record structure to
39  *            linked list, added init call to sal_get_state_info_size().
40  *
41  * 2002-03-25 Matt Domsch <Matt_Domsch@dell.com>
42  *            GUID cleanups.
43  *
44  * 2003-04-15 David Mosberger-Tang <davidm@hpl.hp.com>
45  *            Added INIT backtrace support.
46  *
47  * 2003-12-08 Keith Owens <kaos@sgi.com>
48  *            smp_call_function() must not be called from interrupt context
49  *            (can deadlock on tasklist_lock).
50  *            Use keventd to call smp_call_function().
51  *
52  * 2004-02-01 Keith Owens <kaos@sgi.com>
53  *            Avoid deadlock when using printk() for MCA and INIT records.
54  *            Delete all record printing code, moved to salinfo_decode in user
55  *            space.  Mark variables and functions static where possible.
56  *            Delete dead variables and functions.  Reorder to remove the need
57  *            for forward declarations and to consolidate related code.
58  *
59  * 2005-08-12 Keith Owens <kaos@sgi.com>
60  *            Convert MCA/INIT handlers to use per event stacks and SAL/OS
61  *            state.
62  *
63  * 2005-10-07 Keith Owens <kaos@sgi.com>
64  *            Add notify_die() hooks.
65  *
66  * 2006-09-15 Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
67  *            Add printing support for MCA/INIT.
68  *
69  * 2007-04-27 Russ Anderson <rja@sgi.com>
70  *            Support multiple cpus going through OS_MCA in the same event.
71  */
72 #include <linux/jiffies.h>
73 #include <linux/types.h>
74 #include <linux/init.h>
75 #include <linux/sched.h>
76 #include <linux/interrupt.h>
77 #include <linux/irq.h>
78 #include <linux/bootmem.h>
79 #include <linux/acpi.h>
80 #include <linux/timer.h>
81 #include <linux/module.h>
82 #include <linux/kernel.h>
83 #include <linux/smp.h>
84 #include <linux/workqueue.h>
85 #include <linux/cpumask.h>
86 #include <linux/kdebug.h>
87 #include <linux/cpu.h>
88
89 #include <asm/delay.h>
90 #include <asm/machvec.h>
91 #include <asm/meminit.h>
92 #include <asm/page.h>
93 #include <asm/ptrace.h>
94 #include <asm/system.h>
95 #include <asm/sal.h>
96 #include <asm/mca.h>
97 #include <asm/kexec.h>
98
99 #include <asm/irq.h>
100 #include <asm/hw_irq.h>
101
102 #include "mca_drv.h"
103 #include "entry.h"
104
105 #if defined(IA64_MCA_DEBUG_INFO)
106 # define IA64_MCA_DEBUG(fmt...) printk(fmt)
107 #else
108 # define IA64_MCA_DEBUG(fmt...)
109 #endif
110
111 /* Used by mca_asm.S */
112 DEFINE_PER_CPU(u64, ia64_mca_data); /* == __per_cpu_mca[smp_processor_id()] */
113 DEFINE_PER_CPU(u64, ia64_mca_per_cpu_pte); /* PTE to map per-CPU area */
114 DEFINE_PER_CPU(u64, ia64_mca_pal_pte);      /* PTE to map PAL code */
115 DEFINE_PER_CPU(u64, ia64_mca_pal_base);    /* vaddr PAL code granule */
116
117 unsigned long __per_cpu_mca[NR_CPUS];
118
119 /* In mca_asm.S */
120 extern void                     ia64_os_init_dispatch_monarch (void);
121 extern void                     ia64_os_init_dispatch_slave (void);
122
123 static int monarch_cpu = -1;
124
125 static ia64_mc_info_t           ia64_mc_info;
126
127 #define MAX_CPE_POLL_INTERVAL (15*60*HZ) /* 15 minutes */
128 #define MIN_CPE_POLL_INTERVAL (2*60*HZ)  /* 2 minutes */
129 #define CMC_POLL_INTERVAL     (1*60*HZ)  /* 1 minute */
130 #define CPE_HISTORY_LENGTH    5
131 #define CMC_HISTORY_LENGTH    5
132
133 #ifdef CONFIG_ACPI
134 static struct timer_list cpe_poll_timer;
135 #endif
136 static struct timer_list cmc_poll_timer;
137 /*
138  * This variable tells whether we are currently in polling mode.
139  * Start with this in the wrong state so we won't play w/ timers
140  * before the system is ready.
141  */
142 static int cmc_polling_enabled = 1;
143
144 /*
145  * Clearing this variable prevents CPE polling from getting activated
146  * in mca_late_init.  Use it if your system doesn't provide a CPEI,
147  * but encounters problems retrieving CPE logs.  This should only be
148  * necessary for debugging.
149  */
150 static int cpe_poll_enabled = 1;
151
152 extern void salinfo_log_wakeup(int type, u8 *buffer, u64 size, int irqsafe);
153
154 static int mca_init __initdata;
155
156 /*
157  * limited & delayed printing support for MCA/INIT handler
158  */
159
160 #define mprintk(fmt...) ia64_mca_printk(fmt)
161
162 #define MLOGBUF_SIZE (512+256*NR_CPUS)
163 #define MLOGBUF_MSGMAX 256
164 static char mlogbuf[MLOGBUF_SIZE];
165 static DEFINE_SPINLOCK(mlogbuf_wlock);  /* mca context only */
166 static DEFINE_SPINLOCK(mlogbuf_rlock);  /* normal context only */
167 static unsigned long mlogbuf_start;
168 static unsigned long mlogbuf_end;
169 static unsigned int mlogbuf_finished = 0;
170 static unsigned long mlogbuf_timestamp = 0;
171
172 static int loglevel_save = -1;
173 #define BREAK_LOGLEVEL(__console_loglevel)              \
174         oops_in_progress = 1;                           \
175         if (loglevel_save < 0)                          \
176                 loglevel_save = __console_loglevel;     \
177         __console_loglevel = 15;
178
179 #define RESTORE_LOGLEVEL(__console_loglevel)            \
180         if (loglevel_save >= 0) {                       \
181                 __console_loglevel = loglevel_save;     \
182                 loglevel_save = -1;                     \
183         }                                               \
184         mlogbuf_finished = 0;                           \
185         oops_in_progress = 0;
186
187 /*
188  * Push messages into buffer, print them later if not urgent.
189  */
190 void ia64_mca_printk(const char *fmt, ...)
191 {
192         va_list args;
193         int printed_len;
194         char temp_buf[MLOGBUF_MSGMAX];
195         char *p;
196
197         va_start(args, fmt);
198         printed_len = vscnprintf(temp_buf, sizeof(temp_buf), fmt, args);
199         va_end(args);
200
201         /* Copy the output into mlogbuf */
202         if (oops_in_progress) {
203                 /* mlogbuf was abandoned, use printk directly instead. */
204                 printk(temp_buf);
205         } else {
206                 spin_lock(&mlogbuf_wlock);
207                 for (p = temp_buf; *p; p++) {
208                         unsigned long next = (mlogbuf_end + 1) % MLOGBUF_SIZE;
209                         if (next != mlogbuf_start) {
210                                 mlogbuf[mlogbuf_end] = *p;
211                                 mlogbuf_end = next;
212                         } else {
213                                 /* buffer full */
214                                 break;
215                         }
216                 }
217                 mlogbuf[mlogbuf_end] = '\0';
218                 spin_unlock(&mlogbuf_wlock);
219         }
220 }
221 EXPORT_SYMBOL(ia64_mca_printk);
222
223 /*
224  * Print buffered messages.
225  *  NOTE: call this after returning normal context. (ex. from salinfod)
226  */
227 void ia64_mlogbuf_dump(void)
228 {
229         char temp_buf[MLOGBUF_MSGMAX];
230         char *p;
231         unsigned long index;
232         unsigned long flags;
233         unsigned int printed_len;
234
235         /* Get output from mlogbuf */
236         while (mlogbuf_start != mlogbuf_end) {
237                 temp_buf[0] = '\0';
238                 p = temp_buf;
239                 printed_len = 0;
240
241                 spin_lock_irqsave(&mlogbuf_rlock, flags);
242
243                 index = mlogbuf_start;
244                 while (index != mlogbuf_end) {
245                         *p = mlogbuf[index];
246                         index = (index + 1) % MLOGBUF_SIZE;
247                         if (!*p)
248                                 break;
249                         p++;
250                         if (++printed_len >= MLOGBUF_MSGMAX - 1)
251                                 break;
252                 }
253                 *p = '\0';
254                 if (temp_buf[0])
255                         printk(temp_buf);
256                 mlogbuf_start = index;
257
258                 mlogbuf_timestamp = 0;
259                 spin_unlock_irqrestore(&mlogbuf_rlock, flags);
260         }
261 }
262 EXPORT_SYMBOL(ia64_mlogbuf_dump);
263
264 /*
265  * Call this if system is going to down or if immediate flushing messages to
266  * console is required. (ex. recovery was failed, crash dump is going to be
267  * invoked, long-wait rendezvous etc.)
268  *  NOTE: this should be called from monarch.
269  */
270 static void ia64_mlogbuf_finish(int wait)
271 {
272         BREAK_LOGLEVEL(console_loglevel);
273
274         spin_lock_init(&mlogbuf_rlock);
275         ia64_mlogbuf_dump();
276         printk(KERN_EMERG "mlogbuf_finish: printing switched to urgent mode, "
277                 "MCA/INIT might be dodgy or fail.\n");
278
279         if (!wait)
280                 return;
281
282         /* wait for console */
283         printk("Delaying for 5 seconds...\n");
284         udelay(5*1000000);
285
286         mlogbuf_finished = 1;
287 }
288
289 /*
290  * Print buffered messages from INIT context.
291  */
292 static void ia64_mlogbuf_dump_from_init(void)
293 {
294         if (mlogbuf_finished)
295                 return;
296
297         if (mlogbuf_timestamp &&
298                         time_before(jiffies, mlogbuf_timestamp + 30 * HZ)) {
299                 printk(KERN_ERR "INIT: mlogbuf_dump is interrupted by INIT "
300                         " and the system seems to be messed up.\n");
301                 ia64_mlogbuf_finish(0);
302                 return;
303         }
304
305         if (!spin_trylock(&mlogbuf_rlock)) {
306                 printk(KERN_ERR "INIT: mlogbuf_dump is interrupted by INIT. "
307                         "Generated messages other than stack dump will be "
308                         "buffered to mlogbuf and will be printed later.\n");
309                 printk(KERN_ERR "INIT: If messages would not printed after "
310                         "this INIT, wait 30sec and assert INIT again.\n");
311                 if (!mlogbuf_timestamp)
312                         mlogbuf_timestamp = jiffies;
313                 return;
314         }
315         spin_unlock(&mlogbuf_rlock);
316         ia64_mlogbuf_dump();
317 }
318
319 static void inline
320 ia64_mca_spin(const char *func)
321 {
322         if (monarch_cpu == smp_processor_id())
323                 ia64_mlogbuf_finish(0);
324         mprintk(KERN_EMERG "%s: spinning here, not returning to SAL\n", func);
325         while (1)
326                 cpu_relax();
327 }
328 /*
329  * IA64_MCA log support
330  */
331 #define IA64_MAX_LOGS           2       /* Double-buffering for nested MCAs */
332 #define IA64_MAX_LOG_TYPES      4   /* MCA, INIT, CMC, CPE */
333
334 typedef struct ia64_state_log_s
335 {
336         spinlock_t      isl_lock;
337         int             isl_index;
338         unsigned long   isl_count;
339         ia64_err_rec_t  *isl_log[IA64_MAX_LOGS]; /* need space to store header + error log */
340 } ia64_state_log_t;
341
342 static ia64_state_log_t ia64_state_log[IA64_MAX_LOG_TYPES];
343
344 #define IA64_LOG_ALLOCATE(it, size) \
345         {ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)] = \
346                 (ia64_err_rec_t *)alloc_bootmem(size); \
347         ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)] = \
348                 (ia64_err_rec_t *)alloc_bootmem(size);}
349 #define IA64_LOG_LOCK_INIT(it) spin_lock_init(&ia64_state_log[it].isl_lock)
350 #define IA64_LOG_LOCK(it)      spin_lock_irqsave(&ia64_state_log[it].isl_lock, s)
351 #define IA64_LOG_UNLOCK(it)    spin_unlock_irqrestore(&ia64_state_log[it].isl_lock,s)
352 #define IA64_LOG_NEXT_INDEX(it)    ia64_state_log[it].isl_index
353 #define IA64_LOG_CURR_INDEX(it)    1 - ia64_state_log[it].isl_index
354 #define IA64_LOG_INDEX_INC(it) \
355     {ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index; \
356     ia64_state_log[it].isl_count++;}
357 #define IA64_LOG_INDEX_DEC(it) \
358     ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index
359 #define IA64_LOG_NEXT_BUFFER(it)   (void *)((ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)]))
360 #define IA64_LOG_CURR_BUFFER(it)   (void *)((ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)]))
361 #define IA64_LOG_COUNT(it)         ia64_state_log[it].isl_count
362
363 /*
364  * ia64_log_init
365  *      Reset the OS ia64 log buffer
366  * Inputs   :   info_type   (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
367  * Outputs      :       None
368  */
369 static void __init
370 ia64_log_init(int sal_info_type)
371 {
372         u64     max_size = 0;
373
374         IA64_LOG_NEXT_INDEX(sal_info_type) = 0;
375         IA64_LOG_LOCK_INIT(sal_info_type);
376
377         // SAL will tell us the maximum size of any error record of this type
378         max_size = ia64_sal_get_state_info_size(sal_info_type);
379         if (!max_size)
380                 /* alloc_bootmem() doesn't like zero-sized allocations! */
381                 return;
382
383         // set up OS data structures to hold error info
384         IA64_LOG_ALLOCATE(sal_info_type, max_size);
385         memset(IA64_LOG_CURR_BUFFER(sal_info_type), 0, max_size);
386         memset(IA64_LOG_NEXT_BUFFER(sal_info_type), 0, max_size);
387 }
388
389 /*
390  * ia64_log_get
391  *
392  *      Get the current MCA log from SAL and copy it into the OS log buffer.
393  *
394  *  Inputs  :   info_type   (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
395  *              irq_safe    whether you can use printk at this point
396  *  Outputs :   size        (total record length)
397  *              *buffer     (ptr to error record)
398  *
399  */
400 static u64
401 ia64_log_get(int sal_info_type, u8 **buffer, int irq_safe)
402 {
403         sal_log_record_header_t     *log_buffer;
404         u64                         total_len = 0;
405         unsigned long               s;
406
407         IA64_LOG_LOCK(sal_info_type);
408
409         /* Get the process state information */
410         log_buffer = IA64_LOG_NEXT_BUFFER(sal_info_type);
411
412         total_len = ia64_sal_get_state_info(sal_info_type, (u64 *)log_buffer);
413
414         if (total_len) {
415                 IA64_LOG_INDEX_INC(sal_info_type);
416                 IA64_LOG_UNLOCK(sal_info_type);
417                 if (irq_safe) {
418                         IA64_MCA_DEBUG("%s: SAL error record type %d retrieved. Record length = %ld\n",
419                                        __func__, sal_info_type, total_len);
420                 }
421                 *buffer = (u8 *) log_buffer;
422                 return total_len;
423         } else {
424                 IA64_LOG_UNLOCK(sal_info_type);
425                 return 0;
426         }
427 }
428
429 /*
430  *  ia64_mca_log_sal_error_record
431  *
432  *  This function retrieves a specified error record type from SAL
433  *  and wakes up any processes waiting for error records.
434  *
435  *  Inputs  :   sal_info_type   (Type of error record MCA/CMC/CPE)
436  *              FIXME: remove MCA and irq_safe.
437  */
438 static void
439 ia64_mca_log_sal_error_record(int sal_info_type)
440 {
441         u8 *buffer;
442         sal_log_record_header_t *rh;
443         u64 size;
444         int irq_safe = sal_info_type != SAL_INFO_TYPE_MCA;
445 #ifdef IA64_MCA_DEBUG_INFO
446         static const char * const rec_name[] = { "MCA", "INIT", "CMC", "CPE" };
447 #endif
448
449         size = ia64_log_get(sal_info_type, &buffer, irq_safe);
450         if (!size)
451                 return;
452
453         salinfo_log_wakeup(sal_info_type, buffer, size, irq_safe);
454
455         if (irq_safe)
456                 IA64_MCA_DEBUG("CPU %d: SAL log contains %s error record\n",
457                         smp_processor_id(),
458                         sal_info_type < ARRAY_SIZE(rec_name) ? rec_name[sal_info_type] : "UNKNOWN");
459
460         /* Clear logs from corrected errors in case there's no user-level logger */
461         rh = (sal_log_record_header_t *)buffer;
462         if (rh->severity == sal_log_severity_corrected)
463                 ia64_sal_clear_state_info(sal_info_type);
464 }
465
466 /*
467  * search_mca_table
468  *  See if the MCA surfaced in an instruction range
469  *  that has been tagged as recoverable.
470  *
471  *  Inputs
472  *      first   First address range to check
473  *      last    Last address range to check
474  *      ip      Instruction pointer, address we are looking for
475  *
476  * Return value:
477  *      1 on Success (in the table)/ 0 on Failure (not in the  table)
478  */
479 int
480 search_mca_table (const struct mca_table_entry *first,
481                 const struct mca_table_entry *last,
482                 unsigned long ip)
483 {
484         const struct mca_table_entry *curr;
485         u64 curr_start, curr_end;
486
487         curr = first;
488         while (curr <= last) {
489                 curr_start = (u64) &curr->start_addr + curr->start_addr;
490                 curr_end = (u64) &curr->end_addr + curr->end_addr;
491
492                 if ((ip >= curr_start) && (ip <= curr_end)) {
493                         return 1;
494                 }
495                 curr++;
496         }
497         return 0;
498 }
499
500 /* Given an address, look for it in the mca tables. */
501 int mca_recover_range(unsigned long addr)
502 {
503         extern struct mca_table_entry __start___mca_table[];
504         extern struct mca_table_entry __stop___mca_table[];
505
506         return search_mca_table(__start___mca_table, __stop___mca_table-1, addr);
507 }
508 EXPORT_SYMBOL_GPL(mca_recover_range);
509
510 #ifdef CONFIG_ACPI
511
512 int cpe_vector = -1;
513 int ia64_cpe_irq = -1;
514
515 static irqreturn_t
516 ia64_mca_cpe_int_handler (int cpe_irq, void *arg)
517 {
518         static unsigned long    cpe_history[CPE_HISTORY_LENGTH];
519         static int              index;
520         static DEFINE_SPINLOCK(cpe_history_lock);
521
522         IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
523                        __func__, cpe_irq, smp_processor_id());
524
525         /* SAL spec states this should run w/ interrupts enabled */
526         local_irq_enable();
527
528         spin_lock(&cpe_history_lock);
529         if (!cpe_poll_enabled && cpe_vector >= 0) {
530
531                 int i, count = 1; /* we know 1 happened now */
532                 unsigned long now = jiffies;
533
534                 for (i = 0; i < CPE_HISTORY_LENGTH; i++) {
535                         if (now - cpe_history[i] <= HZ)
536                                 count++;
537                 }
538
539                 IA64_MCA_DEBUG(KERN_INFO "CPE threshold %d/%d\n", count, CPE_HISTORY_LENGTH);
540                 if (count >= CPE_HISTORY_LENGTH) {
541
542                         cpe_poll_enabled = 1;
543                         spin_unlock(&cpe_history_lock);
544                         disable_irq_nosync(local_vector_to_irq(IA64_CPE_VECTOR));
545
546                         /*
547                          * Corrected errors will still be corrected, but
548                          * make sure there's a log somewhere that indicates
549                          * something is generating more than we can handle.
550                          */
551                         printk(KERN_WARNING "WARNING: Switching to polling CPE handler; error records may be lost\n");
552
553                         mod_timer(&cpe_poll_timer, jiffies + MIN_CPE_POLL_INTERVAL);
554
555                         /* lock already released, get out now */
556                         goto out;
557                 } else {
558                         cpe_history[index++] = now;
559                         if (index == CPE_HISTORY_LENGTH)
560                                 index = 0;
561                 }
562         }
563         spin_unlock(&cpe_history_lock);
564 out:
565         /* Get the CPE error record and log it */
566         ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CPE);
567
568         return IRQ_HANDLED;
569 }
570
571 #endif /* CONFIG_ACPI */
572
573 #ifdef CONFIG_ACPI
574 /*
575  * ia64_mca_register_cpev
576  *
577  *  Register the corrected platform error vector with SAL.
578  *
579  *  Inputs
580  *      cpev        Corrected Platform Error Vector number
581  *
582  *  Outputs
583  *      None
584  */
585 void
586 ia64_mca_register_cpev (int cpev)
587 {
588         /* Register the CPE interrupt vector with SAL */
589         struct ia64_sal_retval isrv;
590
591         isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_CPE_INT, SAL_MC_PARAM_MECHANISM_INT, cpev, 0, 0);
592         if (isrv.status) {
593                 printk(KERN_ERR "Failed to register Corrected Platform "
594                        "Error interrupt vector with SAL (status %ld)\n", isrv.status);
595                 return;
596         }
597
598         IA64_MCA_DEBUG("%s: corrected platform error "
599                        "vector %#x registered\n", __func__, cpev);
600 }
601 #endif /* CONFIG_ACPI */
602
603 /*
604  * ia64_mca_cmc_vector_setup
605  *
606  *  Setup the corrected machine check vector register in the processor.
607  *  (The interrupt is masked on boot. ia64_mca_late_init unmask this.)
608  *  This function is invoked on a per-processor basis.
609  *
610  * Inputs
611  *      None
612  *
613  * Outputs
614  *      None
615  */
616 void __cpuinit
617 ia64_mca_cmc_vector_setup (void)
618 {
619         cmcv_reg_t      cmcv;
620
621         cmcv.cmcv_regval        = 0;
622         cmcv.cmcv_mask          = 1;        /* Mask/disable interrupt at first */
623         cmcv.cmcv_vector        = IA64_CMC_VECTOR;
624         ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
625
626         IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x registered.\n",
627                        __func__, smp_processor_id(), IA64_CMC_VECTOR);
628
629         IA64_MCA_DEBUG("%s: CPU %d CMCV = %#016lx\n",
630                        __func__, smp_processor_id(), ia64_getreg(_IA64_REG_CR_CMCV));
631 }
632
633 /*
634  * ia64_mca_cmc_vector_disable
635  *
636  *  Mask the corrected machine check vector register in the processor.
637  *  This function is invoked on a per-processor basis.
638  *
639  * Inputs
640  *      dummy(unused)
641  *
642  * Outputs
643  *      None
644  */
645 static void
646 ia64_mca_cmc_vector_disable (void *dummy)
647 {
648         cmcv_reg_t      cmcv;
649
650         cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV);
651
652         cmcv.cmcv_mask = 1; /* Mask/disable interrupt */
653         ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
654
655         IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x disabled.\n",
656                        __func__, smp_processor_id(), cmcv.cmcv_vector);
657 }
658
659 /*
660  * ia64_mca_cmc_vector_enable
661  *
662  *  Unmask the corrected machine check vector register in the processor.
663  *  This function is invoked on a per-processor basis.
664  *
665  * Inputs
666  *      dummy(unused)
667  *
668  * Outputs
669  *      None
670  */
671 static void
672 ia64_mca_cmc_vector_enable (void *dummy)
673 {
674         cmcv_reg_t      cmcv;
675
676         cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV);
677
678         cmcv.cmcv_mask = 0; /* Unmask/enable interrupt */
679         ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
680
681         IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x enabled.\n",
682                        __func__, smp_processor_id(), cmcv.cmcv_vector);
683 }
684
685 /*
686  * ia64_mca_cmc_vector_disable_keventd
687  *
688  * Called via keventd (smp_call_function() is not safe in interrupt context) to
689  * disable the cmc interrupt vector.
690  */
691 static void
692 ia64_mca_cmc_vector_disable_keventd(struct work_struct *unused)
693 {
694         on_each_cpu(ia64_mca_cmc_vector_disable, NULL, 1, 0);
695 }
696
697 /*
698  * ia64_mca_cmc_vector_enable_keventd
699  *
700  * Called via keventd (smp_call_function() is not safe in interrupt context) to
701  * enable the cmc interrupt vector.
702  */
703 static void
704 ia64_mca_cmc_vector_enable_keventd(struct work_struct *unused)
705 {
706         on_each_cpu(ia64_mca_cmc_vector_enable, NULL, 1, 0);
707 }
708
709 /*
710  * ia64_mca_wakeup
711  *
712  *      Send an inter-cpu interrupt to wake-up a particular cpu.
713  *
714  *  Inputs  :   cpuid
715  *  Outputs :   None
716  */
717 static void
718 ia64_mca_wakeup(int cpu)
719 {
720         platform_send_ipi(cpu, IA64_MCA_WAKEUP_VECTOR, IA64_IPI_DM_INT, 0);
721 }
722
723 /*
724  * ia64_mca_wakeup_all
725  *
726  *      Wakeup all the slave cpus which have rendez'ed previously.
727  *
728  *  Inputs  :   None
729  *  Outputs :   None
730  */
731 static void
732 ia64_mca_wakeup_all(void)
733 {
734         int cpu;
735
736         /* Clear the Rendez checkin flag for all cpus */
737         for_each_online_cpu(cpu) {
738                 if (ia64_mc_info.imi_rendez_checkin[cpu] == IA64_MCA_RENDEZ_CHECKIN_DONE)
739                         ia64_mca_wakeup(cpu);
740         }
741
742 }
743
744 /*
745  * ia64_mca_rendez_interrupt_handler
746  *
747  *      This is handler used to put slave processors into spinloop
748  *      while the monarch processor does the mca handling and later
749  *      wake each slave up once the monarch is done.  The state
750  *      IA64_MCA_RENDEZ_CHECKIN_DONE indicates the cpu is rendez'ed
751  *      in SAL.  The state IA64_MCA_RENDEZ_CHECKIN_NOTDONE indicates
752  *      the cpu has come out of OS rendezvous.
753  *
754  *  Inputs  :   None
755  *  Outputs :   None
756  */
757 static irqreturn_t
758 ia64_mca_rendez_int_handler(int rendez_irq, void *arg)
759 {
760         unsigned long flags;
761         int cpu = smp_processor_id();
762         struct ia64_mca_notify_die nd =
763                 { .sos = NULL, .monarch_cpu = &monarch_cpu };
764
765         /* Mask all interrupts */
766         local_irq_save(flags);
767         if (notify_die(DIE_MCA_RENDZVOUS_ENTER, "MCA", get_irq_regs(),
768                        (long)&nd, 0, 0) == NOTIFY_STOP)
769                 ia64_mca_spin(__func__);
770
771         ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_DONE;
772         /* Register with the SAL monarch that the slave has
773          * reached SAL
774          */
775         ia64_sal_mc_rendez();
776
777         if (notify_die(DIE_MCA_RENDZVOUS_PROCESS, "MCA", get_irq_regs(),
778                        (long)&nd, 0, 0) == NOTIFY_STOP)
779                 ia64_mca_spin(__func__);
780
781         /* Wait for the monarch cpu to exit. */
782         while (monarch_cpu != -1)
783                cpu_relax();     /* spin until monarch leaves */
784
785         if (notify_die(DIE_MCA_RENDZVOUS_LEAVE, "MCA", get_irq_regs(),
786                        (long)&nd, 0, 0) == NOTIFY_STOP)
787                 ia64_mca_spin(__func__);
788
789         ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
790         /* Enable all interrupts */
791         local_irq_restore(flags);
792         return IRQ_HANDLED;
793 }
794
795 /*
796  * ia64_mca_wakeup_int_handler
797  *
798  *      The interrupt handler for processing the inter-cpu interrupt to the
799  *      slave cpu which was spinning in the rendez loop.
800  *      Since this spinning is done by turning off the interrupts and
801  *      polling on the wakeup-interrupt bit in the IRR, there is
802  *      nothing useful to be done in the handler.
803  *
804  *  Inputs  :   wakeup_irq  (Wakeup-interrupt bit)
805  *      arg             (Interrupt handler specific argument)
806  *  Outputs :   None
807  *
808  */
809 static irqreturn_t
810 ia64_mca_wakeup_int_handler(int wakeup_irq, void *arg)
811 {
812         return IRQ_HANDLED;
813 }
814
815 /* Function pointer for extra MCA recovery */
816 int (*ia64_mca_ucmc_extension)
817         (void*,struct ia64_sal_os_state*)
818         = NULL;
819
820 int
821 ia64_reg_MCA_extension(int (*fn)(void *, struct ia64_sal_os_state *))
822 {
823         if (ia64_mca_ucmc_extension)
824                 return 1;
825
826         ia64_mca_ucmc_extension = fn;
827         return 0;
828 }
829
830 void
831 ia64_unreg_MCA_extension(void)
832 {
833         if (ia64_mca_ucmc_extension)
834                 ia64_mca_ucmc_extension = NULL;
835 }
836
837 EXPORT_SYMBOL(ia64_reg_MCA_extension);
838 EXPORT_SYMBOL(ia64_unreg_MCA_extension);
839
840
841 static inline void
842 copy_reg(const u64 *fr, u64 fnat, u64 *tr, u64 *tnat)
843 {
844         u64 fslot, tslot, nat;
845         *tr = *fr;
846         fslot = ((unsigned long)fr >> 3) & 63;
847         tslot = ((unsigned long)tr >> 3) & 63;
848         *tnat &= ~(1UL << tslot);
849         nat = (fnat >> fslot) & 1;
850         *tnat |= (nat << tslot);
851 }
852
853 /* Change the comm field on the MCA/INT task to include the pid that
854  * was interrupted, it makes for easier debugging.  If that pid was 0
855  * (swapper or nested MCA/INIT) then use the start of the previous comm
856  * field suffixed with its cpu.
857  */
858
859 static void
860 ia64_mca_modify_comm(const struct task_struct *previous_current)
861 {
862         char *p, comm[sizeof(current->comm)];
863         if (previous_current->pid)
864                 snprintf(comm, sizeof(comm), "%s %d",
865                         current->comm, previous_current->pid);
866         else {
867                 int l;
868                 if ((p = strchr(previous_current->comm, ' ')))
869                         l = p - previous_current->comm;
870                 else
871                         l = strlen(previous_current->comm);
872                 snprintf(comm, sizeof(comm), "%s %*s %d",
873                         current->comm, l, previous_current->comm,
874                         task_thread_info(previous_current)->cpu);
875         }
876         memcpy(current->comm, comm, sizeof(current->comm));
877 }
878
879 /* On entry to this routine, we are running on the per cpu stack, see
880  * mca_asm.h.  The original stack has not been touched by this event.  Some of
881  * the original stack's registers will be in the RBS on this stack.  This stack
882  * also contains a partial pt_regs and switch_stack, the rest of the data is in
883  * PAL minstate.
884  *
885  * The first thing to do is modify the original stack to look like a blocked
886  * task so we can run backtrace on the original task.  Also mark the per cpu
887  * stack as current to ensure that we use the correct task state, it also means
888  * that we can do backtrace on the MCA/INIT handler code itself.
889  */
890
891 static struct task_struct *
892 ia64_mca_modify_original_stack(struct pt_regs *regs,
893                 const struct switch_stack *sw,
894                 struct ia64_sal_os_state *sos,
895                 const char *type)
896 {
897         char *p;
898         ia64_va va;
899         extern char ia64_leave_kernel[];        /* Need asm address, not function descriptor */
900         const pal_min_state_area_t *ms = sos->pal_min_state;
901         struct task_struct *previous_current;
902         struct pt_regs *old_regs;
903         struct switch_stack *old_sw;
904         unsigned size = sizeof(struct pt_regs) +
905                         sizeof(struct switch_stack) + 16;
906         u64 *old_bspstore, *old_bsp;
907         u64 *new_bspstore, *new_bsp;
908         u64 old_unat, old_rnat, new_rnat, nat;
909         u64 slots, loadrs = regs->loadrs;
910         u64 r12 = ms->pmsa_gr[12-1], r13 = ms->pmsa_gr[13-1];
911         u64 ar_bspstore = regs->ar_bspstore;
912         u64 ar_bsp = regs->ar_bspstore + (loadrs >> 16);
913         const u64 *bank;
914         const char *msg;
915         int cpu = smp_processor_id();
916
917         previous_current = curr_task(cpu);
918         set_curr_task(cpu, current);
919         if ((p = strchr(current->comm, ' ')))
920                 *p = '\0';
921
922         /* Best effort attempt to cope with MCA/INIT delivered while in
923          * physical mode.
924          */
925         regs->cr_ipsr = ms->pmsa_ipsr;
926         if (ia64_psr(regs)->dt == 0) {
927                 va.l = r12;
928                 if (va.f.reg == 0) {
929                         va.f.reg = 7;
930                         r12 = va.l;
931                 }
932                 va.l = r13;
933                 if (va.f.reg == 0) {
934                         va.f.reg = 7;
935                         r13 = va.l;
936                 }
937         }
938         if (ia64_psr(regs)->rt == 0) {
939                 va.l = ar_bspstore;
940                 if (va.f.reg == 0) {
941                         va.f.reg = 7;
942                         ar_bspstore = va.l;
943                 }
944                 va.l = ar_bsp;
945                 if (va.f.reg == 0) {
946                         va.f.reg = 7;
947                         ar_bsp = va.l;
948                 }
949         }
950
951         /* mca_asm.S ia64_old_stack() cannot assume that the dirty registers
952          * have been copied to the old stack, the old stack may fail the
953          * validation tests below.  So ia64_old_stack() must restore the dirty
954          * registers from the new stack.  The old and new bspstore probably
955          * have different alignments, so loadrs calculated on the old bsp
956          * cannot be used to restore from the new bsp.  Calculate a suitable
957          * loadrs for the new stack and save it in the new pt_regs, where
958          * ia64_old_stack() can get it.
959          */
960         old_bspstore = (u64 *)ar_bspstore;
961         old_bsp = (u64 *)ar_bsp;
962         slots = ia64_rse_num_regs(old_bspstore, old_bsp);
963         new_bspstore = (u64 *)((u64)current + IA64_RBS_OFFSET);
964         new_bsp = ia64_rse_skip_regs(new_bspstore, slots);
965         regs->loadrs = (new_bsp - new_bspstore) * 8 << 16;
966
967         /* Verify the previous stack state before we change it */
968         if (user_mode(regs)) {
969                 msg = "occurred in user space";
970                 /* previous_current is guaranteed to be valid when the task was
971                  * in user space, so ...
972                  */
973                 ia64_mca_modify_comm(previous_current);
974                 goto no_mod;
975         }
976
977         if (r13 != sos->prev_IA64_KR_CURRENT) {
978                 msg = "inconsistent previous current and r13";
979                 goto no_mod;
980         }
981
982         if (!mca_recover_range(ms->pmsa_iip)) {
983                 if ((r12 - r13) >= KERNEL_STACK_SIZE) {
984                         msg = "inconsistent r12 and r13";
985                         goto no_mod;
986                 }
987                 if ((ar_bspstore - r13) >= KERNEL_STACK_SIZE) {
988                         msg = "inconsistent ar.bspstore and r13";
989                         goto no_mod;
990                 }
991                 va.p = old_bspstore;
992                 if (va.f.reg < 5) {
993                         msg = "old_bspstore is in the wrong region";
994                         goto no_mod;
995                 }
996                 if ((ar_bsp - r13) >= KERNEL_STACK_SIZE) {
997                         msg = "inconsistent ar.bsp and r13";
998                         goto no_mod;
999                 }
1000                 size += (ia64_rse_skip_regs(old_bspstore, slots) - old_bspstore) * 8;
1001                 if (ar_bspstore + size > r12) {
1002                         msg = "no room for blocked state";
1003                         goto no_mod;
1004                 }
1005         }
1006
1007         ia64_mca_modify_comm(previous_current);
1008
1009         /* Make the original task look blocked.  First stack a struct pt_regs,
1010          * describing the state at the time of interrupt.  mca_asm.S built a
1011          * partial pt_regs, copy it and fill in the blanks using minstate.
1012          */
1013         p = (char *)r12 - sizeof(*regs);
1014         old_regs = (struct pt_regs *)p;
1015         memcpy(old_regs, regs, sizeof(*regs));
1016         /* If ipsr.ic then use pmsa_{iip,ipsr,ifs}, else use
1017          * pmsa_{xip,xpsr,xfs}
1018          */
1019         if (ia64_psr(regs)->ic) {
1020                 old_regs->cr_iip = ms->pmsa_iip;
1021                 old_regs->cr_ipsr = ms->pmsa_ipsr;
1022                 old_regs->cr_ifs = ms->pmsa_ifs;
1023         } else {
1024                 old_regs->cr_iip = ms->pmsa_xip;
1025                 old_regs->cr_ipsr = ms->pmsa_xpsr;
1026                 old_regs->cr_ifs = ms->pmsa_xfs;
1027         }
1028         old_regs->pr = ms->pmsa_pr;
1029         old_regs->b0 = ms->pmsa_br0;
1030         old_regs->loadrs = loadrs;
1031         old_regs->ar_rsc = ms->pmsa_rsc;
1032         old_unat = old_regs->ar_unat;
1033         copy_reg(&ms->pmsa_gr[1-1], ms->pmsa_nat_bits, &old_regs->r1, &old_unat);
1034         copy_reg(&ms->pmsa_gr[2-1], ms->pmsa_nat_bits, &old_regs->r2, &old_unat);
1035         copy_reg(&ms->pmsa_gr[3-1], ms->pmsa_nat_bits, &old_regs->r3, &old_unat);
1036         copy_reg(&ms->pmsa_gr[8-1], ms->pmsa_nat_bits, &old_regs->r8, &old_unat);
1037         copy_reg(&ms->pmsa_gr[9-1], ms->pmsa_nat_bits, &old_regs->r9, &old_unat);
1038         copy_reg(&ms->pmsa_gr[10-1], ms->pmsa_nat_bits, &old_regs->r10, &old_unat);
1039         copy_reg(&ms->pmsa_gr[11-1], ms->pmsa_nat_bits, &old_regs->r11, &old_unat);
1040         copy_reg(&ms->pmsa_gr[12-1], ms->pmsa_nat_bits, &old_regs->r12, &old_unat);
1041         copy_reg(&ms->pmsa_gr[13-1], ms->pmsa_nat_bits, &old_regs->r13, &old_unat);
1042         copy_reg(&ms->pmsa_gr[14-1], ms->pmsa_nat_bits, &old_regs->r14, &old_unat);
1043         copy_reg(&ms->pmsa_gr[15-1], ms->pmsa_nat_bits, &old_regs->r15, &old_unat);
1044         if (ia64_psr(old_regs)->bn)
1045                 bank = ms->pmsa_bank1_gr;
1046         else
1047                 bank = ms->pmsa_bank0_gr;
1048         copy_reg(&bank[16-16], ms->pmsa_nat_bits, &old_regs->r16, &old_unat);
1049         copy_reg(&bank[17-16], ms->pmsa_nat_bits, &old_regs->r17, &old_unat);
1050         copy_reg(&bank[18-16], ms->pmsa_nat_bits, &old_regs->r18, &old_unat);
1051         copy_reg(&bank[19-16], ms->pmsa_nat_bits, &old_regs->r19, &old_unat);
1052         copy_reg(&bank[20-16], ms->pmsa_nat_bits, &old_regs->r20, &old_unat);
1053         copy_reg(&bank[21-16], ms->pmsa_nat_bits, &old_regs->r21, &old_unat);
1054         copy_reg(&bank[22-16], ms->pmsa_nat_bits, &old_regs->r22, &old_unat);
1055         copy_reg(&bank[23-16], ms->pmsa_nat_bits, &old_regs->r23, &old_unat);
1056         copy_reg(&bank[24-16], ms->pmsa_nat_bits, &old_regs->r24, &old_unat);
1057         copy_reg(&bank[25-16], ms->pmsa_nat_bits, &old_regs->r25, &old_unat);
1058         copy_reg(&bank[26-16], ms->pmsa_nat_bits, &old_regs->r26, &old_unat);
1059         copy_reg(&bank[27-16], ms->pmsa_nat_bits, &old_regs->r27, &old_unat);
1060         copy_reg(&bank[28-16], ms->pmsa_nat_bits, &old_regs->r28, &old_unat);
1061         copy_reg(&bank[29-16], ms->pmsa_nat_bits, &old_regs->r29, &old_unat);
1062         copy_reg(&bank[30-16], ms->pmsa_nat_bits, &old_regs->r30, &old_unat);
1063         copy_reg(&bank[31-16], ms->pmsa_nat_bits, &old_regs->r31, &old_unat);
1064
1065         /* Next stack a struct switch_stack.  mca_asm.S built a partial
1066          * switch_stack, copy it and fill in the blanks using pt_regs and
1067          * minstate.
1068          *
1069          * In the synthesized switch_stack, b0 points to ia64_leave_kernel,
1070          * ar.pfs is set to 0.
1071          *
1072          * unwind.c::unw_unwind() does special processing for interrupt frames.
1073          * It checks if the PRED_NON_SYSCALL predicate is set, if the predicate
1074          * is clear then unw_unwind() does _not_ adjust bsp over pt_regs.  Not
1075          * that this is documented, of course.  Set PRED_NON_SYSCALL in the
1076          * switch_stack on the original stack so it will unwind correctly when
1077          * unwind.c reads pt_regs.
1078          *
1079          * thread.ksp is updated to point to the synthesized switch_stack.
1080          */
1081         p -= sizeof(struct switch_stack);
1082         old_sw = (struct switch_stack *)p;
1083         memcpy(old_sw, sw, sizeof(*sw));
1084         old_sw->caller_unat = old_unat;
1085         old_sw->ar_fpsr = old_regs->ar_fpsr;
1086         copy_reg(&ms->pmsa_gr[4-1], ms->pmsa_nat_bits, &old_sw->r4, &old_unat);
1087         copy_reg(&ms->pmsa_gr[5-1], ms->pmsa_nat_bits, &old_sw->r5, &old_unat);
1088         copy_reg(&ms->pmsa_gr[6-1], ms->pmsa_nat_bits, &old_sw->r6, &old_unat);
1089         copy_reg(&ms->pmsa_gr[7-1], ms->pmsa_nat_bits, &old_sw->r7, &old_unat);
1090         old_sw->b0 = (u64)ia64_leave_kernel;
1091         old_sw->b1 = ms->pmsa_br1;
1092         old_sw->ar_pfs = 0;
1093         old_sw->ar_unat = old_unat;
1094         old_sw->pr = old_regs->pr | (1UL << PRED_NON_SYSCALL);
1095         previous_current->thread.ksp = (u64)p - 16;
1096
1097         /* Finally copy the original stack's registers back to its RBS.
1098          * Registers from ar.bspstore through ar.bsp at the time of the event
1099          * are in the current RBS, copy them back to the original stack.  The
1100          * copy must be done register by register because the original bspstore
1101          * and the current one have different alignments, so the saved RNAT
1102          * data occurs at different places.
1103          *
1104          * mca_asm does cover, so the old_bsp already includes all registers at
1105          * the time of MCA/INIT.  It also does flushrs, so all registers before
1106          * this function have been written to backing store on the MCA/INIT
1107          * stack.
1108          */
1109         new_rnat = ia64_get_rnat(ia64_rse_rnat_addr(new_bspstore));
1110         old_rnat = regs->ar_rnat;
1111         while (slots--) {
1112                 if (ia64_rse_is_rnat_slot(new_bspstore)) {
1113                         new_rnat = ia64_get_rnat(new_bspstore++);
1114                 }
1115                 if (ia64_rse_is_rnat_slot(old_bspstore)) {
1116                         *old_bspstore++ = old_rnat;
1117                         old_rnat = 0;
1118                 }
1119                 nat = (new_rnat >> ia64_rse_slot_num(new_bspstore)) & 1UL;
1120                 old_rnat &= ~(1UL << ia64_rse_slot_num(old_bspstore));
1121                 old_rnat |= (nat << ia64_rse_slot_num(old_bspstore));
1122                 *old_bspstore++ = *new_bspstore++;
1123         }
1124         old_sw->ar_bspstore = (unsigned long)old_bspstore;
1125         old_sw->ar_rnat = old_rnat;
1126
1127         sos->prev_task = previous_current;
1128         return previous_current;
1129
1130 no_mod:
1131         printk(KERN_INFO "cpu %d, %s %s, original stack not modified\n",
1132                         smp_processor_id(), type, msg);
1133         return previous_current;
1134 }
1135
1136 /* The monarch/slave interaction is based on monarch_cpu and requires that all
1137  * slaves have entered rendezvous before the monarch leaves.  If any cpu has
1138  * not entered rendezvous yet then wait a bit.  The assumption is that any
1139  * slave that has not rendezvoused after a reasonable time is never going to do
1140  * so.  In this context, slave includes cpus that respond to the MCA rendezvous
1141  * interrupt, as well as cpus that receive the INIT slave event.
1142  */
1143
1144 static void
1145 ia64_wait_for_slaves(int monarch, const char *type)
1146 {
1147         int c, i , wait;
1148
1149         /*
1150          * wait 5 seconds total for slaves (arbitrary)
1151          */
1152         for (i = 0; i < 5000; i++) {
1153                 wait = 0;
1154                 for_each_online_cpu(c) {
1155                         if (c == monarch)
1156                                 continue;
1157                         if (ia64_mc_info.imi_rendez_checkin[c]
1158                                         == IA64_MCA_RENDEZ_CHECKIN_NOTDONE) {
1159                                 udelay(1000);           /* short wait */
1160                                 wait = 1;
1161                                 break;
1162                         }
1163                 }
1164                 if (!wait)
1165                         goto all_in;
1166         }
1167
1168         /*
1169          * Maybe slave(s) dead. Print buffered messages immediately.
1170          */
1171         ia64_mlogbuf_finish(0);
1172         mprintk(KERN_INFO "OS %s slave did not rendezvous on cpu", type);
1173         for_each_online_cpu(c) {
1174                 if (c == monarch)
1175                         continue;
1176                 if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE)
1177                         mprintk(" %d", c);
1178         }
1179         mprintk("\n");
1180         return;
1181
1182 all_in:
1183         mprintk(KERN_INFO "All OS %s slaves have reached rendezvous\n", type);
1184         return;
1185 }
1186
1187 /*
1188  * ia64_mca_handler
1189  *
1190  *      This is uncorrectable machine check handler called from OS_MCA
1191  *      dispatch code which is in turn called from SAL_CHECK().
1192  *      This is the place where the core of OS MCA handling is done.
1193  *      Right now the logs are extracted and displayed in a well-defined
1194  *      format. This handler code is supposed to be run only on the
1195  *      monarch processor. Once the monarch is done with MCA handling
1196  *      further MCA logging is enabled by clearing logs.
1197  *      Monarch also has the duty of sending wakeup-IPIs to pull the
1198  *      slave processors out of rendezvous spinloop.
1199  *
1200  *      If multiple processors call into OS_MCA, the first will become
1201  *      the monarch.  Subsequent cpus will be recorded in the mca_cpu
1202  *      bitmask.  After the first monarch has processed its MCA, it
1203  *      will wake up the next cpu in the mca_cpu bitmask and then go
1204  *      into the rendezvous loop.  When all processors have serviced
1205  *      their MCA, the last monarch frees up the rest of the processors.
1206  */
1207 void
1208 ia64_mca_handler(struct pt_regs *regs, struct switch_stack *sw,
1209                  struct ia64_sal_os_state *sos)
1210 {
1211         int recover, cpu = smp_processor_id();
1212         struct task_struct *previous_current;
1213         struct ia64_mca_notify_die nd =
1214                 { .sos = sos, .monarch_cpu = &monarch_cpu };
1215         static atomic_t mca_count;
1216         static cpumask_t mca_cpu;
1217
1218         if (atomic_add_return(1, &mca_count) == 1) {
1219                 monarch_cpu = cpu;
1220                 sos->monarch = 1;
1221         } else {
1222                 cpu_set(cpu, mca_cpu);
1223                 sos->monarch = 0;
1224         }
1225         mprintk(KERN_INFO "Entered OS MCA handler. PSP=%lx cpu=%d "
1226                 "monarch=%ld\n", sos->proc_state_param, cpu, sos->monarch);
1227
1228         previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "MCA");
1229
1230         if (notify_die(DIE_MCA_MONARCH_ENTER, "MCA", regs, (long)&nd, 0, 0)
1231                         == NOTIFY_STOP)
1232                 ia64_mca_spin(__func__);
1233
1234         ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_CONCURRENT_MCA;
1235         if (sos->monarch) {
1236                 ia64_wait_for_slaves(cpu, "MCA");
1237
1238                 /* Wakeup all the processors which are spinning in the
1239                  * rendezvous loop.  They will leave SAL, then spin in the OS
1240                  * with interrupts disabled until this monarch cpu leaves the
1241                  * MCA handler.  That gets control back to the OS so we can
1242                  * backtrace the other cpus, backtrace when spinning in SAL
1243                  * does not work.
1244                  */
1245                 ia64_mca_wakeup_all();
1246                 if (notify_die(DIE_MCA_MONARCH_PROCESS, "MCA", regs, (long)&nd, 0, 0)
1247                                 == NOTIFY_STOP)
1248                         ia64_mca_spin(__func__);
1249         } else {
1250                 while (cpu_isset(cpu, mca_cpu))
1251                         cpu_relax();    /* spin until monarch wakes us */
1252         }
1253
1254         /* Get the MCA error record and log it */
1255         ia64_mca_log_sal_error_record(SAL_INFO_TYPE_MCA);
1256
1257         /* MCA error recovery */
1258         recover = (ia64_mca_ucmc_extension
1259                 && ia64_mca_ucmc_extension(
1260                         IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA),
1261                         sos));
1262
1263         if (recover) {
1264                 sal_log_record_header_t *rh = IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA);
1265                 rh->severity = sal_log_severity_corrected;
1266                 ia64_sal_clear_state_info(SAL_INFO_TYPE_MCA);
1267                 sos->os_status = IA64_MCA_CORRECTED;
1268         } else {
1269                 /* Dump buffered message to console */
1270                 ia64_mlogbuf_finish(1);
1271         }
1272
1273         if (notify_die(DIE_MCA_MONARCH_LEAVE, "MCA", regs, (long)&nd, 0, recover)
1274                         == NOTIFY_STOP)
1275                 ia64_mca_spin(__func__);
1276
1277         if (atomic_dec_return(&mca_count) > 0) {
1278                 int i;
1279
1280                 /* wake up the next monarch cpu,
1281                  * and put this cpu in the rendez loop.
1282                  */
1283                 for_each_online_cpu(i) {
1284                         if (cpu_isset(i, mca_cpu)) {
1285                                 monarch_cpu = i;
1286                                 cpu_clear(i, mca_cpu);  /* wake next cpu */
1287                                 while (monarch_cpu != -1)
1288                                         cpu_relax();    /* spin until last cpu leaves */
1289                                 set_curr_task(cpu, previous_current);
1290                                 ia64_mc_info.imi_rendez_checkin[cpu]
1291                                                 = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1292                                 return;
1293                         }
1294                 }
1295         }
1296         set_curr_task(cpu, previous_current);
1297         ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1298         monarch_cpu = -1;       /* This frees the slaves and previous monarchs */
1299 }
1300
1301 static DECLARE_WORK(cmc_disable_work, ia64_mca_cmc_vector_disable_keventd);
1302 static DECLARE_WORK(cmc_enable_work, ia64_mca_cmc_vector_enable_keventd);
1303
1304 /*
1305  * ia64_mca_cmc_int_handler
1306  *
1307  *  This is corrected machine check interrupt handler.
1308  *      Right now the logs are extracted and displayed in a well-defined
1309  *      format.
1310  *
1311  * Inputs
1312  *      interrupt number
1313  *      client data arg ptr
1314  *
1315  * Outputs
1316  *      None
1317  */
1318 static irqreturn_t
1319 ia64_mca_cmc_int_handler(int cmc_irq, void *arg)
1320 {
1321         static unsigned long    cmc_history[CMC_HISTORY_LENGTH];
1322         static int              index;
1323         static DEFINE_SPINLOCK(cmc_history_lock);
1324
1325         IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
1326                        __func__, cmc_irq, smp_processor_id());
1327
1328         /* SAL spec states this should run w/ interrupts enabled */
1329         local_irq_enable();
1330
1331         spin_lock(&cmc_history_lock);
1332         if (!cmc_polling_enabled) {
1333                 int i, count = 1; /* we know 1 happened now */
1334                 unsigned long now = jiffies;
1335
1336                 for (i = 0; i < CMC_HISTORY_LENGTH; i++) {
1337                         if (now - cmc_history[i] <= HZ)
1338                                 count++;
1339                 }
1340
1341                 IA64_MCA_DEBUG(KERN_INFO "CMC threshold %d/%d\n", count, CMC_HISTORY_LENGTH);
1342                 if (count >= CMC_HISTORY_LENGTH) {
1343
1344                         cmc_polling_enabled = 1;
1345                         spin_unlock(&cmc_history_lock);
1346                         /* If we're being hit with CMC interrupts, we won't
1347                          * ever execute the schedule_work() below.  Need to
1348                          * disable CMC interrupts on this processor now.
1349                          */
1350                         ia64_mca_cmc_vector_disable(NULL);
1351                         schedule_work(&cmc_disable_work);
1352
1353                         /*
1354                          * Corrected errors will still be corrected, but
1355                          * make sure there's a log somewhere that indicates
1356                          * something is generating more than we can handle.
1357                          */
1358                         printk(KERN_WARNING "WARNING: Switching to polling CMC handler; error records may be lost\n");
1359
1360                         mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
1361
1362                         /* lock already released, get out now */
1363                         goto out;
1364                 } else {
1365                         cmc_history[index++] = now;
1366                         if (index == CMC_HISTORY_LENGTH)
1367                                 index = 0;
1368                 }
1369         }
1370         spin_unlock(&cmc_history_lock);
1371 out:
1372         /* Get the CMC error record and log it */
1373         ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CMC);
1374
1375         return IRQ_HANDLED;
1376 }
1377
1378 /*
1379  *  ia64_mca_cmc_int_caller
1380  *
1381  *      Triggered by sw interrupt from CMC polling routine.  Calls
1382  *      real interrupt handler and either triggers a sw interrupt
1383  *      on the next cpu or does cleanup at the end.
1384  *
1385  * Inputs
1386  *      interrupt number
1387  *      client data arg ptr
1388  * Outputs
1389  *      handled
1390  */
1391 static irqreturn_t
1392 ia64_mca_cmc_int_caller(int cmc_irq, void *arg)
1393 {
1394         static int start_count = -1;
1395         unsigned int cpuid;
1396
1397         cpuid = smp_processor_id();
1398
1399         /* If first cpu, update count */
1400         if (start_count == -1)
1401                 start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CMC);
1402
1403         ia64_mca_cmc_int_handler(cmc_irq, arg);
1404
1405         for (++cpuid ; cpuid < NR_CPUS && !cpu_online(cpuid) ; cpuid++);
1406
1407         if (cpuid < NR_CPUS) {
1408                 platform_send_ipi(cpuid, IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0);
1409         } else {
1410                 /* If no log record, switch out of polling mode */
1411                 if (start_count == IA64_LOG_COUNT(SAL_INFO_TYPE_CMC)) {
1412
1413                         printk(KERN_WARNING "Returning to interrupt driven CMC handler\n");
1414                         schedule_work(&cmc_enable_work);
1415                         cmc_polling_enabled = 0;
1416
1417                 } else {
1418
1419                         mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
1420                 }
1421
1422                 start_count = -1;
1423         }
1424
1425         return IRQ_HANDLED;
1426 }
1427
1428 /*
1429  *  ia64_mca_cmc_poll
1430  *
1431  *      Poll for Corrected Machine Checks (CMCs)
1432  *
1433  * Inputs   :   dummy(unused)
1434  * Outputs  :   None
1435  *
1436  */
1437 static void
1438 ia64_mca_cmc_poll (unsigned long dummy)
1439 {
1440         /* Trigger a CMC interrupt cascade  */
1441         platform_send_ipi(first_cpu(cpu_online_map), IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0);
1442 }
1443
1444 /*
1445  *  ia64_mca_cpe_int_caller
1446  *
1447  *      Triggered by sw interrupt from CPE polling routine.  Calls
1448  *      real interrupt handler and either triggers a sw interrupt
1449  *      on the next cpu or does cleanup at the end.
1450  *
1451  * Inputs
1452  *      interrupt number
1453  *      client data arg ptr
1454  * Outputs
1455  *      handled
1456  */
1457 #ifdef CONFIG_ACPI
1458
1459 static irqreturn_t
1460 ia64_mca_cpe_int_caller(int cpe_irq, void *arg)
1461 {
1462         static int start_count = -1;
1463         static int poll_time = MIN_CPE_POLL_INTERVAL;
1464         unsigned int cpuid;
1465
1466         cpuid = smp_processor_id();
1467
1468         /* If first cpu, update count */
1469         if (start_count == -1)
1470                 start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CPE);
1471
1472         ia64_mca_cpe_int_handler(cpe_irq, arg);
1473
1474         for (++cpuid ; cpuid < NR_CPUS && !cpu_online(cpuid) ; cpuid++);
1475
1476         if (cpuid < NR_CPUS) {
1477                 platform_send_ipi(cpuid, IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0);
1478         } else {
1479                 /*
1480                  * If a log was recorded, increase our polling frequency,
1481                  * otherwise, backoff or return to interrupt mode.
1482                  */
1483                 if (start_count != IA64_LOG_COUNT(SAL_INFO_TYPE_CPE)) {
1484                         poll_time = max(MIN_CPE_POLL_INTERVAL, poll_time / 2);
1485                 } else if (cpe_vector < 0) {
1486                         poll_time = min(MAX_CPE_POLL_INTERVAL, poll_time * 2);
1487                 } else {
1488                         poll_time = MIN_CPE_POLL_INTERVAL;
1489
1490                         printk(KERN_WARNING "Returning to interrupt driven CPE handler\n");
1491                         enable_irq(local_vector_to_irq(IA64_CPE_VECTOR));
1492                         cpe_poll_enabled = 0;
1493                 }
1494
1495                 if (cpe_poll_enabled)
1496                         mod_timer(&cpe_poll_timer, jiffies + poll_time);
1497                 start_count = -1;
1498         }
1499
1500         return IRQ_HANDLED;
1501 }
1502
1503 /*
1504  *  ia64_mca_cpe_poll
1505  *
1506  *      Poll for Corrected Platform Errors (CPEs), trigger interrupt
1507  *      on first cpu, from there it will trickle through all the cpus.
1508  *
1509  * Inputs   :   dummy(unused)
1510  * Outputs  :   None
1511  *
1512  */
1513 static void
1514 ia64_mca_cpe_poll (unsigned long dummy)
1515 {
1516         /* Trigger a CPE interrupt cascade  */
1517         platform_send_ipi(first_cpu(cpu_online_map), IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0);
1518 }
1519
1520 #endif /* CONFIG_ACPI */
1521
1522 static int
1523 default_monarch_init_process(struct notifier_block *self, unsigned long val, void *data)
1524 {
1525         int c;
1526         struct task_struct *g, *t;
1527         if (val != DIE_INIT_MONARCH_PROCESS)
1528                 return NOTIFY_DONE;
1529 #ifdef CONFIG_KEXEC
1530         if (atomic_read(&kdump_in_progress))
1531                 return NOTIFY_DONE;
1532 #endif
1533
1534         /*
1535          * FIXME: mlogbuf will brim over with INIT stack dumps.
1536          * To enable show_stack from INIT, we use oops_in_progress which should
1537          * be used in real oops. This would cause something wrong after INIT.
1538          */
1539         BREAK_LOGLEVEL(console_loglevel);
1540         ia64_mlogbuf_dump_from_init();
1541
1542         printk(KERN_ERR "Processes interrupted by INIT -");
1543         for_each_online_cpu(c) {
1544                 struct ia64_sal_os_state *s;
1545                 t = __va(__per_cpu_mca[c] + IA64_MCA_CPU_INIT_STACK_OFFSET);
1546                 s = (struct ia64_sal_os_state *)((char *)t + MCA_SOS_OFFSET);
1547                 g = s->prev_task;
1548                 if (g) {
1549                         if (g->pid)
1550                                 printk(" %d", g->pid);
1551                         else
1552                                 printk(" %d (cpu %d task 0x%p)", g->pid, task_cpu(g), g);
1553                 }
1554         }
1555         printk("\n\n");
1556         if (read_trylock(&tasklist_lock)) {
1557                 do_each_thread (g, t) {
1558                         printk("\nBacktrace of pid %d (%s)\n", t->pid, t->comm);
1559                         show_stack(t, NULL);
1560                 } while_each_thread (g, t);
1561                 read_unlock(&tasklist_lock);
1562         }
1563         /* FIXME: This will not restore zapped printk locks. */
1564         RESTORE_LOGLEVEL(console_loglevel);
1565         return NOTIFY_DONE;
1566 }
1567
1568 /*
1569  * C portion of the OS INIT handler
1570  *
1571  * Called from ia64_os_init_dispatch
1572  *
1573  * Inputs: pointer to pt_regs where processor info was saved.  SAL/OS state for
1574  * this event.  This code is used for both monarch and slave INIT events, see
1575  * sos->monarch.
1576  *
1577  * All INIT events switch to the INIT stack and change the previous process to
1578  * blocked status.  If one of the INIT events is the monarch then we are
1579  * probably processing the nmi button/command.  Use the monarch cpu to dump all
1580  * the processes.  The slave INIT events all spin until the monarch cpu
1581  * returns.  We can also get INIT slave events for MCA, in which case the MCA
1582  * process is the monarch.
1583  */
1584
1585 void
1586 ia64_init_handler(struct pt_regs *regs, struct switch_stack *sw,
1587                   struct ia64_sal_os_state *sos)
1588 {
1589         static atomic_t slaves;
1590         static atomic_t monarchs;
1591         struct task_struct *previous_current;
1592         int cpu = smp_processor_id();
1593         struct ia64_mca_notify_die nd =
1594                 { .sos = sos, .monarch_cpu = &monarch_cpu };
1595
1596         (void) notify_die(DIE_INIT_ENTER, "INIT", regs, (long)&nd, 0, 0);
1597
1598         mprintk(KERN_INFO "Entered OS INIT handler. PSP=%lx cpu=%d monarch=%ld\n",
1599                 sos->proc_state_param, cpu, sos->monarch);
1600         salinfo_log_wakeup(SAL_INFO_TYPE_INIT, NULL, 0, 0);
1601
1602         previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "INIT");
1603         sos->os_status = IA64_INIT_RESUME;
1604
1605         /* FIXME: Workaround for broken proms that drive all INIT events as
1606          * slaves.  The last slave that enters is promoted to be a monarch.
1607          * Remove this code in September 2006, that gives platforms a year to
1608          * fix their proms and get their customers updated.
1609          */
1610         if (!sos->monarch && atomic_add_return(1, &slaves) == num_online_cpus()) {
1611                 mprintk(KERN_WARNING "%s: Promoting cpu %d to monarch.\n",
1612                         __func__, cpu);
1613                 atomic_dec(&slaves);
1614                 sos->monarch = 1;
1615         }
1616
1617         /* FIXME: Workaround for broken proms that drive all INIT events as
1618          * monarchs.  Second and subsequent monarchs are demoted to slaves.
1619          * Remove this code in September 2006, that gives platforms a year to
1620          * fix their proms and get their customers updated.
1621          */
1622         if (sos->monarch && atomic_add_return(1, &monarchs) > 1) {
1623                 mprintk(KERN_WARNING "%s: Demoting cpu %d to slave.\n",
1624                                __func__, cpu);
1625                 atomic_dec(&monarchs);
1626                 sos->monarch = 0;
1627         }
1628
1629         if (!sos->monarch) {
1630                 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_INIT;
1631                 while (monarch_cpu == -1)
1632                        cpu_relax();     /* spin until monarch enters */
1633                 if (notify_die(DIE_INIT_SLAVE_ENTER, "INIT", regs, (long)&nd, 0, 0)
1634                                 == NOTIFY_STOP)
1635                         ia64_mca_spin(__func__);
1636                 if (notify_die(DIE_INIT_SLAVE_PROCESS, "INIT", regs, (long)&nd, 0, 0)
1637                                 == NOTIFY_STOP)
1638                         ia64_mca_spin(__func__);
1639                 while (monarch_cpu != -1)
1640                        cpu_relax();     /* spin until monarch leaves */
1641                 if (notify_die(DIE_INIT_SLAVE_LEAVE, "INIT", regs, (long)&nd, 0, 0)
1642                                 == NOTIFY_STOP)
1643                         ia64_mca_spin(__func__);
1644                 mprintk("Slave on cpu %d returning to normal service.\n", cpu);
1645                 set_curr_task(cpu, previous_current);
1646                 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1647                 atomic_dec(&slaves);
1648                 return;
1649         }
1650
1651         monarch_cpu = cpu;
1652         if (notify_die(DIE_INIT_MONARCH_ENTER, "INIT", regs, (long)&nd, 0, 0)
1653                         == NOTIFY_STOP)
1654                 ia64_mca_spin(__func__);
1655
1656         /*
1657          * Wait for a bit.  On some machines (e.g., HP's zx2000 and zx6000, INIT can be
1658          * generated via the BMC's command-line interface, but since the console is on the
1659          * same serial line, the user will need some time to switch out of the BMC before
1660          * the dump begins.
1661          */
1662         mprintk("Delaying for 5 seconds...\n");
1663         udelay(5*1000000);
1664         ia64_wait_for_slaves(cpu, "INIT");
1665         /* If nobody intercepts DIE_INIT_MONARCH_PROCESS then we drop through
1666          * to default_monarch_init_process() above and just print all the
1667          * tasks.
1668          */
1669         if (notify_die(DIE_INIT_MONARCH_PROCESS, "INIT", regs, (long)&nd, 0, 0)
1670                         == NOTIFY_STOP)
1671                 ia64_mca_spin(__func__);
1672         if (notify_die(DIE_INIT_MONARCH_LEAVE, "INIT", regs, (long)&nd, 0, 0)
1673                         == NOTIFY_STOP)
1674                 ia64_mca_spin(__func__);
1675         mprintk("\nINIT dump complete.  Monarch on cpu %d returning to normal service.\n", cpu);
1676         atomic_dec(&monarchs);
1677         set_curr_task(cpu, previous_current);
1678         monarch_cpu = -1;
1679         return;
1680 }
1681
1682 static int __init
1683 ia64_mca_disable_cpe_polling(char *str)
1684 {
1685         cpe_poll_enabled = 0;
1686         return 1;
1687 }
1688
1689 __setup("disable_cpe_poll", ia64_mca_disable_cpe_polling);
1690
1691 static struct irqaction cmci_irqaction = {
1692         .handler =      ia64_mca_cmc_int_handler,
1693         .flags =        IRQF_DISABLED,
1694         .name =         "cmc_hndlr"
1695 };
1696
1697 static struct irqaction cmcp_irqaction = {
1698         .handler =      ia64_mca_cmc_int_caller,
1699         .flags =        IRQF_DISABLED,
1700         .name =         "cmc_poll"
1701 };
1702
1703 static struct irqaction mca_rdzv_irqaction = {
1704         .handler =      ia64_mca_rendez_int_handler,
1705         .flags =        IRQF_DISABLED,
1706         .name =         "mca_rdzv"
1707 };
1708
1709 static struct irqaction mca_wkup_irqaction = {
1710         .handler =      ia64_mca_wakeup_int_handler,
1711         .flags =        IRQF_DISABLED,
1712         .name =         "mca_wkup"
1713 };
1714
1715 #ifdef CONFIG_ACPI
1716 static struct irqaction mca_cpe_irqaction = {
1717         .handler =      ia64_mca_cpe_int_handler,
1718         .flags =        IRQF_DISABLED,
1719         .name =         "cpe_hndlr"
1720 };
1721
1722 static struct irqaction mca_cpep_irqaction = {
1723         .handler =      ia64_mca_cpe_int_caller,
1724         .flags =        IRQF_DISABLED,
1725         .name =         "cpe_poll"
1726 };
1727 #endif /* CONFIG_ACPI */
1728
1729 /* Minimal format of the MCA/INIT stacks.  The pseudo processes that run on
1730  * these stacks can never sleep, they cannot return from the kernel to user
1731  * space, they do not appear in a normal ps listing.  So there is no need to
1732  * format most of the fields.
1733  */
1734
1735 static void __cpuinit
1736 format_mca_init_stack(void *mca_data, unsigned long offset,
1737                 const char *type, int cpu)
1738 {
1739         struct task_struct *p = (struct task_struct *)((char *)mca_data + offset);
1740         struct thread_info *ti;
1741         memset(p, 0, KERNEL_STACK_SIZE);
1742         ti = task_thread_info(p);
1743         ti->flags = _TIF_MCA_INIT;
1744         ti->preempt_count = 1;
1745         ti->task = p;
1746         ti->cpu = cpu;
1747         p->stack = ti;
1748         p->state = TASK_UNINTERRUPTIBLE;
1749         cpu_set(cpu, p->cpus_allowed);
1750         INIT_LIST_HEAD(&p->tasks);
1751         p->parent = p->real_parent = p->group_leader = p;
1752         INIT_LIST_HEAD(&p->children);
1753         INIT_LIST_HEAD(&p->sibling);
1754         strncpy(p->comm, type, sizeof(p->comm)-1);
1755 }
1756
1757 /* Caller prevents this from being called after init */
1758 static void * __init_refok mca_bootmem(void)
1759 {
1760         return __alloc_bootmem(sizeof(struct ia64_mca_cpu),
1761                             KERNEL_STACK_SIZE, 0);
1762 }
1763
1764 /* Do per-CPU MCA-related initialization.  */
1765 void __cpuinit
1766 ia64_mca_cpu_init(void *cpu_data)
1767 {
1768         void *pal_vaddr;
1769         void *data;
1770         long sz = sizeof(struct ia64_mca_cpu);
1771         int cpu = smp_processor_id();
1772         static int first_time = 1;
1773
1774         /*
1775          * Structure will already be allocated if cpu has been online,
1776          * then offlined.
1777          */
1778         if (__per_cpu_mca[cpu]) {
1779                 data = __va(__per_cpu_mca[cpu]);
1780         } else {
1781                 if (first_time) {
1782                         data = mca_bootmem();
1783                         first_time = 0;
1784                 } else
1785                         data = page_address(alloc_pages_node(numa_node_id(),
1786                                         GFP_KERNEL, get_order(sz)));
1787                 if (!data)
1788                         panic("Could not allocate MCA memory for cpu %d\n",
1789                                         cpu);
1790         }
1791         format_mca_init_stack(data, offsetof(struct ia64_mca_cpu, mca_stack),
1792                 "MCA", cpu);
1793         format_mca_init_stack(data, offsetof(struct ia64_mca_cpu, init_stack),
1794                 "INIT", cpu);
1795         __get_cpu_var(ia64_mca_data) = __per_cpu_mca[cpu] = __pa(data);
1796
1797         /*
1798          * Stash away a copy of the PTE needed to map the per-CPU page.
1799          * We may need it during MCA recovery.
1800          */
1801         __get_cpu_var(ia64_mca_per_cpu_pte) =
1802                 pte_val(mk_pte_phys(__pa(cpu_data), PAGE_KERNEL));
1803
1804         /*
1805          * Also, stash away a copy of the PAL address and the PTE
1806          * needed to map it.
1807          */
1808         pal_vaddr = efi_get_pal_addr();
1809         if (!pal_vaddr)
1810                 return;
1811         __get_cpu_var(ia64_mca_pal_base) =
1812                 GRANULEROUNDDOWN((unsigned long) pal_vaddr);
1813         __get_cpu_var(ia64_mca_pal_pte) = pte_val(mk_pte_phys(__pa(pal_vaddr),
1814                                                               PAGE_KERNEL));
1815 }
1816
1817 static void __cpuinit ia64_mca_cmc_vector_adjust(void *dummy)
1818 {
1819         unsigned long flags;
1820
1821         local_irq_save(flags);
1822         if (!cmc_polling_enabled)
1823                 ia64_mca_cmc_vector_enable(NULL);
1824         local_irq_restore(flags);
1825 }
1826
1827 static int __cpuinit mca_cpu_callback(struct notifier_block *nfb,
1828                                       unsigned long action,
1829                                       void *hcpu)
1830 {
1831         int hotcpu = (unsigned long) hcpu;
1832
1833         switch (action) {
1834         case CPU_ONLINE:
1835         case CPU_ONLINE_FROZEN:
1836                 smp_call_function_single(hotcpu, ia64_mca_cmc_vector_adjust,
1837                                          NULL, 1, 0);
1838                 break;
1839         }
1840         return NOTIFY_OK;
1841 }
1842
1843 static struct notifier_block mca_cpu_notifier __cpuinitdata = {
1844         .notifier_call = mca_cpu_callback
1845 };
1846
1847 /*
1848  * ia64_mca_init
1849  *
1850  *  Do all the system level mca specific initialization.
1851  *
1852  *      1. Register spinloop and wakeup request interrupt vectors
1853  *
1854  *      2. Register OS_MCA handler entry point
1855  *
1856  *      3. Register OS_INIT handler entry point
1857  *
1858  *  4. Initialize MCA/CMC/INIT related log buffers maintained by the OS.
1859  *
1860  *  Note that this initialization is done very early before some kernel
1861  *  services are available.
1862  *
1863  *  Inputs  :   None
1864  *
1865  *  Outputs :   None
1866  */
1867 void __init
1868 ia64_mca_init(void)
1869 {
1870         ia64_fptr_t *init_hldlr_ptr_monarch = (ia64_fptr_t *)ia64_os_init_dispatch_monarch;
1871         ia64_fptr_t *init_hldlr_ptr_slave = (ia64_fptr_t *)ia64_os_init_dispatch_slave;
1872         ia64_fptr_t *mca_hldlr_ptr = (ia64_fptr_t *)ia64_os_mca_dispatch;
1873         int i;
1874         s64 rc;
1875         struct ia64_sal_retval isrv;
1876         u64 timeout = IA64_MCA_RENDEZ_TIMEOUT;  /* platform specific */
1877         static struct notifier_block default_init_monarch_nb = {
1878                 .notifier_call = default_monarch_init_process,
1879                 .priority = 0/* we need to notified last */
1880         };
1881
1882         IA64_MCA_DEBUG("%s: begin\n", __func__);
1883
1884         /* Clear the Rendez checkin flag for all cpus */
1885         for(i = 0 ; i < NR_CPUS; i++)
1886                 ia64_mc_info.imi_rendez_checkin[i] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1887
1888         /*
1889          * Register the rendezvous spinloop and wakeup mechanism with SAL
1890          */
1891
1892         /* Register the rendezvous interrupt vector with SAL */
1893         while (1) {
1894                 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_INT,
1895                                               SAL_MC_PARAM_MECHANISM_INT,
1896                                               IA64_MCA_RENDEZ_VECTOR,
1897                                               timeout,
1898                                               SAL_MC_PARAM_RZ_ALWAYS);
1899                 rc = isrv.status;
1900                 if (rc == 0)
1901                         break;
1902                 if (rc == -2) {
1903                         printk(KERN_INFO "Increasing MCA rendezvous timeout from "
1904                                 "%ld to %ld milliseconds\n", timeout, isrv.v0);
1905                         timeout = isrv.v0;
1906                         (void) notify_die(DIE_MCA_NEW_TIMEOUT, "MCA", NULL, timeout, 0, 0);
1907                         continue;
1908                 }
1909                 printk(KERN_ERR "Failed to register rendezvous interrupt "
1910                        "with SAL (status %ld)\n", rc);
1911                 return;
1912         }
1913
1914         /* Register the wakeup interrupt vector with SAL */
1915         isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_WAKEUP,
1916                                       SAL_MC_PARAM_MECHANISM_INT,
1917                                       IA64_MCA_WAKEUP_VECTOR,
1918                                       0, 0);
1919         rc = isrv.status;
1920         if (rc) {
1921                 printk(KERN_ERR "Failed to register wakeup interrupt with SAL "
1922                        "(status %ld)\n", rc);
1923                 return;
1924         }
1925
1926         IA64_MCA_DEBUG("%s: registered MCA rendezvous spinloop and wakeup mech.\n", __func__);
1927
1928         ia64_mc_info.imi_mca_handler        = ia64_tpa(mca_hldlr_ptr->fp);
1929         /*
1930          * XXX - disable SAL checksum by setting size to 0; should be
1931          *      ia64_tpa(ia64_os_mca_dispatch_end) - ia64_tpa(ia64_os_mca_dispatch);
1932          */
1933         ia64_mc_info.imi_mca_handler_size       = 0;
1934
1935         /* Register the os mca handler with SAL */
1936         if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_MCA,
1937                                        ia64_mc_info.imi_mca_handler,
1938                                        ia64_tpa(mca_hldlr_ptr->gp),
1939                                        ia64_mc_info.imi_mca_handler_size,
1940                                        0, 0, 0)))
1941         {
1942                 printk(KERN_ERR "Failed to register OS MCA handler with SAL "
1943                        "(status %ld)\n", rc);
1944                 return;
1945         }
1946
1947         IA64_MCA_DEBUG("%s: registered OS MCA handler with SAL at 0x%lx, gp = 0x%lx\n", __func__,
1948                        ia64_mc_info.imi_mca_handler, ia64_tpa(mca_hldlr_ptr->gp));
1949
1950         /*
1951          * XXX - disable SAL checksum by setting size to 0, should be
1952          * size of the actual init handler in mca_asm.S.
1953          */
1954         ia64_mc_info.imi_monarch_init_handler           = ia64_tpa(init_hldlr_ptr_monarch->fp);
1955         ia64_mc_info.imi_monarch_init_handler_size      = 0;
1956         ia64_mc_info.imi_slave_init_handler             = ia64_tpa(init_hldlr_ptr_slave->fp);
1957         ia64_mc_info.imi_slave_init_handler_size        = 0;
1958
1959         IA64_MCA_DEBUG("%s: OS INIT handler at %lx\n", __func__,
1960                        ia64_mc_info.imi_monarch_init_handler);
1961
1962         /* Register the os init handler with SAL */
1963         if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_INIT,
1964                                        ia64_mc_info.imi_monarch_init_handler,
1965                                        ia64_tpa(ia64_getreg(_IA64_REG_GP)),
1966                                        ia64_mc_info.imi_monarch_init_handler_size,
1967                                        ia64_mc_info.imi_slave_init_handler,
1968                                        ia64_tpa(ia64_getreg(_IA64_REG_GP)),
1969                                        ia64_mc_info.imi_slave_init_handler_size)))
1970         {
1971                 printk(KERN_ERR "Failed to register m/s INIT handlers with SAL "
1972                        "(status %ld)\n", rc);
1973                 return;
1974         }
1975         if (register_die_notifier(&default_init_monarch_nb)) {
1976                 printk(KERN_ERR "Failed to register default monarch INIT process\n");
1977                 return;
1978         }
1979
1980         IA64_MCA_DEBUG("%s: registered OS INIT handler with SAL\n", __func__);
1981
1982         /*
1983          *  Configure the CMCI/P vector and handler. Interrupts for CMC are
1984          *  per-processor, so AP CMC interrupts are setup in smp_callin() (smpboot.c).
1985          */
1986         register_percpu_irq(IA64_CMC_VECTOR, &cmci_irqaction);
1987         register_percpu_irq(IA64_CMCP_VECTOR, &cmcp_irqaction);
1988         ia64_mca_cmc_vector_setup();       /* Setup vector on BSP */
1989
1990         /* Setup the MCA rendezvous interrupt vector */
1991         register_percpu_irq(IA64_MCA_RENDEZ_VECTOR, &mca_rdzv_irqaction);
1992
1993         /* Setup the MCA wakeup interrupt vector */
1994         register_percpu_irq(IA64_MCA_WAKEUP_VECTOR, &mca_wkup_irqaction);
1995
1996 #ifdef CONFIG_ACPI
1997         /* Setup the CPEI/P handler */
1998         register_percpu_irq(IA64_CPEP_VECTOR, &mca_cpep_irqaction);
1999 #endif
2000
2001         /* Initialize the areas set aside by the OS to buffer the
2002          * platform/processor error states for MCA/INIT/CMC
2003          * handling.
2004          */
2005         ia64_log_init(SAL_INFO_TYPE_MCA);
2006         ia64_log_init(SAL_INFO_TYPE_INIT);
2007         ia64_log_init(SAL_INFO_TYPE_CMC);
2008         ia64_log_init(SAL_INFO_TYPE_CPE);
2009
2010         mca_init = 1;
2011         printk(KERN_INFO "MCA related initialization done\n");
2012 }
2013
2014 /*
2015  * ia64_mca_late_init
2016  *
2017  *      Opportunity to setup things that require initialization later
2018  *      than ia64_mca_init.  Setup a timer to poll for CPEs if the
2019  *      platform doesn't support an interrupt driven mechanism.
2020  *
2021  *  Inputs  :   None
2022  *  Outputs :   Status
2023  */
2024 static int __init
2025 ia64_mca_late_init(void)
2026 {
2027         if (!mca_init)
2028                 return 0;
2029
2030         register_hotcpu_notifier(&mca_cpu_notifier);
2031
2032         /* Setup the CMCI/P vector and handler */
2033         init_timer(&cmc_poll_timer);
2034         cmc_poll_timer.function = ia64_mca_cmc_poll;
2035
2036         /* Unmask/enable the vector */
2037         cmc_polling_enabled = 0;
2038         schedule_work(&cmc_enable_work);
2039
2040         IA64_MCA_DEBUG("%s: CMCI/P setup and enabled.\n", __func__);
2041
2042 #ifdef CONFIG_ACPI
2043         /* Setup the CPEI/P vector and handler */
2044         cpe_vector = acpi_request_vector(ACPI_INTERRUPT_CPEI);
2045         init_timer(&cpe_poll_timer);
2046         cpe_poll_timer.function = ia64_mca_cpe_poll;
2047
2048         {
2049                 irq_desc_t *desc;
2050                 unsigned int irq;
2051
2052                 if (cpe_vector >= 0) {
2053                         /* If platform supports CPEI, enable the irq. */
2054                         irq = local_vector_to_irq(cpe_vector);
2055                         if (irq > 0) {
2056                                 cpe_poll_enabled = 0;
2057                                 desc = irq_desc + irq;
2058                                 desc->status |= IRQ_PER_CPU;
2059                                 setup_irq(irq, &mca_cpe_irqaction);
2060                                 ia64_cpe_irq = irq;
2061                                 ia64_mca_register_cpev(cpe_vector);
2062                                 IA64_MCA_DEBUG("%s: CPEI/P setup and enabled.\n",
2063                                         __func__);
2064                                 return 0;
2065                         }
2066                         printk(KERN_ERR "%s: Failed to find irq for CPE "
2067                                         "interrupt handler, vector %d\n",
2068                                         __func__, cpe_vector);
2069                 }
2070                 /* If platform doesn't support CPEI, get the timer going. */
2071                 if (cpe_poll_enabled) {
2072                         ia64_mca_cpe_poll(0UL);
2073                         IA64_MCA_DEBUG("%s: CPEP setup and enabled.\n", __func__);
2074                 }
2075         }
2076 #endif
2077
2078         return 0;
2079 }
2080
2081 device_initcall(ia64_mca_late_init);