[PATCH] Kprobes IA64: arch_prepare_kprobes() cleanup
[safe/jmp/linux-2.6] / arch / ia64 / kernel / kprobes.c
1 /*
2  *  Kernel Probes (KProbes)
3  *  arch/ia64/kernel/kprobes.c
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18  *
19  * Copyright (C) IBM Corporation, 2002, 2004
20  * Copyright (C) Intel Corporation, 2005
21  *
22  * 2005-Apr     Rusty Lynch <rusty.lynch@intel.com> and Anil S Keshavamurthy
23  *              <anil.s.keshavamurthy@intel.com> adapted from i386
24  */
25
26 #include <linux/config.h>
27 #include <linux/kprobes.h>
28 #include <linux/ptrace.h>
29 #include <linux/spinlock.h>
30 #include <linux/string.h>
31 #include <linux/slab.h>
32 #include <linux/preempt.h>
33 #include <linux/moduleloader.h>
34
35 #include <asm/pgtable.h>
36 #include <asm/kdebug.h>
37
38 extern void jprobe_inst_return(void);
39
40 /* kprobe_status settings */
41 #define KPROBE_HIT_ACTIVE       0x00000001
42 #define KPROBE_HIT_SS           0x00000002
43
44 static struct kprobe *current_kprobe;
45 static unsigned long kprobe_status;
46 static struct pt_regs jprobe_saved_regs;
47
48 enum instruction_type {A, I, M, F, B, L, X, u};
49 static enum instruction_type bundle_encoding[32][3] = {
50   { M, I, I },                          /* 00 */
51   { M, I, I },                          /* 01 */
52   { M, I, I },                          /* 02 */
53   { M, I, I },                          /* 03 */
54   { M, L, X },                          /* 04 */
55   { M, L, X },                          /* 05 */
56   { u, u, u },                          /* 06 */
57   { u, u, u },                          /* 07 */
58   { M, M, I },                          /* 08 */
59   { M, M, I },                          /* 09 */
60   { M, M, I },                          /* 0A */
61   { M, M, I },                          /* 0B */
62   { M, F, I },                          /* 0C */
63   { M, F, I },                          /* 0D */
64   { M, M, F },                          /* 0E */
65   { M, M, F },                          /* 0F */
66   { M, I, B },                          /* 10 */
67   { M, I, B },                          /* 11 */
68   { M, B, B },                          /* 12 */
69   { M, B, B },                          /* 13 */
70   { u, u, u },                          /* 14 */
71   { u, u, u },                          /* 15 */
72   { B, B, B },                          /* 16 */
73   { B, B, B },                          /* 17 */
74   { M, M, B },                          /* 18 */
75   { M, M, B },                          /* 19 */
76   { u, u, u },                          /* 1A */
77   { u, u, u },                          /* 1B */
78   { M, F, B },                          /* 1C */
79   { M, F, B },                          /* 1D */
80   { u, u, u },                          /* 1E */
81   { u, u, u },                          /* 1F */
82 };
83
84 /*
85  * In this function we check to see if the instruction
86  * is IP relative instruction and update the kprobe
87  * inst flag accordingly
88  */
89 static void update_kprobe_inst_flag(uint template, uint  slot, uint major_opcode,
90         unsigned long kprobe_inst, struct kprobe *p)
91 {
92         p->ainsn.inst_flag = 0;
93         p->ainsn.target_br_reg = 0;
94
95         if (bundle_encoding[template][slot] == B) {
96                 switch (major_opcode) {
97                   case INDIRECT_CALL_OPCODE:
98                         p->ainsn.inst_flag |= INST_FLAG_FIX_BRANCH_REG;
99                         p->ainsn.target_br_reg = ((kprobe_inst >> 6) & 0x7);
100                         break;
101                   case IP_RELATIVE_PREDICT_OPCODE:
102                   case IP_RELATIVE_BRANCH_OPCODE:
103                         p->ainsn.inst_flag |= INST_FLAG_FIX_RELATIVE_IP_ADDR;
104                         break;
105                   case IP_RELATIVE_CALL_OPCODE:
106                         p->ainsn.inst_flag |= INST_FLAG_FIX_RELATIVE_IP_ADDR;
107                         p->ainsn.inst_flag |= INST_FLAG_FIX_BRANCH_REG;
108                         p->ainsn.target_br_reg = ((kprobe_inst >> 6) & 0x7);
109                         break;
110                 }
111         } else if (bundle_encoding[template][slot] == X) {
112                 switch (major_opcode) {
113                   case LONG_CALL_OPCODE:
114                         p->ainsn.inst_flag |= INST_FLAG_FIX_BRANCH_REG;
115                         p->ainsn.target_br_reg = ((kprobe_inst >> 6) & 0x7);
116                   break;
117                 }
118         }
119         return;
120 }
121
122 /*
123  * In this function we override the bundle with
124  * the break instruction at the given slot.
125  */
126 static void prepare_break_inst(uint template, uint  slot, uint major_opcode,
127         unsigned long kprobe_inst, struct kprobe *p)
128 {
129         unsigned long break_inst = BREAK_INST;
130         bundle_t *bundle = &p->ainsn.insn.bundle;
131
132         /*
133          * Copy the original kprobe_inst qualifying predicate(qp)
134          * to the break instruction
135          */
136         break_inst |= (0x3f & kprobe_inst);
137
138         switch (slot) {
139           case 0:
140                 bundle->quad0.slot0 = break_inst;
141                 break;
142           case 1:
143                 bundle->quad0.slot1_p0 = break_inst;
144                 bundle->quad1.slot1_p1 = break_inst >> (64-46);
145                 break;
146           case 2:
147                 bundle->quad1.slot2 = break_inst;
148                 break;
149         }
150
151         /*
152          * Update the instruction flag, so that we can
153          * emulate the instruction properly after we
154          * single step on original instruction
155          */
156         update_kprobe_inst_flag(template, slot, major_opcode, kprobe_inst, p);
157 }
158
159 static inline void get_kprobe_inst(bundle_t *bundle, uint slot,
160                 unsigned long *kprobe_inst, uint *major_opcode)
161 {
162         unsigned long kprobe_inst_p0, kprobe_inst_p1;
163         unsigned int template;
164
165         template = bundle->quad0.template;
166
167         switch (slot) {
168           case 0:
169                 *major_opcode = (bundle->quad0.slot0 >> SLOT0_OPCODE_SHIFT);
170                 *kprobe_inst = bundle->quad0.slot0;
171                 break;
172           case 1:
173                 *major_opcode = (bundle->quad1.slot1_p1 >> SLOT1_p1_OPCODE_SHIFT);
174                 kprobe_inst_p0 = bundle->quad0.slot1_p0;
175                 kprobe_inst_p1 = bundle->quad1.slot1_p1;
176                 *kprobe_inst = kprobe_inst_p0 | (kprobe_inst_p1 << (64-46));
177                 break;
178           case 2:
179                 *major_opcode = (bundle->quad1.slot2 >> SLOT2_OPCODE_SHIFT);
180                 *kprobe_inst = bundle->quad1.slot2;
181                 break;
182         }
183 }
184
185 static int valid_kprobe_addr(int template, int slot, unsigned long addr)
186 {
187         if ((slot > 2) || ((bundle_encoding[template][1] == L) && slot > 1)) {
188                 printk(KERN_WARNING "Attempting to insert unaligned kprobe at 0x%lx\n",
189                                 addr);
190                 return -EINVAL;
191         }
192         return 0;
193 }
194
195 int arch_prepare_kprobe(struct kprobe *p)
196 {
197         unsigned long addr = (unsigned long) p->addr;
198         unsigned long *kprobe_addr = (unsigned long *)(addr & ~0xFULL);
199         unsigned long kprobe_inst=0;
200         unsigned int slot = addr & 0xf, template, major_opcode = 0;
201         bundle_t *bundle = &p->ainsn.insn.bundle;
202
203         memcpy(&p->opcode.bundle, kprobe_addr, sizeof(bundle_t));
204         memcpy(&p->ainsn.insn.bundle, kprobe_addr, sizeof(bundle_t));
205
206         template = bundle->quad0.template;
207
208         if(valid_kprobe_addr(template, slot, addr))
209                 return -EINVAL;
210
211         /* Move to slot 2, if bundle is MLX type and kprobe slot is 1 */
212         if (slot == 1 && bundle_encoding[template][1] == L)
213                 slot++;
214
215         /* Get kprobe_inst and major_opcode from the bundle */
216         get_kprobe_inst(bundle, slot, &kprobe_inst, &major_opcode);
217
218         prepare_break_inst(template, slot, major_opcode, kprobe_inst, p);
219
220         return 0;
221 }
222
223 void arch_arm_kprobe(struct kprobe *p)
224 {
225         unsigned long addr = (unsigned long)p->addr;
226         unsigned long arm_addr = addr & ~0xFULL;
227
228         memcpy((char *)arm_addr, &p->ainsn.insn.bundle, sizeof(bundle_t));
229         flush_icache_range(arm_addr, arm_addr + sizeof(bundle_t));
230 }
231
232 void arch_disarm_kprobe(struct kprobe *p)
233 {
234         unsigned long addr = (unsigned long)p->addr;
235         unsigned long arm_addr = addr & ~0xFULL;
236
237         /* p->opcode contains the original unaltered bundle */
238         memcpy((char *) arm_addr, (char *) &p->opcode.bundle, sizeof(bundle_t));
239         flush_icache_range(arm_addr, arm_addr + sizeof(bundle_t));
240 }
241
242 void arch_remove_kprobe(struct kprobe *p)
243 {
244 }
245
246 /*
247  * We are resuming execution after a single step fault, so the pt_regs
248  * structure reflects the register state after we executed the instruction
249  * located in the kprobe (p->ainsn.insn.bundle).  We still need to adjust
250  * the ip to point back to the original stack address. To set the IP address
251  * to original stack address, handle the case where we need to fixup the
252  * relative IP address and/or fixup branch register.
253  */
254 static void resume_execution(struct kprobe *p, struct pt_regs *regs)
255 {
256         unsigned long bundle_addr = ((unsigned long) (&p->opcode.bundle)) & ~0xFULL;
257         unsigned long resume_addr = (unsigned long)p->addr & ~0xFULL;
258         unsigned long template;
259         int slot = ((unsigned long)p->addr & 0xf);
260
261         template = p->opcode.bundle.quad0.template;
262
263         if (slot == 1 && bundle_encoding[template][1] == L)
264                 slot = 2;
265
266         if (p->ainsn.inst_flag) {
267
268                 if (p->ainsn.inst_flag & INST_FLAG_FIX_RELATIVE_IP_ADDR) {
269                         /* Fix relative IP address */
270                         regs->cr_iip = (regs->cr_iip - bundle_addr) + resume_addr;
271                 }
272
273                 if (p->ainsn.inst_flag & INST_FLAG_FIX_BRANCH_REG) {
274                 /*
275                  * Fix target branch register, software convention is
276                  * to use either b0 or b6 or b7, so just checking
277                  * only those registers
278                  */
279                         switch (p->ainsn.target_br_reg) {
280                         case 0:
281                                 if ((regs->b0 == bundle_addr) ||
282                                         (regs->b0 == bundle_addr + 0x10)) {
283                                         regs->b0 = (regs->b0 - bundle_addr) +
284                                                 resume_addr;
285                                 }
286                                 break;
287                         case 6:
288                                 if ((regs->b6 == bundle_addr) ||
289                                         (regs->b6 == bundle_addr + 0x10)) {
290                                         regs->b6 = (regs->b6 - bundle_addr) +
291                                                 resume_addr;
292                                 }
293                                 break;
294                         case 7:
295                                 if ((regs->b7 == bundle_addr) ||
296                                         (regs->b7 == bundle_addr + 0x10)) {
297                                         regs->b7 = (regs->b7 - bundle_addr) +
298                                                 resume_addr;
299                                 }
300                                 break;
301                         } /* end switch */
302                 }
303                 goto turn_ss_off;
304         }
305
306         if (slot == 2) {
307                 if (regs->cr_iip == bundle_addr + 0x10) {
308                         regs->cr_iip = resume_addr + 0x10;
309                 }
310         } else {
311                 if (regs->cr_iip == bundle_addr) {
312                         regs->cr_iip = resume_addr;
313                 }
314         }
315
316 turn_ss_off:
317         /* Turn off Single Step bit */
318         ia64_psr(regs)->ss = 0;
319 }
320
321 static void prepare_ss(struct kprobe *p, struct pt_regs *regs)
322 {
323         unsigned long bundle_addr = (unsigned long) &p->opcode.bundle;
324         unsigned long slot = (unsigned long)p->addr & 0xf;
325
326         /* Update instruction pointer (IIP) and slot number (IPSR.ri) */
327         regs->cr_iip = bundle_addr & ~0xFULL;
328
329         if (slot > 2)
330                 slot = 0;
331
332         ia64_psr(regs)->ri = slot;
333
334         /* turn on single stepping */
335         ia64_psr(regs)->ss = 1;
336 }
337
338 static int pre_kprobes_handler(struct pt_regs *regs)
339 {
340         struct kprobe *p;
341         int ret = 0;
342         kprobe_opcode_t *addr = (kprobe_opcode_t *)instruction_pointer(regs);
343
344         preempt_disable();
345
346         /* Handle recursion cases */
347         if (kprobe_running()) {
348                 p = get_kprobe(addr);
349                 if (p) {
350                         if (kprobe_status == KPROBE_HIT_SS) {
351                                 unlock_kprobes();
352                                 goto no_kprobe;
353                         }
354                         arch_disarm_kprobe(p);
355                         ret = 1;
356                 } else {
357                         /*
358                          * jprobe instrumented function just completed
359                          */
360                         p = current_kprobe;
361                         if (p->break_handler && p->break_handler(p, regs)) {
362                                 goto ss_probe;
363                         }
364                 }
365         }
366
367         lock_kprobes();
368         p = get_kprobe(addr);
369         if (!p) {
370                 unlock_kprobes();
371                 goto no_kprobe;
372         }
373
374         kprobe_status = KPROBE_HIT_ACTIVE;
375         current_kprobe = p;
376
377         if (p->pre_handler && p->pre_handler(p, regs))
378                 /*
379                  * Our pre-handler is specifically requesting that we just
380                  * do a return.  This is handling the case where the
381                  * pre-handler is really our special jprobe pre-handler.
382                  */
383                 return 1;
384
385 ss_probe:
386         prepare_ss(p, regs);
387         kprobe_status = KPROBE_HIT_SS;
388         return 1;
389
390 no_kprobe:
391         preempt_enable_no_resched();
392         return ret;
393 }
394
395 static int post_kprobes_handler(struct pt_regs *regs)
396 {
397         if (!kprobe_running())
398                 return 0;
399
400         if (current_kprobe->post_handler)
401                 current_kprobe->post_handler(current_kprobe, regs, 0);
402
403         resume_execution(current_kprobe, regs);
404
405         unlock_kprobes();
406         preempt_enable_no_resched();
407         return 1;
408 }
409
410 static int kprobes_fault_handler(struct pt_regs *regs, int trapnr)
411 {
412         if (!kprobe_running())
413                 return 0;
414
415         if (current_kprobe->fault_handler &&
416             current_kprobe->fault_handler(current_kprobe, regs, trapnr))
417                 return 1;
418
419         if (kprobe_status & KPROBE_HIT_SS) {
420                 resume_execution(current_kprobe, regs);
421                 unlock_kprobes();
422                 preempt_enable_no_resched();
423         }
424
425         return 0;
426 }
427
428 int kprobe_exceptions_notify(struct notifier_block *self, unsigned long val,
429                              void *data)
430 {
431         struct die_args *args = (struct die_args *)data;
432         switch(val) {
433         case DIE_BREAK:
434                 if (pre_kprobes_handler(args->regs))
435                         return NOTIFY_STOP;
436                 break;
437         case DIE_SS:
438                 if (post_kprobes_handler(args->regs))
439                         return NOTIFY_STOP;
440                 break;
441         case DIE_PAGE_FAULT:
442                 if (kprobes_fault_handler(args->regs, args->trapnr))
443                         return NOTIFY_STOP;
444         default:
445                 break;
446         }
447         return NOTIFY_DONE;
448 }
449
450 int setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
451 {
452         struct jprobe *jp = container_of(p, struct jprobe, kp);
453         unsigned long addr = ((struct fnptr *)(jp->entry))->ip;
454
455         /* save architectural state */
456         jprobe_saved_regs = *regs;
457
458         /* after rfi, execute the jprobe instrumented function */
459         regs->cr_iip = addr & ~0xFULL;
460         ia64_psr(regs)->ri = addr & 0xf;
461         regs->r1 = ((struct fnptr *)(jp->entry))->gp;
462
463         /*
464          * fix the return address to our jprobe_inst_return() function
465          * in the jprobes.S file
466          */
467         regs->b0 = ((struct fnptr *)(jprobe_inst_return))->ip;
468
469         return 1;
470 }
471
472 int longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
473 {
474         *regs = jprobe_saved_regs;
475         return 1;
476 }