[PATCH] kprobe whitespace cleanup
[safe/jmp/linux-2.6] / arch / ia64 / kernel / kprobes.c
1 /*
2  *  Kernel Probes (KProbes)
3  *  arch/ia64/kernel/kprobes.c
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18  *
19  * Copyright (C) IBM Corporation, 2002, 2004
20  * Copyright (C) Intel Corporation, 2005
21  *
22  * 2005-Apr     Rusty Lynch <rusty.lynch@intel.com> and Anil S Keshavamurthy
23  *              <anil.s.keshavamurthy@intel.com> adapted from i386
24  */
25
26 #include <linux/kprobes.h>
27 #include <linux/ptrace.h>
28 #include <linux/string.h>
29 #include <linux/slab.h>
30 #include <linux/preempt.h>
31 #include <linux/moduleloader.h>
32
33 #include <asm/pgtable.h>
34 #include <asm/kdebug.h>
35 #include <asm/sections.h>
36 #include <asm/uaccess.h>
37
38 extern void jprobe_inst_return(void);
39
40 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
41 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
42
43 enum instruction_type {A, I, M, F, B, L, X, u};
44 static enum instruction_type bundle_encoding[32][3] = {
45   { M, I, I },                          /* 00 */
46   { M, I, I },                          /* 01 */
47   { M, I, I },                          /* 02 */
48   { M, I, I },                          /* 03 */
49   { M, L, X },                          /* 04 */
50   { M, L, X },                          /* 05 */
51   { u, u, u },                          /* 06 */
52   { u, u, u },                          /* 07 */
53   { M, M, I },                          /* 08 */
54   { M, M, I },                          /* 09 */
55   { M, M, I },                          /* 0A */
56   { M, M, I },                          /* 0B */
57   { M, F, I },                          /* 0C */
58   { M, F, I },                          /* 0D */
59   { M, M, F },                          /* 0E */
60   { M, M, F },                          /* 0F */
61   { M, I, B },                          /* 10 */
62   { M, I, B },                          /* 11 */
63   { M, B, B },                          /* 12 */
64   { M, B, B },                          /* 13 */
65   { u, u, u },                          /* 14 */
66   { u, u, u },                          /* 15 */
67   { B, B, B },                          /* 16 */
68   { B, B, B },                          /* 17 */
69   { M, M, B },                          /* 18 */
70   { M, M, B },                          /* 19 */
71   { u, u, u },                          /* 1A */
72   { u, u, u },                          /* 1B */
73   { M, F, B },                          /* 1C */
74   { M, F, B },                          /* 1D */
75   { u, u, u },                          /* 1E */
76   { u, u, u },                          /* 1F */
77 };
78
79 /*
80  * In this function we check to see if the instruction
81  * is IP relative instruction and update the kprobe
82  * inst flag accordingly
83  */
84 static void __kprobes update_kprobe_inst_flag(uint template, uint  slot,
85                                               uint major_opcode,
86                                               unsigned long kprobe_inst,
87                                               struct kprobe *p)
88 {
89         p->ainsn.inst_flag = 0;
90         p->ainsn.target_br_reg = 0;
91
92         /* Check for Break instruction
93          * Bits 37:40 Major opcode to be zero
94          * Bits 27:32 X6 to be zero
95          * Bits 32:35 X3 to be zero
96          */
97         if ((!major_opcode) && (!((kprobe_inst >> 27) & 0x1FF)) ) {
98                 /* is a break instruction */
99                 p->ainsn.inst_flag |= INST_FLAG_BREAK_INST;
100                 return;
101         }
102
103         if (bundle_encoding[template][slot] == B) {
104                 switch (major_opcode) {
105                   case INDIRECT_CALL_OPCODE:
106                         p->ainsn.inst_flag |= INST_FLAG_FIX_BRANCH_REG;
107                         p->ainsn.target_br_reg = ((kprobe_inst >> 6) & 0x7);
108                         break;
109                   case IP_RELATIVE_PREDICT_OPCODE:
110                   case IP_RELATIVE_BRANCH_OPCODE:
111                         p->ainsn.inst_flag |= INST_FLAG_FIX_RELATIVE_IP_ADDR;
112                         break;
113                   case IP_RELATIVE_CALL_OPCODE:
114                         p->ainsn.inst_flag |= INST_FLAG_FIX_RELATIVE_IP_ADDR;
115                         p->ainsn.inst_flag |= INST_FLAG_FIX_BRANCH_REG;
116                         p->ainsn.target_br_reg = ((kprobe_inst >> 6) & 0x7);
117                         break;
118                 }
119         } else if (bundle_encoding[template][slot] == X) {
120                 switch (major_opcode) {
121                   case LONG_CALL_OPCODE:
122                         p->ainsn.inst_flag |= INST_FLAG_FIX_BRANCH_REG;
123                         p->ainsn.target_br_reg = ((kprobe_inst >> 6) & 0x7);
124                   break;
125                 }
126         }
127         return;
128 }
129
130 /*
131  * In this function we check to see if the instruction
132  * on which we are inserting kprobe is supported.
133  * Returns 0 if supported
134  * Returns -EINVAL if unsupported
135  */
136 static int __kprobes unsupported_inst(uint template, uint  slot,
137                                       uint major_opcode,
138                                       unsigned long kprobe_inst,
139                                       unsigned long addr)
140 {
141         if (bundle_encoding[template][slot] == I) {
142                 switch (major_opcode) {
143                         case 0x0: //I_UNIT_MISC_OPCODE:
144                         /*
145                          * Check for Integer speculation instruction
146                          * - Bit 33-35 to be equal to 0x1
147                          */
148                         if (((kprobe_inst >> 33) & 0x7) == 1) {
149                                 printk(KERN_WARNING
150                                         "Kprobes on speculation inst at <0x%lx> not supported\n",
151                                         addr);
152                                 return -EINVAL;
153                         }
154
155                         /*
156                          * IP relative mov instruction
157                          *  - Bit 27-35 to be equal to 0x30
158                          */
159                         if (((kprobe_inst >> 27) & 0x1FF) == 0x30) {
160                                 printk(KERN_WARNING
161                                         "Kprobes on \"mov r1=ip\" at <0x%lx> not supported\n",
162                                         addr);
163                                 return -EINVAL;
164
165                         }
166                 }
167         }
168         return 0;
169 }
170
171
172 /*
173  * In this function we check to see if the instruction
174  * (qp) cmpx.crel.ctype p1,p2=r2,r3
175  * on which we are inserting kprobe is cmp instruction
176  * with ctype as unc.
177  */
178 static uint __kprobes is_cmp_ctype_unc_inst(uint template, uint slot,
179                                             uint major_opcode,
180                                             unsigned long kprobe_inst)
181 {
182         cmp_inst_t cmp_inst;
183         uint ctype_unc = 0;
184
185         if (!((bundle_encoding[template][slot] == I) ||
186                 (bundle_encoding[template][slot] == M)))
187                 goto out;
188
189         if (!((major_opcode == 0xC) || (major_opcode == 0xD) ||
190                 (major_opcode == 0xE)))
191                 goto out;
192
193         cmp_inst.l = kprobe_inst;
194         if ((cmp_inst.f.x2 == 0) || (cmp_inst.f.x2 == 1)) {
195                 /* Integere compare - Register Register (A6 type)*/
196                 if ((cmp_inst.f.tb == 0) && (cmp_inst.f.ta == 0)
197                                 &&(cmp_inst.f.c == 1))
198                         ctype_unc = 1;
199         } else if ((cmp_inst.f.x2 == 2)||(cmp_inst.f.x2 == 3)) {
200                 /* Integere compare - Immediate Register (A8 type)*/
201                 if ((cmp_inst.f.ta == 0) &&(cmp_inst.f.c == 1))
202                         ctype_unc = 1;
203         }
204 out:
205         return ctype_unc;
206 }
207
208 /*
209  * In this function we override the bundle with
210  * the break instruction at the given slot.
211  */
212 static void __kprobes prepare_break_inst(uint template, uint  slot,
213                                          uint major_opcode,
214                                          unsigned long kprobe_inst,
215                                          struct kprobe *p)
216 {
217         unsigned long break_inst = BREAK_INST;
218         bundle_t *bundle = &p->opcode.bundle;
219
220         /*
221          * Copy the original kprobe_inst qualifying predicate(qp)
222          * to the break instruction iff !is_cmp_ctype_unc_inst
223          * because for cmp instruction with ctype equal to unc,
224          * which is a special instruction always needs to be
225          * executed regradless of qp
226          */
227         if (!is_cmp_ctype_unc_inst(template, slot, major_opcode, kprobe_inst))
228                 break_inst |= (0x3f & kprobe_inst);
229
230         switch (slot) {
231           case 0:
232                 bundle->quad0.slot0 = break_inst;
233                 break;
234           case 1:
235                 bundle->quad0.slot1_p0 = break_inst;
236                 bundle->quad1.slot1_p1 = break_inst >> (64-46);
237                 break;
238           case 2:
239                 bundle->quad1.slot2 = break_inst;
240                 break;
241         }
242
243         /*
244          * Update the instruction flag, so that we can
245          * emulate the instruction properly after we
246          * single step on original instruction
247          */
248         update_kprobe_inst_flag(template, slot, major_opcode, kprobe_inst, p);
249 }
250
251 static void __kprobes get_kprobe_inst(bundle_t *bundle, uint slot,
252                 unsigned long *kprobe_inst, uint *major_opcode)
253 {
254         unsigned long kprobe_inst_p0, kprobe_inst_p1;
255         unsigned int template;
256
257         template = bundle->quad0.template;
258
259         switch (slot) {
260           case 0:
261                 *major_opcode = (bundle->quad0.slot0 >> SLOT0_OPCODE_SHIFT);
262                 *kprobe_inst = bundle->quad0.slot0;
263                   break;
264           case 1:
265                 *major_opcode = (bundle->quad1.slot1_p1 >> SLOT1_p1_OPCODE_SHIFT);
266                 kprobe_inst_p0 = bundle->quad0.slot1_p0;
267                 kprobe_inst_p1 = bundle->quad1.slot1_p1;
268                 *kprobe_inst = kprobe_inst_p0 | (kprobe_inst_p1 << (64-46));
269                 break;
270           case 2:
271                 *major_opcode = (bundle->quad1.slot2 >> SLOT2_OPCODE_SHIFT);
272                 *kprobe_inst = bundle->quad1.slot2;
273                 break;
274         }
275 }
276
277 /* Returns non-zero if the addr is in the Interrupt Vector Table */
278 static int __kprobes in_ivt_functions(unsigned long addr)
279 {
280         return (addr >= (unsigned long)__start_ivt_text
281                 && addr < (unsigned long)__end_ivt_text);
282 }
283
284 static int __kprobes valid_kprobe_addr(int template, int slot,
285                                        unsigned long addr)
286 {
287         if ((slot > 2) || ((bundle_encoding[template][1] == L) && slot > 1)) {
288                 printk(KERN_WARNING "Attempting to insert unaligned kprobe "
289                                 "at 0x%lx\n", addr);
290                 return -EINVAL;
291         }
292
293         if (in_ivt_functions(addr)) {
294                 printk(KERN_WARNING "Kprobes can't be inserted inside "
295                                 "IVT functions at 0x%lx\n", addr);
296                 return -EINVAL;
297         }
298
299         if (slot == 1 && bundle_encoding[template][1] != L) {
300                 printk(KERN_WARNING "Inserting kprobes on slot #1 "
301                        "is not supported\n");
302                 return -EINVAL;
303         }
304
305         return 0;
306 }
307
308 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
309 {
310         kcb->prev_kprobe.kp = kprobe_running();
311         kcb->prev_kprobe.status = kcb->kprobe_status;
312 }
313
314 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
315 {
316         __get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
317         kcb->kprobe_status = kcb->prev_kprobe.status;
318 }
319
320 static void __kprobes set_current_kprobe(struct kprobe *p,
321                         struct kprobe_ctlblk *kcb)
322 {
323         __get_cpu_var(current_kprobe) = p;
324 }
325
326 static void kretprobe_trampoline(void)
327 {
328 }
329
330 /*
331  * At this point the target function has been tricked into
332  * returning into our trampoline.  Lookup the associated instance
333  * and then:
334  *    - call the handler function
335  *    - cleanup by marking the instance as unused
336  *    - long jump back to the original return address
337  */
338 int __kprobes trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
339 {
340         struct kretprobe_instance *ri = NULL;
341         struct hlist_head *head;
342         struct hlist_node *node, *tmp;
343         unsigned long flags, orig_ret_address = 0;
344         unsigned long trampoline_address =
345                 ((struct fnptr *)kretprobe_trampoline)->ip;
346
347         spin_lock_irqsave(&kretprobe_lock, flags);
348         head = kretprobe_inst_table_head(current);
349
350         /*
351          * It is possible to have multiple instances associated with a given
352          * task either because an multiple functions in the call path
353          * have a return probe installed on them, and/or more then one return
354          * return probe was registered for a target function.
355          *
356          * We can handle this because:
357          *     - instances are always inserted at the head of the list
358          *     - when multiple return probes are registered for the same
359          *       function, the first instance's ret_addr will point to the
360          *       real return address, and all the rest will point to
361          *       kretprobe_trampoline
362          */
363         hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
364                 if (ri->task != current)
365                         /* another task is sharing our hash bucket */
366                         continue;
367
368                 if (ri->rp && ri->rp->handler)
369                         ri->rp->handler(ri, regs);
370
371                 orig_ret_address = (unsigned long)ri->ret_addr;
372                 recycle_rp_inst(ri);
373
374                 if (orig_ret_address != trampoline_address)
375                         /*
376                          * This is the real return address. Any other
377                          * instances associated with this task are for
378                          * other calls deeper on the call stack
379                          */
380                         break;
381         }
382
383         BUG_ON(!orig_ret_address || (orig_ret_address == trampoline_address));
384         regs->cr_iip = orig_ret_address;
385
386         reset_current_kprobe();
387         spin_unlock_irqrestore(&kretprobe_lock, flags);
388         preempt_enable_no_resched();
389
390         /*
391          * By returning a non-zero value, we are telling
392          * kprobe_handler() that we don't want the post_handler
393          * to run (and have re-enabled preemption)
394          */
395         return 1;
396 }
397
398 /* Called with kretprobe_lock held */
399 void __kprobes arch_prepare_kretprobe(struct kretprobe *rp,
400                                       struct pt_regs *regs)
401 {
402         struct kretprobe_instance *ri;
403
404         if ((ri = get_free_rp_inst(rp)) != NULL) {
405                 ri->rp = rp;
406                 ri->task = current;
407                 ri->ret_addr = (kprobe_opcode_t *)regs->b0;
408
409                 /* Replace the return addr with trampoline addr */
410                 regs->b0 = ((struct fnptr *)kretprobe_trampoline)->ip;
411
412                 add_rp_inst(ri);
413         } else {
414                 rp->nmissed++;
415         }
416 }
417
418 int __kprobes arch_prepare_kprobe(struct kprobe *p)
419 {
420         unsigned long addr = (unsigned long) p->addr;
421         unsigned long *kprobe_addr = (unsigned long *)(addr & ~0xFULL);
422         unsigned long kprobe_inst=0;
423         unsigned int slot = addr & 0xf, template, major_opcode = 0;
424         bundle_t *bundle;
425
426         bundle = &((kprobe_opcode_t *)kprobe_addr)->bundle;
427         template = bundle->quad0.template;
428
429         if(valid_kprobe_addr(template, slot, addr))
430                 return -EINVAL;
431
432         /* Move to slot 2, if bundle is MLX type and kprobe slot is 1 */
433         if (slot == 1 && bundle_encoding[template][1] == L)
434                 slot++;
435
436         /* Get kprobe_inst and major_opcode from the bundle */
437         get_kprobe_inst(bundle, slot, &kprobe_inst, &major_opcode);
438
439         if (unsupported_inst(template, slot, major_opcode, kprobe_inst, addr))
440                         return -EINVAL;
441
442
443         p->ainsn.insn = get_insn_slot();
444         if (!p->ainsn.insn)
445                 return -ENOMEM;
446         memcpy(&p->opcode, kprobe_addr, sizeof(kprobe_opcode_t));
447         memcpy(p->ainsn.insn, kprobe_addr, sizeof(kprobe_opcode_t));
448
449         prepare_break_inst(template, slot, major_opcode, kprobe_inst, p);
450
451         return 0;
452 }
453
454 void __kprobes arch_arm_kprobe(struct kprobe *p)
455 {
456         unsigned long addr = (unsigned long)p->addr;
457         unsigned long arm_addr = addr & ~0xFULL;
458
459         flush_icache_range((unsigned long)p->ainsn.insn,
460                         (unsigned long)p->ainsn.insn + sizeof(kprobe_opcode_t));
461         memcpy((char *)arm_addr, &p->opcode, sizeof(kprobe_opcode_t));
462         flush_icache_range(arm_addr, arm_addr + sizeof(kprobe_opcode_t));
463 }
464
465 void __kprobes arch_disarm_kprobe(struct kprobe *p)
466 {
467         unsigned long addr = (unsigned long)p->addr;
468         unsigned long arm_addr = addr & ~0xFULL;
469
470         /* p->ainsn.insn contains the original unaltered kprobe_opcode_t */
471         memcpy((char *) arm_addr, (char *) p->ainsn.insn,
472                                          sizeof(kprobe_opcode_t));
473         flush_icache_range(arm_addr, arm_addr + sizeof(kprobe_opcode_t));
474 }
475
476 void __kprobes arch_remove_kprobe(struct kprobe *p)
477 {
478         mutex_lock(&kprobe_mutex);
479         free_insn_slot(p->ainsn.insn);
480         mutex_unlock(&kprobe_mutex);
481 }
482 /*
483  * We are resuming execution after a single step fault, so the pt_regs
484  * structure reflects the register state after we executed the instruction
485  * located in the kprobe (p->ainsn.insn.bundle).  We still need to adjust
486  * the ip to point back to the original stack address. To set the IP address
487  * to original stack address, handle the case where we need to fixup the
488  * relative IP address and/or fixup branch register.
489  */
490 static void __kprobes resume_execution(struct kprobe *p, struct pt_regs *regs)
491 {
492         unsigned long bundle_addr = (unsigned long) (&p->ainsn.insn->bundle);
493         unsigned long resume_addr = (unsigned long)p->addr & ~0xFULL;
494         unsigned long template;
495         int slot = ((unsigned long)p->addr & 0xf);
496
497         template = p->ainsn.insn->bundle.quad0.template;
498
499         if (slot == 1 && bundle_encoding[template][1] == L)
500                 slot = 2;
501
502         if (p->ainsn.inst_flag) {
503
504                 if (p->ainsn.inst_flag & INST_FLAG_FIX_RELATIVE_IP_ADDR) {
505                         /* Fix relative IP address */
506                         regs->cr_iip = (regs->cr_iip - bundle_addr) +
507                                         resume_addr;
508                 }
509
510                 if (p->ainsn.inst_flag & INST_FLAG_FIX_BRANCH_REG) {
511                 /*
512                  * Fix target branch register, software convention is
513                  * to use either b0 or b6 or b7, so just checking
514                  * only those registers
515                  */
516                         switch (p->ainsn.target_br_reg) {
517                         case 0:
518                                 if ((regs->b0 == bundle_addr) ||
519                                         (regs->b0 == bundle_addr + 0x10)) {
520                                         regs->b0 = (regs->b0 - bundle_addr) +
521                                                 resume_addr;
522                                 }
523                                 break;
524                         case 6:
525                                 if ((regs->b6 == bundle_addr) ||
526                                         (regs->b6 == bundle_addr + 0x10)) {
527                                         regs->b6 = (regs->b6 - bundle_addr) +
528                                                 resume_addr;
529                                 }
530                                 break;
531                         case 7:
532                                 if ((regs->b7 == bundle_addr) ||
533                                         (regs->b7 == bundle_addr + 0x10)) {
534                                         regs->b7 = (regs->b7 - bundle_addr) +
535                                                 resume_addr;
536                                 }
537                                 break;
538                         } /* end switch */
539                 }
540                 goto turn_ss_off;
541         }
542
543         if (slot == 2) {
544                 if (regs->cr_iip == bundle_addr + 0x10) {
545                         regs->cr_iip = resume_addr + 0x10;
546                 }
547         } else {
548                 if (regs->cr_iip == bundle_addr) {
549                         regs->cr_iip = resume_addr;
550                 }
551         }
552
553 turn_ss_off:
554         /* Turn off Single Step bit */
555         ia64_psr(regs)->ss = 0;
556 }
557
558 static void __kprobes prepare_ss(struct kprobe *p, struct pt_regs *regs)
559 {
560         unsigned long bundle_addr = (unsigned long) &p->ainsn.insn->bundle;
561         unsigned long slot = (unsigned long)p->addr & 0xf;
562
563         /* single step inline if break instruction */
564         if (p->ainsn.inst_flag == INST_FLAG_BREAK_INST)
565                 regs->cr_iip = (unsigned long)p->addr & ~0xFULL;
566         else
567                 regs->cr_iip = bundle_addr & ~0xFULL;
568
569         if (slot > 2)
570                 slot = 0;
571
572         ia64_psr(regs)->ri = slot;
573
574         /* turn on single stepping */
575         ia64_psr(regs)->ss = 1;
576 }
577
578 static int __kprobes is_ia64_break_inst(struct pt_regs *regs)
579 {
580         unsigned int slot = ia64_psr(regs)->ri;
581         unsigned int template, major_opcode;
582         unsigned long kprobe_inst;
583         unsigned long *kprobe_addr = (unsigned long *)regs->cr_iip;
584         bundle_t bundle;
585
586         memcpy(&bundle, kprobe_addr, sizeof(bundle_t));
587         template = bundle.quad0.template;
588
589         /* Move to slot 2, if bundle is MLX type and kprobe slot is 1 */
590         if (slot == 1 && bundle_encoding[template][1] == L)
591                 slot++;
592
593         /* Get Kprobe probe instruction at given slot*/
594         get_kprobe_inst(&bundle, slot, &kprobe_inst, &major_opcode);
595
596         /* For break instruction,
597          * Bits 37:40 Major opcode to be zero
598          * Bits 27:32 X6 to be zero
599          * Bits 32:35 X3 to be zero
600          */
601         if (major_opcode || ((kprobe_inst >> 27) & 0x1FF) ) {
602                 /* Not a break instruction */
603                 return 0;
604         }
605
606         /* Is a break instruction */
607         return 1;
608 }
609
610 static int __kprobes pre_kprobes_handler(struct die_args *args)
611 {
612         struct kprobe *p;
613         int ret = 0;
614         struct pt_regs *regs = args->regs;
615         kprobe_opcode_t *addr = (kprobe_opcode_t *)instruction_pointer(regs);
616         struct kprobe_ctlblk *kcb;
617
618         /*
619          * We don't want to be preempted for the entire
620          * duration of kprobe processing
621          */
622         preempt_disable();
623         kcb = get_kprobe_ctlblk();
624
625         /* Handle recursion cases */
626         if (kprobe_running()) {
627                 p = get_kprobe(addr);
628                 if (p) {
629                         if ((kcb->kprobe_status == KPROBE_HIT_SS) &&
630                              (p->ainsn.inst_flag == INST_FLAG_BREAK_INST)) {
631                                 ia64_psr(regs)->ss = 0;
632                                 goto no_kprobe;
633                         }
634                         /* We have reentered the pre_kprobe_handler(), since
635                          * another probe was hit while within the handler.
636                          * We here save the original kprobes variables and
637                          * just single step on the instruction of the new probe
638                          * without calling any user handlers.
639                          */
640                         save_previous_kprobe(kcb);
641                         set_current_kprobe(p, kcb);
642                         kprobes_inc_nmissed_count(p);
643                         prepare_ss(p, regs);
644                         kcb->kprobe_status = KPROBE_REENTER;
645                         return 1;
646                 } else if (args->err == __IA64_BREAK_JPROBE) {
647                         /*
648                          * jprobe instrumented function just completed
649                          */
650                         p = __get_cpu_var(current_kprobe);
651                         if (p->break_handler && p->break_handler(p, regs)) {
652                                 goto ss_probe;
653                         }
654                 } else if (!is_ia64_break_inst(regs)) {
655                         /* The breakpoint instruction was removed by
656                          * another cpu right after we hit, no further
657                          * handling of this interrupt is appropriate
658                          */
659                         ret = 1;
660                         goto no_kprobe;
661                 } else {
662                         /* Not our break */
663                         goto no_kprobe;
664                 }
665         }
666
667         p = get_kprobe(addr);
668         if (!p) {
669                 if (!is_ia64_break_inst(regs)) {
670                         /*
671                          * The breakpoint instruction was removed right
672                          * after we hit it.  Another cpu has removed
673                          * either a probepoint or a debugger breakpoint
674                          * at this address.  In either case, no further
675                          * handling of this interrupt is appropriate.
676                          */
677                         ret = 1;
678
679                 }
680
681                 /* Not one of our break, let kernel handle it */
682                 goto no_kprobe;
683         }
684
685         set_current_kprobe(p, kcb);
686         kcb->kprobe_status = KPROBE_HIT_ACTIVE;
687
688         if (p->pre_handler && p->pre_handler(p, regs))
689                 /*
690                  * Our pre-handler is specifically requesting that we just
691                  * do a return.  This is used for both the jprobe pre-handler
692                  * and the kretprobe trampoline
693                  */
694                 return 1;
695
696 ss_probe:
697         prepare_ss(p, regs);
698         kcb->kprobe_status = KPROBE_HIT_SS;
699         return 1;
700
701 no_kprobe:
702         preempt_enable_no_resched();
703         return ret;
704 }
705
706 static int __kprobes post_kprobes_handler(struct pt_regs *regs)
707 {
708         struct kprobe *cur = kprobe_running();
709         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
710
711         if (!cur)
712                 return 0;
713
714         if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
715                 kcb->kprobe_status = KPROBE_HIT_SSDONE;
716                 cur->post_handler(cur, regs, 0);
717         }
718
719         resume_execution(cur, regs);
720
721         /*Restore back the original saved kprobes variables and continue. */
722         if (kcb->kprobe_status == KPROBE_REENTER) {
723                 restore_previous_kprobe(kcb);
724                 goto out;
725         }
726         reset_current_kprobe();
727
728 out:
729         preempt_enable_no_resched();
730         return 1;
731 }
732
733 static int __kprobes kprobes_fault_handler(struct pt_regs *regs, int trapnr)
734 {
735         struct kprobe *cur = kprobe_running();
736         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
737
738
739         switch(kcb->kprobe_status) {
740         case KPROBE_HIT_SS:
741         case KPROBE_REENTER:
742                 /*
743                  * We are here because the instruction being single
744                  * stepped caused a page fault. We reset the current
745                  * kprobe and the instruction pointer points back to
746                  * the probe address and allow the page fault handler
747                  * to continue as a normal page fault.
748                  */
749                 regs->cr_iip = ((unsigned long)cur->addr) & ~0xFULL;
750                 ia64_psr(regs)->ri = ((unsigned long)cur->addr) & 0xf;
751                 if (kcb->kprobe_status == KPROBE_REENTER)
752                         restore_previous_kprobe(kcb);
753                 else
754                         reset_current_kprobe();
755                 preempt_enable_no_resched();
756                 break;
757         case KPROBE_HIT_ACTIVE:
758         case KPROBE_HIT_SSDONE:
759                 /*
760                  * We increment the nmissed count for accounting,
761                  * we can also use npre/npostfault count for accouting
762                  * these specific fault cases.
763                  */
764                 kprobes_inc_nmissed_count(cur);
765
766                 /*
767                  * We come here because instructions in the pre/post
768                  * handler caused the page_fault, this could happen
769                  * if handler tries to access user space by
770                  * copy_from_user(), get_user() etc. Let the
771                  * user-specified handler try to fix it first.
772                  */
773                 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
774                         return 1;
775                 /*
776                  * In case the user-specified fault handler returned
777                  * zero, try to fix up.
778                  */
779                 if (ia64_done_with_exception(regs))
780                         return 1;
781
782                 /*
783                  * Let ia64_do_page_fault() fix it.
784                  */
785                 break;
786         default:
787                 break;
788         }
789
790         return 0;
791 }
792
793 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
794                                        unsigned long val, void *data)
795 {
796         struct die_args *args = (struct die_args *)data;
797         int ret = NOTIFY_DONE;
798
799         if (args->regs && user_mode(args->regs))
800                 return ret;
801
802         switch(val) {
803         case DIE_BREAK:
804                 /* err is break number from ia64_bad_break() */
805                 if (args->err == 0x80200 || args->err == 0x80300 || args->err == 0)
806                         if (pre_kprobes_handler(args))
807                                 ret = NOTIFY_STOP;
808                 break;
809         case DIE_FAULT:
810                 /* err is vector number from ia64_fault() */
811                 if (args->err == 36)
812                         if (post_kprobes_handler(args->regs))
813                                 ret = NOTIFY_STOP;
814                 break;
815         case DIE_PAGE_FAULT:
816                 /* kprobe_running() needs smp_processor_id() */
817                 preempt_disable();
818                 if (kprobe_running() &&
819                         kprobes_fault_handler(args->regs, args->trapnr))
820                         ret = NOTIFY_STOP;
821                 preempt_enable();
822         default:
823                 break;
824         }
825         return ret;
826 }
827
828 struct param_bsp_cfm {
829         unsigned long ip;
830         unsigned long *bsp;
831         unsigned long cfm;
832 };
833
834 static void ia64_get_bsp_cfm(struct unw_frame_info *info, void *arg)
835 {
836         unsigned long ip;
837         struct param_bsp_cfm *lp = arg;
838
839         do {
840                 unw_get_ip(info, &ip);
841                 if (ip == 0)
842                         break;
843                 if (ip == lp->ip) {
844                         unw_get_bsp(info, (unsigned long*)&lp->bsp);
845                         unw_get_cfm(info, (unsigned long*)&lp->cfm);
846                         return;
847                 }
848         } while (unw_unwind(info) >= 0);
849         lp->bsp = 0;
850         lp->cfm = 0;
851         return;
852 }
853
854 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
855 {
856         struct jprobe *jp = container_of(p, struct jprobe, kp);
857         unsigned long addr = ((struct fnptr *)(jp->entry))->ip;
858         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
859         struct param_bsp_cfm pa;
860         int bytes;
861
862         /*
863          * Callee owns the argument space and could overwrite it, eg
864          * tail call optimization. So to be absolutely safe
865          * we save the argument space before transfering the control
866          * to instrumented jprobe function which runs in
867          * the process context
868          */
869         pa.ip = regs->cr_iip;
870         unw_init_running(ia64_get_bsp_cfm, &pa);
871         bytes = (char *)ia64_rse_skip_regs(pa.bsp, pa.cfm & 0x3f)
872                                 - (char *)pa.bsp;
873         memcpy( kcb->jprobes_saved_stacked_regs,
874                 pa.bsp,
875                 bytes );
876         kcb->bsp = pa.bsp;
877         kcb->cfm = pa.cfm;
878
879         /* save architectural state */
880         kcb->jprobe_saved_regs = *regs;
881
882         /* after rfi, execute the jprobe instrumented function */
883         regs->cr_iip = addr & ~0xFULL;
884         ia64_psr(regs)->ri = addr & 0xf;
885         regs->r1 = ((struct fnptr *)(jp->entry))->gp;
886
887         /*
888          * fix the return address to our jprobe_inst_return() function
889          * in the jprobes.S file
890          */
891         regs->b0 = ((struct fnptr *)(jprobe_inst_return))->ip;
892
893         return 1;
894 }
895
896 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
897 {
898         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
899         int bytes;
900
901         /* restoring architectural state */
902         *regs = kcb->jprobe_saved_regs;
903
904         /* restoring the original argument space */
905         flush_register_stack();
906         bytes = (char *)ia64_rse_skip_regs(kcb->bsp, kcb->cfm & 0x3f)
907                                 - (char *)kcb->bsp;
908         memcpy( kcb->bsp,
909                 kcb->jprobes_saved_stacked_regs,
910                 bytes );
911         invalidate_stacked_regs();
912
913         preempt_enable_no_resched();
914         return 1;
915 }
916
917 static struct kprobe trampoline_p = {
918         .pre_handler = trampoline_probe_handler
919 };
920
921 int __init arch_init_kprobes(void)
922 {
923         trampoline_p.addr =
924                 (kprobe_opcode_t *)((struct fnptr *)kretprobe_trampoline)->ip;
925         return register_kprobe(&trampoline_p);
926 }