[IA64] Add ACPI based P-state support
[safe/jmp/linux-2.6] / arch / ia64 / kernel / cpufreq / acpi-cpufreq.c
1 /*
2  * arch/ia64/kernel/cpufreq/acpi-cpufreq.c
3  * This file provides the ACPI based P-state support. This
4  * module works with generic cpufreq infrastructure. Most of
5  * the code is based on i386 version
6  * (arch/i386/kernel/cpu/cpufreq/acpi-cpufreq.c)
7  *
8  * Copyright (C) 2005 Intel Corp
9  *      Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
10  */
11
12 #include <linux/config.h>
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/cpufreq.h>
17 #include <linux/proc_fs.h>
18 #include <linux/seq_file.h>
19 #include <asm/io.h>
20 #include <asm/uaccess.h>
21 #include <asm/pal.h>
22
23 #include <linux/acpi.h>
24 #include <acpi/processor.h>
25
26 #define dprintk(msg...) cpufreq_debug_printk(CPUFREQ_DEBUG_DRIVER, "acpi-cpufreq", msg)
27
28 MODULE_AUTHOR("Venkatesh Pallipadi");
29 MODULE_DESCRIPTION("ACPI Processor P-States Driver");
30 MODULE_LICENSE("GPL");
31
32
33 struct cpufreq_acpi_io {
34         struct acpi_processor_performance       acpi_data;
35         struct cpufreq_frequency_table          *freq_table;
36         unsigned int                            resume;
37 };
38
39 static struct cpufreq_acpi_io   *acpi_io_data[NR_CPUS];
40
41 static struct cpufreq_driver acpi_cpufreq_driver;
42
43
44 static int
45 processor_set_pstate (
46         u32     value)
47 {
48         s64 retval;
49
50         dprintk("processor_set_pstate\n");
51
52         retval = ia64_pal_set_pstate((u64)value);
53
54         if (retval) {
55                 dprintk("Failed to set freq to 0x%x, with error 0x%x\n",
56                         value, retval);
57                 return -ENODEV;
58         }
59         return (int)retval;
60 }
61
62
63 static int
64 processor_get_pstate (
65         u32     *value)
66 {
67         u64     pstate_index = 0;
68         s64     retval;
69
70         dprintk("processor_get_pstate\n");
71
72         retval = ia64_pal_get_pstate(&pstate_index);
73         *value = (u32) pstate_index;
74
75         if (retval)
76                 dprintk("Failed to get current freq with "
77                         "error 0x%x, idx 0x%x\n", retval, *value);
78
79         return (int)retval;
80 }
81
82
83 /* To be used only after data->acpi_data is initialized */
84 static unsigned
85 extract_clock (
86         struct cpufreq_acpi_io *data,
87         unsigned value,
88         unsigned int cpu)
89 {
90         unsigned long i;
91
92         dprintk("extract_clock\n");
93
94         for (i = 0; i < data->acpi_data.state_count; i++) {
95                 if (value >= data->acpi_data.states[i].control)
96                         return data->acpi_data.states[i].core_frequency;
97         }
98         return data->acpi_data.states[i-1].core_frequency;
99 }
100
101
102 static unsigned int
103 processor_get_freq (
104         struct cpufreq_acpi_io  *data,
105         unsigned int            cpu)
106 {
107         int                     ret = 0;
108         u32                     value = 0;
109         cpumask_t               saved_mask;
110         unsigned long           clock_freq;
111
112         dprintk("processor_get_freq\n");
113
114         saved_mask = current->cpus_allowed;
115         set_cpus_allowed(current, cpumask_of_cpu(cpu));
116         if (smp_processor_id() != cpu) {
117                 ret = -EAGAIN;
118                 goto migrate_end;
119         }
120
121         /*
122          * processor_get_pstate gets the average frequency since the
123          * last get. So, do two PAL_get_freq()...
124          */
125         ret = processor_get_pstate(&value);
126         ret = processor_get_pstate(&value);
127
128         if (ret) {
129                 set_cpus_allowed(current, saved_mask);
130                 printk(KERN_WARNING "get performance failed with error %d\n",
131                        ret);
132                 ret = -EAGAIN;
133                 goto migrate_end;
134         }
135         clock_freq = extract_clock(data, value, cpu);
136         ret = (clock_freq*1000);
137
138 migrate_end:
139         set_cpus_allowed(current, saved_mask);
140         return ret;
141 }
142
143
144 static int
145 processor_set_freq (
146         struct cpufreq_acpi_io  *data,
147         unsigned int            cpu,
148         int                     state)
149 {
150         int                     ret = 0;
151         u32                     value = 0;
152         struct cpufreq_freqs    cpufreq_freqs;
153         cpumask_t               saved_mask;
154         int                     retval;
155
156         dprintk("processor_set_freq\n");
157
158         saved_mask = current->cpus_allowed;
159         set_cpus_allowed(current, cpumask_of_cpu(cpu));
160         if (smp_processor_id() != cpu) {
161                 retval = -EAGAIN;
162                 goto migrate_end;
163         }
164
165         if (state == data->acpi_data.state) {
166                 if (unlikely(data->resume)) {
167                         dprintk("Called after resume, resetting to P%d\n", state);
168                         data->resume = 0;
169                 } else {
170                         dprintk("Already at target state (P%d)\n", state);
171                         retval = 0;
172                         goto migrate_end;
173                 }
174         }
175
176         dprintk("Transitioning from P%d to P%d\n",
177                 data->acpi_data.state, state);
178
179         /* cpufreq frequency struct */
180         cpufreq_freqs.cpu = cpu;
181         cpufreq_freqs.old = data->freq_table[data->acpi_data.state].frequency;
182         cpufreq_freqs.new = data->freq_table[state].frequency;
183
184         /* notify cpufreq */
185         cpufreq_notify_transition(&cpufreq_freqs, CPUFREQ_PRECHANGE);
186
187         /*
188          * First we write the target state's 'control' value to the
189          * control_register.
190          */
191
192         value = (u32) data->acpi_data.states[state].control;
193
194         dprintk("Transitioning to state: 0x%08x\n", value);
195
196         ret = processor_set_pstate(value);
197         if (ret) {
198                 unsigned int tmp = cpufreq_freqs.new;
199                 cpufreq_notify_transition(&cpufreq_freqs, CPUFREQ_POSTCHANGE);
200                 cpufreq_freqs.new = cpufreq_freqs.old;
201                 cpufreq_freqs.old = tmp;
202                 cpufreq_notify_transition(&cpufreq_freqs, CPUFREQ_PRECHANGE);
203                 cpufreq_notify_transition(&cpufreq_freqs, CPUFREQ_POSTCHANGE);
204                 printk(KERN_WARNING "Transition failed with error %d\n", ret);
205                 retval = -ENODEV;
206                 goto migrate_end;
207         }
208
209         cpufreq_notify_transition(&cpufreq_freqs, CPUFREQ_POSTCHANGE);
210
211         data->acpi_data.state = state;
212
213         retval = 0;
214
215 migrate_end:
216         set_cpus_allowed(current, saved_mask);
217         return (retval);
218 }
219
220
221 static unsigned int
222 acpi_cpufreq_get (
223         unsigned int            cpu)
224 {
225         struct cpufreq_acpi_io *data = acpi_io_data[cpu];
226
227         dprintk("acpi_cpufreq_get\n");
228
229         return processor_get_freq(data, cpu);
230 }
231
232
233 static int
234 acpi_cpufreq_target (
235         struct cpufreq_policy   *policy,
236         unsigned int target_freq,
237         unsigned int relation)
238 {
239         struct cpufreq_acpi_io *data = acpi_io_data[policy->cpu];
240         unsigned int next_state = 0;
241         unsigned int result = 0;
242
243         dprintk("acpi_cpufreq_setpolicy\n");
244
245         result = cpufreq_frequency_table_target(policy,
246                         data->freq_table, target_freq, relation, &next_state);
247         if (result)
248                 return (result);
249
250         result = processor_set_freq(data, policy->cpu, next_state);
251
252         return (result);
253 }
254
255
256 static int
257 acpi_cpufreq_verify (
258         struct cpufreq_policy   *policy)
259 {
260         unsigned int result = 0;
261         struct cpufreq_acpi_io *data = acpi_io_data[policy->cpu];
262
263         dprintk("acpi_cpufreq_verify\n");
264
265         result = cpufreq_frequency_table_verify(policy,
266                         data->freq_table);
267
268         return (result);
269 }
270
271
272 /*
273  * processor_init_pdc - let BIOS know about the SMP capabilities
274  * of this driver
275  * @perf: processor-specific acpi_io_data struct
276  * @cpu: CPU being initialized
277  *
278  * To avoid issues with legacy OSes, some BIOSes require to be informed of
279  * the SMP capabilities of OS P-state driver. Here we set the bits in _PDC
280  * accordingly. Actual call to _PDC is done in driver/acpi/processor.c
281  */
282 static void
283 processor_init_pdc (
284                 struct acpi_processor_performance *perf,
285                 unsigned int cpu,
286                 struct acpi_object_list *obj_list
287                 )
288 {
289         union acpi_object *obj;
290         u32 *buf;
291
292         dprintk("processor_init_pdc\n");
293
294         perf->pdc = NULL;
295         /* Initialize pdc. It will be used later. */
296         if (!obj_list)
297                 return;
298
299         if (!(obj_list->count && obj_list->pointer))
300                 return;
301
302         obj = obj_list->pointer;
303         if ((obj->buffer.length == 12) && obj->buffer.pointer) {
304                 buf = (u32 *)obj->buffer.pointer;
305                 buf[0] = ACPI_PDC_REVISION_ID;
306                 buf[1] = 1;
307                 buf[2] = ACPI_PDC_EST_CAPABILITY_SMP;
308                 perf->pdc = obj_list;
309         }
310         return;
311 }
312
313
314 static int
315 acpi_cpufreq_cpu_init (
316         struct cpufreq_policy   *policy)
317 {
318         unsigned int            i;
319         unsigned int            cpu = policy->cpu;
320         struct cpufreq_acpi_io  *data;
321         unsigned int            result = 0;
322
323         union acpi_object               arg0 = {ACPI_TYPE_BUFFER};
324         u32                             arg0_buf[3];
325         struct acpi_object_list         arg_list = {1, &arg0};
326
327         dprintk("acpi_cpufreq_cpu_init\n");
328         /* setup arg_list for _PDC settings */
329         arg0.buffer.length = 12;
330         arg0.buffer.pointer = (u8 *) arg0_buf;
331
332         data = kmalloc(sizeof(struct cpufreq_acpi_io), GFP_KERNEL);
333         if (!data)
334                 return (-ENOMEM);
335
336         memset(data, 0, sizeof(struct cpufreq_acpi_io));
337
338         acpi_io_data[cpu] = data;
339
340         processor_init_pdc(&data->acpi_data, cpu, &arg_list);
341         result = acpi_processor_register_performance(&data->acpi_data, cpu);
342         data->acpi_data.pdc = NULL;
343
344         if (result)
345                 goto err_free;
346
347         /* capability check */
348         if (data->acpi_data.state_count <= 1) {
349                 dprintk("No P-States\n");
350                 result = -ENODEV;
351                 goto err_unreg;
352         }
353
354         if ((data->acpi_data.control_register.space_id !=
355                                         ACPI_ADR_SPACE_FIXED_HARDWARE) ||
356             (data->acpi_data.status_register.space_id !=
357                                         ACPI_ADR_SPACE_FIXED_HARDWARE)) {
358                 dprintk("Unsupported address space [%d, %d]\n",
359                         (u32) (data->acpi_data.control_register.space_id),
360                         (u32) (data->acpi_data.status_register.space_id));
361                 result = -ENODEV;
362                 goto err_unreg;
363         }
364
365         /* alloc freq_table */
366         data->freq_table = kmalloc(sizeof(struct cpufreq_frequency_table) *
367                                    (data->acpi_data.state_count + 1),
368                                    GFP_KERNEL);
369         if (!data->freq_table) {
370                 result = -ENOMEM;
371                 goto err_unreg;
372         }
373
374         /* detect transition latency */
375         policy->cpuinfo.transition_latency = 0;
376         for (i=0; i<data->acpi_data.state_count; i++) {
377                 if ((data->acpi_data.states[i].transition_latency * 1000) >
378                     policy->cpuinfo.transition_latency) {
379                         policy->cpuinfo.transition_latency =
380                             data->acpi_data.states[i].transition_latency * 1000;
381                 }
382         }
383         policy->governor = CPUFREQ_DEFAULT_GOVERNOR;
384
385         policy->cur = processor_get_freq(data, policy->cpu);
386
387         /* table init */
388         for (i = 0; i <= data->acpi_data.state_count; i++)
389         {
390                 data->freq_table[i].index = i;
391                 if (i < data->acpi_data.state_count) {
392                         data->freq_table[i].frequency =
393                               data->acpi_data.states[i].core_frequency * 1000;
394                 } else {
395                         data->freq_table[i].frequency = CPUFREQ_TABLE_END;
396                 }
397         }
398
399         result = cpufreq_frequency_table_cpuinfo(policy, data->freq_table);
400         if (result) {
401                 goto err_freqfree;
402         }
403
404         /* notify BIOS that we exist */
405         acpi_processor_notify_smm(THIS_MODULE);
406
407         printk(KERN_INFO "acpi-cpufreq: CPU%u - ACPI performance management "
408                "activated.\n", cpu);
409
410         for (i = 0; i < data->acpi_data.state_count; i++)
411                 dprintk("     %cP%d: %d MHz, %d mW, %d uS, %d uS, 0x%x 0x%x\n",
412                         (i == data->acpi_data.state?'*':' '), i,
413                         (u32) data->acpi_data.states[i].core_frequency,
414                         (u32) data->acpi_data.states[i].power,
415                         (u32) data->acpi_data.states[i].transition_latency,
416                         (u32) data->acpi_data.states[i].bus_master_latency,
417                         (u32) data->acpi_data.states[i].status,
418                         (u32) data->acpi_data.states[i].control);
419
420         cpufreq_frequency_table_get_attr(data->freq_table, policy->cpu);
421
422         /* the first call to ->target() should result in us actually
423          * writing something to the appropriate registers. */
424         data->resume = 1;
425
426         return (result);
427
428  err_freqfree:
429         kfree(data->freq_table);
430  err_unreg:
431         acpi_processor_unregister_performance(&data->acpi_data, cpu);
432  err_free:
433         kfree(data);
434         acpi_io_data[cpu] = NULL;
435
436         return (result);
437 }
438
439
440 static int
441 acpi_cpufreq_cpu_exit (
442         struct cpufreq_policy   *policy)
443 {
444         struct cpufreq_acpi_io *data = acpi_io_data[policy->cpu];
445
446         dprintk("acpi_cpufreq_cpu_exit\n");
447
448         if (data) {
449                 cpufreq_frequency_table_put_attr(policy->cpu);
450                 acpi_io_data[policy->cpu] = NULL;
451                 acpi_processor_unregister_performance(&data->acpi_data,
452                                                       policy->cpu);
453                 kfree(data);
454         }
455
456         return (0);
457 }
458
459
460 static struct freq_attr* acpi_cpufreq_attr[] = {
461         &cpufreq_freq_attr_scaling_available_freqs,
462         NULL,
463 };
464
465
466 static struct cpufreq_driver acpi_cpufreq_driver = {
467         .verify         = acpi_cpufreq_verify,
468         .target         = acpi_cpufreq_target,
469         .get            = acpi_cpufreq_get,
470         .init           = acpi_cpufreq_cpu_init,
471         .exit           = acpi_cpufreq_cpu_exit,
472         .name           = "acpi-cpufreq",
473         .owner          = THIS_MODULE,
474         .attr           = acpi_cpufreq_attr,
475 };
476
477
478 static int __init
479 acpi_cpufreq_init (void)
480 {
481         dprintk("acpi_cpufreq_init\n");
482
483         return cpufreq_register_driver(&acpi_cpufreq_driver);
484 }
485
486
487 static void __exit
488 acpi_cpufreq_exit (void)
489 {
490         dprintk("acpi_cpufreq_exit\n");
491
492         cpufreq_unregister_driver(&acpi_cpufreq_driver);
493         return;
494 }
495
496
497 late_initcall(acpi_cpufreq_init);
498 module_exit(acpi_cpufreq_exit);
499