DaVinci: DM355: Adding PINMUX entries for DM355 Display
[safe/jmp/linux-2.6] / arch / arm / mach-davinci / dma.c
1 /*
2  * EDMA3 support for DaVinci
3  *
4  * Copyright (C) 2006-2009 Texas Instruments.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 #include <linux/kernel.h>
21 #include <linux/sched.h>
22 #include <linux/init.h>
23 #include <linux/module.h>
24 #include <linux/interrupt.h>
25 #include <linux/platform_device.h>
26 #include <linux/spinlock.h>
27 #include <linux/compiler.h>
28 #include <linux/io.h>
29
30 #include <mach/cputype.h>
31 #include <mach/memory.h>
32 #include <mach/hardware.h>
33 #include <mach/irqs.h>
34 #include <mach/edma.h>
35 #include <mach/mux.h>
36
37
38 /* Offsets matching "struct edmacc_param" */
39 #define PARM_OPT                0x00
40 #define PARM_SRC                0x04
41 #define PARM_A_B_CNT            0x08
42 #define PARM_DST                0x0c
43 #define PARM_SRC_DST_BIDX       0x10
44 #define PARM_LINK_BCNTRLD       0x14
45 #define PARM_SRC_DST_CIDX       0x18
46 #define PARM_CCNT               0x1c
47
48 #define PARM_SIZE               0x20
49
50 /* Offsets for EDMA CC global channel registers and their shadows */
51 #define SH_ER           0x00    /* 64 bits */
52 #define SH_ECR          0x08    /* 64 bits */
53 #define SH_ESR          0x10    /* 64 bits */
54 #define SH_CER          0x18    /* 64 bits */
55 #define SH_EER          0x20    /* 64 bits */
56 #define SH_EECR         0x28    /* 64 bits */
57 #define SH_EESR         0x30    /* 64 bits */
58 #define SH_SER          0x38    /* 64 bits */
59 #define SH_SECR         0x40    /* 64 bits */
60 #define SH_IER          0x50    /* 64 bits */
61 #define SH_IECR         0x58    /* 64 bits */
62 #define SH_IESR         0x60    /* 64 bits */
63 #define SH_IPR          0x68    /* 64 bits */
64 #define SH_ICR          0x70    /* 64 bits */
65 #define SH_IEVAL        0x78
66 #define SH_QER          0x80
67 #define SH_QEER         0x84
68 #define SH_QEECR        0x88
69 #define SH_QEESR        0x8c
70 #define SH_QSER         0x90
71 #define SH_QSECR        0x94
72 #define SH_SIZE         0x200
73
74 /* Offsets for EDMA CC global registers */
75 #define EDMA_REV        0x0000
76 #define EDMA_CCCFG      0x0004
77 #define EDMA_QCHMAP     0x0200  /* 8 registers */
78 #define EDMA_DMAQNUM    0x0240  /* 8 registers (4 on OMAP-L1xx) */
79 #define EDMA_QDMAQNUM   0x0260
80 #define EDMA_QUETCMAP   0x0280
81 #define EDMA_QUEPRI     0x0284
82 #define EDMA_EMR        0x0300  /* 64 bits */
83 #define EDMA_EMCR       0x0308  /* 64 bits */
84 #define EDMA_QEMR       0x0310
85 #define EDMA_QEMCR      0x0314
86 #define EDMA_CCERR      0x0318
87 #define EDMA_CCERRCLR   0x031c
88 #define EDMA_EEVAL      0x0320
89 #define EDMA_DRAE       0x0340  /* 4 x 64 bits*/
90 #define EDMA_QRAE       0x0380  /* 4 registers */
91 #define EDMA_QUEEVTENTRY        0x0400  /* 2 x 16 registers */
92 #define EDMA_QSTAT      0x0600  /* 2 registers */
93 #define EDMA_QWMTHRA    0x0620
94 #define EDMA_QWMTHRB    0x0624
95 #define EDMA_CCSTAT     0x0640
96
97 #define EDMA_M          0x1000  /* global channel registers */
98 #define EDMA_ECR        0x1008
99 #define EDMA_ECRH       0x100C
100 #define EDMA_SHADOW0    0x2000  /* 4 regions shadowing global channels */
101 #define EDMA_PARM       0x4000  /* 128 param entries */
102
103 #define PARM_OFFSET(param_no)   (EDMA_PARM + ((param_no) << 5))
104
105 #define EDMA_DCHMAP     0x0100  /* 64 registers */
106 #define CHMAP_EXIST     BIT(24)
107
108 #define EDMA_MAX_DMACH           64
109 #define EDMA_MAX_PARAMENTRY     512
110 #define EDMA_MAX_CC               2
111
112
113 /*****************************************************************************/
114
115 static void __iomem *edmacc_regs_base[EDMA_MAX_CC];
116
117 static inline unsigned int edma_read(unsigned ctlr, int offset)
118 {
119         return (unsigned int)__raw_readl(edmacc_regs_base[ctlr] + offset);
120 }
121
122 static inline void edma_write(unsigned ctlr, int offset, int val)
123 {
124         __raw_writel(val, edmacc_regs_base[ctlr] + offset);
125 }
126 static inline void edma_modify(unsigned ctlr, int offset, unsigned and,
127                 unsigned or)
128 {
129         unsigned val = edma_read(ctlr, offset);
130         val &= and;
131         val |= or;
132         edma_write(ctlr, offset, val);
133 }
134 static inline void edma_and(unsigned ctlr, int offset, unsigned and)
135 {
136         unsigned val = edma_read(ctlr, offset);
137         val &= and;
138         edma_write(ctlr, offset, val);
139 }
140 static inline void edma_or(unsigned ctlr, int offset, unsigned or)
141 {
142         unsigned val = edma_read(ctlr, offset);
143         val |= or;
144         edma_write(ctlr, offset, val);
145 }
146 static inline unsigned int edma_read_array(unsigned ctlr, int offset, int i)
147 {
148         return edma_read(ctlr, offset + (i << 2));
149 }
150 static inline void edma_write_array(unsigned ctlr, int offset, int i,
151                 unsigned val)
152 {
153         edma_write(ctlr, offset + (i << 2), val);
154 }
155 static inline void edma_modify_array(unsigned ctlr, int offset, int i,
156                 unsigned and, unsigned or)
157 {
158         edma_modify(ctlr, offset + (i << 2), and, or);
159 }
160 static inline void edma_or_array(unsigned ctlr, int offset, int i, unsigned or)
161 {
162         edma_or(ctlr, offset + (i << 2), or);
163 }
164 static inline void edma_or_array2(unsigned ctlr, int offset, int i, int j,
165                 unsigned or)
166 {
167         edma_or(ctlr, offset + ((i*2 + j) << 2), or);
168 }
169 static inline void edma_write_array2(unsigned ctlr, int offset, int i, int j,
170                 unsigned val)
171 {
172         edma_write(ctlr, offset + ((i*2 + j) << 2), val);
173 }
174 static inline unsigned int edma_shadow0_read(unsigned ctlr, int offset)
175 {
176         return edma_read(ctlr, EDMA_SHADOW0 + offset);
177 }
178 static inline unsigned int edma_shadow0_read_array(unsigned ctlr, int offset,
179                 int i)
180 {
181         return edma_read(ctlr, EDMA_SHADOW0 + offset + (i << 2));
182 }
183 static inline void edma_shadow0_write(unsigned ctlr, int offset, unsigned val)
184 {
185         edma_write(ctlr, EDMA_SHADOW0 + offset, val);
186 }
187 static inline void edma_shadow0_write_array(unsigned ctlr, int offset, int i,
188                 unsigned val)
189 {
190         edma_write(ctlr, EDMA_SHADOW0 + offset + (i << 2), val);
191 }
192 static inline unsigned int edma_parm_read(unsigned ctlr, int offset,
193                 int param_no)
194 {
195         return edma_read(ctlr, EDMA_PARM + offset + (param_no << 5));
196 }
197 static inline void edma_parm_write(unsigned ctlr, int offset, int param_no,
198                 unsigned val)
199 {
200         edma_write(ctlr, EDMA_PARM + offset + (param_no << 5), val);
201 }
202 static inline void edma_parm_modify(unsigned ctlr, int offset, int param_no,
203                 unsigned and, unsigned or)
204 {
205         edma_modify(ctlr, EDMA_PARM + offset + (param_no << 5), and, or);
206 }
207 static inline void edma_parm_and(unsigned ctlr, int offset, int param_no,
208                 unsigned and)
209 {
210         edma_and(ctlr, EDMA_PARM + offset + (param_no << 5), and);
211 }
212 static inline void edma_parm_or(unsigned ctlr, int offset, int param_no,
213                 unsigned or)
214 {
215         edma_or(ctlr, EDMA_PARM + offset + (param_no << 5), or);
216 }
217
218 /*****************************************************************************/
219
220 /* actual number of DMA channels and slots on this silicon */
221 struct edma {
222         /* how many dma resources of each type */
223         unsigned        num_channels;
224         unsigned        num_region;
225         unsigned        num_slots;
226         unsigned        num_tc;
227         unsigned        num_cc;
228         enum dma_event_q        default_queue;
229
230         /* list of channels with no even trigger; terminated by "-1" */
231         const s8        *noevent;
232
233         /* The edma_inuse bit for each PaRAM slot is clear unless the
234          * channel is in use ... by ARM or DSP, for QDMA, or whatever.
235          */
236         DECLARE_BITMAP(edma_inuse, EDMA_MAX_PARAMENTRY);
237
238         /* The edma_noevent bit for each channel is clear unless
239          * it doesn't trigger DMA events on this platform.  It uses a
240          * bit of SOC-specific initialization code.
241          */
242         DECLARE_BITMAP(edma_noevent, EDMA_MAX_DMACH);
243
244         unsigned        irq_res_start;
245         unsigned        irq_res_end;
246
247         struct dma_interrupt_data {
248                 void (*callback)(unsigned channel, unsigned short ch_status,
249                                 void *data);
250                 void *data;
251         } intr_data[EDMA_MAX_DMACH];
252 };
253
254 static struct edma *edma_info[EDMA_MAX_CC];
255
256 /* dummy param set used to (re)initialize parameter RAM slots */
257 static const struct edmacc_param dummy_paramset = {
258         .link_bcntrld = 0xffff,
259         .ccnt = 1,
260 };
261
262 /*****************************************************************************/
263
264 static void map_dmach_queue(unsigned ctlr, unsigned ch_no,
265                 enum dma_event_q queue_no)
266 {
267         int bit = (ch_no & 0x7) * 4;
268
269         /* default to low priority queue */
270         if (queue_no == EVENTQ_DEFAULT)
271                 queue_no = edma_info[ctlr]->default_queue;
272
273         queue_no &= 7;
274         edma_modify_array(ctlr, EDMA_DMAQNUM, (ch_no >> 3),
275                         ~(0x7 << bit), queue_no << bit);
276 }
277
278 static void __init map_queue_tc(unsigned ctlr, int queue_no, int tc_no)
279 {
280         int bit = queue_no * 4;
281         edma_modify(ctlr, EDMA_QUETCMAP, ~(0x7 << bit), ((tc_no & 0x7) << bit));
282 }
283
284 static void __init assign_priority_to_queue(unsigned ctlr, int queue_no,
285                 int priority)
286 {
287         int bit = queue_no * 4;
288         edma_modify(ctlr, EDMA_QUEPRI, ~(0x7 << bit),
289                         ((priority & 0x7) << bit));
290 }
291
292 /**
293  * map_dmach_param - Maps channel number to param entry number
294  *
295  * This maps the dma channel number to param entry numberter. In
296  * other words using the DMA channel mapping registers a param entry
297  * can be mapped to any channel
298  *
299  * Callers are responsible for ensuring the channel mapping logic is
300  * included in that particular EDMA variant (Eg : dm646x)
301  *
302  */
303 static void __init map_dmach_param(unsigned ctlr)
304 {
305         int i;
306         for (i = 0; i < EDMA_MAX_DMACH; i++)
307                 edma_write_array(ctlr, EDMA_DCHMAP , i , (i << 5));
308 }
309
310 static inline void
311 setup_dma_interrupt(unsigned lch,
312         void (*callback)(unsigned channel, u16 ch_status, void *data),
313         void *data)
314 {
315         unsigned ctlr;
316
317         ctlr = EDMA_CTLR(lch);
318         lch = EDMA_CHAN_SLOT(lch);
319
320         if (!callback) {
321                 edma_shadow0_write_array(ctlr, SH_IECR, lch >> 5,
322                                 (1 << (lch & 0x1f)));
323         }
324
325         edma_info[ctlr]->intr_data[lch].callback = callback;
326         edma_info[ctlr]->intr_data[lch].data = data;
327
328         if (callback) {
329                 edma_shadow0_write_array(ctlr, SH_ICR, lch >> 5,
330                                 (1 << (lch & 0x1f)));
331                 edma_shadow0_write_array(ctlr, SH_IESR, lch >> 5,
332                                 (1 << (lch & 0x1f)));
333         }
334 }
335
336 static int irq2ctlr(int irq)
337 {
338         if (irq >= edma_info[0]->irq_res_start &&
339                 irq <= edma_info[0]->irq_res_end)
340                 return 0;
341         else if (irq >= edma_info[1]->irq_res_start &&
342                 irq <= edma_info[1]->irq_res_end)
343                 return 1;
344
345         return -1;
346 }
347
348 /******************************************************************************
349  *
350  * DMA interrupt handler
351  *
352  *****************************************************************************/
353 static irqreturn_t dma_irq_handler(int irq, void *data)
354 {
355         int i;
356         unsigned ctlr;
357         unsigned int cnt = 0;
358
359         ctlr = irq2ctlr(irq);
360
361         dev_dbg(data, "dma_irq_handler\n");
362
363         if ((edma_shadow0_read_array(ctlr, SH_IPR, 0) == 0)
364             && (edma_shadow0_read_array(ctlr, SH_IPR, 1) == 0))
365                 return IRQ_NONE;
366
367         while (1) {
368                 int j;
369                 if (edma_shadow0_read_array(ctlr, SH_IPR, 0))
370                         j = 0;
371                 else if (edma_shadow0_read_array(ctlr, SH_IPR, 1))
372                         j = 1;
373                 else
374                         break;
375                 dev_dbg(data, "IPR%d %08x\n", j,
376                                 edma_shadow0_read_array(ctlr, SH_IPR, j));
377                 for (i = 0; i < 32; i++) {
378                         int k = (j << 5) + i;
379                         if (edma_shadow0_read_array(ctlr, SH_IPR, j) &
380                                                         (1 << i)) {
381                                 /* Clear the corresponding IPR bits */
382                                 edma_shadow0_write_array(ctlr, SH_ICR, j,
383                                                         (1 << i));
384                                 if (edma_info[ctlr]->intr_data[k].callback) {
385                                         edma_info[ctlr]->intr_data[k].callback(
386                                                 k, DMA_COMPLETE,
387                                                 edma_info[ctlr]->intr_data[k].
388                                                 data);
389                                 }
390                         }
391                 }
392                 cnt++;
393                 if (cnt > 10)
394                         break;
395         }
396         edma_shadow0_write(ctlr, SH_IEVAL, 1);
397         return IRQ_HANDLED;
398 }
399
400 /******************************************************************************
401  *
402  * DMA error interrupt handler
403  *
404  *****************************************************************************/
405 static irqreturn_t dma_ccerr_handler(int irq, void *data)
406 {
407         int i;
408         unsigned ctlr;
409         unsigned int cnt = 0;
410
411         ctlr = irq2ctlr(irq);
412
413         dev_dbg(data, "dma_ccerr_handler\n");
414
415         if ((edma_read_array(ctlr, EDMA_EMR, 0) == 0) &&
416             (edma_read_array(ctlr, EDMA_EMR, 1) == 0) &&
417             (edma_read(ctlr, EDMA_QEMR) == 0) &&
418             (edma_read(ctlr, EDMA_CCERR) == 0))
419                 return IRQ_NONE;
420
421         while (1) {
422                 int j = -1;
423                 if (edma_read_array(ctlr, EDMA_EMR, 0))
424                         j = 0;
425                 else if (edma_read_array(ctlr, EDMA_EMR, 1))
426                         j = 1;
427                 if (j >= 0) {
428                         dev_dbg(data, "EMR%d %08x\n", j,
429                                         edma_read_array(ctlr, EDMA_EMR, j));
430                         for (i = 0; i < 32; i++) {
431                                 int k = (j << 5) + i;
432                                 if (edma_read_array(ctlr, EDMA_EMR, j) &
433                                                         (1 << i)) {
434                                         /* Clear the corresponding EMR bits */
435                                         edma_write_array(ctlr, EDMA_EMCR, j,
436                                                         1 << i);
437                                         /* Clear any SER */
438                                         edma_shadow0_write_array(ctlr, SH_SECR,
439                                                                 j, (1 << i));
440                                         if (edma_info[ctlr]->intr_data[k].
441                                                                 callback) {
442                                                 edma_info[ctlr]->intr_data[k].
443                                                 callback(k,
444                                                 DMA_CC_ERROR,
445                                                 edma_info[ctlr]->intr_data
446                                                 [k].data);
447                                         }
448                                 }
449                         }
450                 } else if (edma_read(ctlr, EDMA_QEMR)) {
451                         dev_dbg(data, "QEMR %02x\n",
452                                 edma_read(ctlr, EDMA_QEMR));
453                         for (i = 0; i < 8; i++) {
454                                 if (edma_read(ctlr, EDMA_QEMR) & (1 << i)) {
455                                         /* Clear the corresponding IPR bits */
456                                         edma_write(ctlr, EDMA_QEMCR, 1 << i);
457                                         edma_shadow0_write(ctlr, SH_QSECR,
458                                                                 (1 << i));
459
460                                         /* NOTE:  not reported!! */
461                                 }
462                         }
463                 } else if (edma_read(ctlr, EDMA_CCERR)) {
464                         dev_dbg(data, "CCERR %08x\n",
465                                 edma_read(ctlr, EDMA_CCERR));
466                         /* FIXME:  CCERR.BIT(16) ignored!  much better
467                          * to just write CCERRCLR with CCERR value...
468                          */
469                         for (i = 0; i < 8; i++) {
470                                 if (edma_read(ctlr, EDMA_CCERR) & (1 << i)) {
471                                         /* Clear the corresponding IPR bits */
472                                         edma_write(ctlr, EDMA_CCERRCLR, 1 << i);
473
474                                         /* NOTE:  not reported!! */
475                                 }
476                         }
477                 }
478                 if ((edma_read_array(ctlr, EDMA_EMR, 0) == 0)
479                     && (edma_read_array(ctlr, EDMA_EMR, 1) == 0)
480                     && (edma_read(ctlr, EDMA_QEMR) == 0)
481                     && (edma_read(ctlr, EDMA_CCERR) == 0)) {
482                         break;
483                 }
484                 cnt++;
485                 if (cnt > 10)
486                         break;
487         }
488         edma_write(ctlr, EDMA_EEVAL, 1);
489         return IRQ_HANDLED;
490 }
491
492 /******************************************************************************
493  *
494  * Transfer controller error interrupt handlers
495  *
496  *****************************************************************************/
497
498 #define tc_errs_handled false   /* disabled as long as they're NOPs */
499
500 static irqreturn_t dma_tc0err_handler(int irq, void *data)
501 {
502         dev_dbg(data, "dma_tc0err_handler\n");
503         return IRQ_HANDLED;
504 }
505
506 static irqreturn_t dma_tc1err_handler(int irq, void *data)
507 {
508         dev_dbg(data, "dma_tc1err_handler\n");
509         return IRQ_HANDLED;
510 }
511
512 /*-----------------------------------------------------------------------*/
513
514 /* Resource alloc/free:  dma channels, parameter RAM slots */
515
516 /**
517  * edma_alloc_channel - allocate DMA channel and paired parameter RAM
518  * @channel: specific channel to allocate; negative for "any unmapped channel"
519  * @callback: optional; to be issued on DMA completion or errors
520  * @data: passed to callback
521  * @eventq_no: an EVENTQ_* constant, used to choose which Transfer
522  *      Controller (TC) executes requests using this channel.  Use
523  *      EVENTQ_DEFAULT unless you really need a high priority queue.
524  *
525  * This allocates a DMA channel and its associated parameter RAM slot.
526  * The parameter RAM is initialized to hold a dummy transfer.
527  *
528  * Normal use is to pass a specific channel number as @channel, to make
529  * use of hardware events mapped to that channel.  When the channel will
530  * be used only for software triggering or event chaining, channels not
531  * mapped to hardware events (or mapped to unused events) are preferable.
532  *
533  * DMA transfers start from a channel using edma_start(), or by
534  * chaining.  When the transfer described in that channel's parameter RAM
535  * slot completes, that slot's data may be reloaded through a link.
536  *
537  * DMA errors are only reported to the @callback associated with the
538  * channel driving that transfer, but transfer completion callbacks can
539  * be sent to another channel under control of the TCC field in
540  * the option word of the transfer's parameter RAM set.  Drivers must not
541  * use DMA transfer completion callbacks for channels they did not allocate.
542  * (The same applies to TCC codes used in transfer chaining.)
543  *
544  * Returns the number of the channel, else negative errno.
545  */
546 int edma_alloc_channel(int channel,
547                 void (*callback)(unsigned channel, u16 ch_status, void *data),
548                 void *data,
549                 enum dma_event_q eventq_no)
550 {
551         unsigned i, done, ctlr = 0;
552
553         if (channel >= 0) {
554                 ctlr = EDMA_CTLR(channel);
555                 channel = EDMA_CHAN_SLOT(channel);
556         }
557
558         if (channel < 0) {
559                 for (i = 0; i < EDMA_MAX_CC; i++) {
560                         channel = 0;
561                         for (;;) {
562                                 channel = find_next_bit(edma_info[i]->
563                                                 edma_noevent,
564                                                 edma_info[i]->num_channels,
565                                                 channel);
566                                 if (channel == edma_info[i]->num_channels)
567                                         return -ENOMEM;
568                                 if (!test_and_set_bit(channel,
569                                                 edma_info[i]->edma_inuse)) {
570                                         done = 1;
571                                         ctlr = i;
572                                         break;
573                                 }
574                                 channel++;
575                         }
576                         if (done)
577                                 break;
578                 }
579         } else if (channel >= edma_info[ctlr]->num_channels) {
580                 return -EINVAL;
581         } else if (test_and_set_bit(channel, edma_info[ctlr]->edma_inuse)) {
582                 return -EBUSY;
583         }
584
585         /* ensure access through shadow region 0 */
586         edma_or_array2(ctlr, EDMA_DRAE, 0, channel >> 5, 1 << (channel & 0x1f));
587
588         /* ensure no events are pending */
589         edma_stop(EDMA_CTLR_CHAN(ctlr, channel));
590         memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(channel),
591                         &dummy_paramset, PARM_SIZE);
592
593         if (callback)
594                 setup_dma_interrupt(EDMA_CTLR_CHAN(ctlr, channel),
595                                         callback, data);
596
597         map_dmach_queue(ctlr, channel, eventq_no);
598
599         return channel;
600 }
601 EXPORT_SYMBOL(edma_alloc_channel);
602
603
604 /**
605  * edma_free_channel - deallocate DMA channel
606  * @channel: dma channel returned from edma_alloc_channel()
607  *
608  * This deallocates the DMA channel and associated parameter RAM slot
609  * allocated by edma_alloc_channel().
610  *
611  * Callers are responsible for ensuring the channel is inactive, and
612  * will not be reactivated by linking, chaining, or software calls to
613  * edma_start().
614  */
615 void edma_free_channel(unsigned channel)
616 {
617         unsigned ctlr;
618
619         ctlr = EDMA_CTLR(channel);
620         channel = EDMA_CHAN_SLOT(channel);
621
622         if (channel >= edma_info[ctlr]->num_channels)
623                 return;
624
625         setup_dma_interrupt(channel, NULL, NULL);
626         /* REVISIT should probably take out of shadow region 0 */
627
628         memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(channel),
629                         &dummy_paramset, PARM_SIZE);
630         clear_bit(channel, edma_info[ctlr]->edma_inuse);
631 }
632 EXPORT_SYMBOL(edma_free_channel);
633
634 /**
635  * edma_alloc_slot - allocate DMA parameter RAM
636  * @slot: specific slot to allocate; negative for "any unused slot"
637  *
638  * This allocates a parameter RAM slot, initializing it to hold a
639  * dummy transfer.  Slots allocated using this routine have not been
640  * mapped to a hardware DMA channel, and will normally be used by
641  * linking to them from a slot associated with a DMA channel.
642  *
643  * Normal use is to pass EDMA_SLOT_ANY as the @slot, but specific
644  * slots may be allocated on behalf of DSP firmware.
645  *
646  * Returns the number of the slot, else negative errno.
647  */
648 int edma_alloc_slot(unsigned ctlr, int slot)
649 {
650         if (slot >= 0)
651                 slot = EDMA_CHAN_SLOT(slot);
652
653         if (slot < 0) {
654                 slot = edma_info[ctlr]->num_channels;
655                 for (;;) {
656                         slot = find_next_zero_bit(edma_info[ctlr]->edma_inuse,
657                                         edma_info[ctlr]->num_slots, slot);
658                         if (slot == edma_info[ctlr]->num_slots)
659                                 return -ENOMEM;
660                         if (!test_and_set_bit(slot,
661                                                 edma_info[ctlr]->edma_inuse))
662                                 break;
663                 }
664         } else if (slot < edma_info[ctlr]->num_channels ||
665                         slot >= edma_info[ctlr]->num_slots) {
666                 return -EINVAL;
667         } else if (test_and_set_bit(slot, edma_info[ctlr]->edma_inuse)) {
668                 return -EBUSY;
669         }
670
671         memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(slot),
672                         &dummy_paramset, PARM_SIZE);
673
674         return EDMA_CTLR_CHAN(ctlr, slot);
675 }
676 EXPORT_SYMBOL(edma_alloc_slot);
677
678 /**
679  * edma_free_slot - deallocate DMA parameter RAM
680  * @slot: parameter RAM slot returned from edma_alloc_slot()
681  *
682  * This deallocates the parameter RAM slot allocated by edma_alloc_slot().
683  * Callers are responsible for ensuring the slot is inactive, and will
684  * not be activated.
685  */
686 void edma_free_slot(unsigned slot)
687 {
688         unsigned ctlr;
689
690         ctlr = EDMA_CTLR(slot);
691         slot = EDMA_CHAN_SLOT(slot);
692
693         if (slot < edma_info[ctlr]->num_channels ||
694                 slot >= edma_info[ctlr]->num_slots)
695                 return;
696
697         memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(slot),
698                         &dummy_paramset, PARM_SIZE);
699         clear_bit(slot, edma_info[ctlr]->edma_inuse);
700 }
701 EXPORT_SYMBOL(edma_free_slot);
702
703 /*-----------------------------------------------------------------------*/
704
705 /* Parameter RAM operations (i) -- read/write partial slots */
706
707 /**
708  * edma_set_src - set initial DMA source address in parameter RAM slot
709  * @slot: parameter RAM slot being configured
710  * @src_port: physical address of source (memory, controller FIFO, etc)
711  * @addressMode: INCR, except in very rare cases
712  * @fifoWidth: ignored unless @addressMode is FIFO, else specifies the
713  *      width to use when addressing the fifo (e.g. W8BIT, W32BIT)
714  *
715  * Note that the source address is modified during the DMA transfer
716  * according to edma_set_src_index().
717  */
718 void edma_set_src(unsigned slot, dma_addr_t src_port,
719                                 enum address_mode mode, enum fifo_width width)
720 {
721         unsigned ctlr;
722
723         ctlr = EDMA_CTLR(slot);
724         slot = EDMA_CHAN_SLOT(slot);
725
726         if (slot < edma_info[ctlr]->num_slots) {
727                 unsigned int i = edma_parm_read(ctlr, PARM_OPT, slot);
728
729                 if (mode) {
730                         /* set SAM and program FWID */
731                         i = (i & ~(EDMA_FWID)) | (SAM | ((width & 0x7) << 8));
732                 } else {
733                         /* clear SAM */
734                         i &= ~SAM;
735                 }
736                 edma_parm_write(ctlr, PARM_OPT, slot, i);
737
738                 /* set the source port address
739                    in source register of param structure */
740                 edma_parm_write(ctlr, PARM_SRC, slot, src_port);
741         }
742 }
743 EXPORT_SYMBOL(edma_set_src);
744
745 /**
746  * edma_set_dest - set initial DMA destination address in parameter RAM slot
747  * @slot: parameter RAM slot being configured
748  * @dest_port: physical address of destination (memory, controller FIFO, etc)
749  * @addressMode: INCR, except in very rare cases
750  * @fifoWidth: ignored unless @addressMode is FIFO, else specifies the
751  *      width to use when addressing the fifo (e.g. W8BIT, W32BIT)
752  *
753  * Note that the destination address is modified during the DMA transfer
754  * according to edma_set_dest_index().
755  */
756 void edma_set_dest(unsigned slot, dma_addr_t dest_port,
757                                  enum address_mode mode, enum fifo_width width)
758 {
759         unsigned ctlr;
760
761         ctlr = EDMA_CTLR(slot);
762         slot = EDMA_CHAN_SLOT(slot);
763
764         if (slot < edma_info[ctlr]->num_slots) {
765                 unsigned int i = edma_parm_read(ctlr, PARM_OPT, slot);
766
767                 if (mode) {
768                         /* set DAM and program FWID */
769                         i = (i & ~(EDMA_FWID)) | (DAM | ((width & 0x7) << 8));
770                 } else {
771                         /* clear DAM */
772                         i &= ~DAM;
773                 }
774                 edma_parm_write(ctlr, PARM_OPT, slot, i);
775                 /* set the destination port address
776                    in dest register of param structure */
777                 edma_parm_write(ctlr, PARM_DST, slot, dest_port);
778         }
779 }
780 EXPORT_SYMBOL(edma_set_dest);
781
782 /**
783  * edma_get_position - returns the current transfer points
784  * @slot: parameter RAM slot being examined
785  * @src: pointer to source port position
786  * @dst: pointer to destination port position
787  *
788  * Returns current source and destination addresses for a particular
789  * parameter RAM slot.  Its channel should not be active when this is called.
790  */
791 void edma_get_position(unsigned slot, dma_addr_t *src, dma_addr_t *dst)
792 {
793         struct edmacc_param temp;
794         unsigned ctlr;
795
796         ctlr = EDMA_CTLR(slot);
797         slot = EDMA_CHAN_SLOT(slot);
798
799         edma_read_slot(EDMA_CTLR_CHAN(ctlr, slot), &temp);
800         if (src != NULL)
801                 *src = temp.src;
802         if (dst != NULL)
803                 *dst = temp.dst;
804 }
805 EXPORT_SYMBOL(edma_get_position);
806
807 /**
808  * edma_set_src_index - configure DMA source address indexing
809  * @slot: parameter RAM slot being configured
810  * @src_bidx: byte offset between source arrays in a frame
811  * @src_cidx: byte offset between source frames in a block
812  *
813  * Offsets are specified to support either contiguous or discontiguous
814  * memory transfers, or repeated access to a hardware register, as needed.
815  * When accessing hardware registers, both offsets are normally zero.
816  */
817 void edma_set_src_index(unsigned slot, s16 src_bidx, s16 src_cidx)
818 {
819         unsigned ctlr;
820
821         ctlr = EDMA_CTLR(slot);
822         slot = EDMA_CHAN_SLOT(slot);
823
824         if (slot < edma_info[ctlr]->num_slots) {
825                 edma_parm_modify(ctlr, PARM_SRC_DST_BIDX, slot,
826                                 0xffff0000, src_bidx);
827                 edma_parm_modify(ctlr, PARM_SRC_DST_CIDX, slot,
828                                 0xffff0000, src_cidx);
829         }
830 }
831 EXPORT_SYMBOL(edma_set_src_index);
832
833 /**
834  * edma_set_dest_index - configure DMA destination address indexing
835  * @slot: parameter RAM slot being configured
836  * @dest_bidx: byte offset between destination arrays in a frame
837  * @dest_cidx: byte offset between destination frames in a block
838  *
839  * Offsets are specified to support either contiguous or discontiguous
840  * memory transfers, or repeated access to a hardware register, as needed.
841  * When accessing hardware registers, both offsets are normally zero.
842  */
843 void edma_set_dest_index(unsigned slot, s16 dest_bidx, s16 dest_cidx)
844 {
845         unsigned ctlr;
846
847         ctlr = EDMA_CTLR(slot);
848         slot = EDMA_CHAN_SLOT(slot);
849
850         if (slot < edma_info[ctlr]->num_slots) {
851                 edma_parm_modify(ctlr, PARM_SRC_DST_BIDX, slot,
852                                 0x0000ffff, dest_bidx << 16);
853                 edma_parm_modify(ctlr, PARM_SRC_DST_CIDX, slot,
854                                 0x0000ffff, dest_cidx << 16);
855         }
856 }
857 EXPORT_SYMBOL(edma_set_dest_index);
858
859 /**
860  * edma_set_transfer_params - configure DMA transfer parameters
861  * @slot: parameter RAM slot being configured
862  * @acnt: how many bytes per array (at least one)
863  * @bcnt: how many arrays per frame (at least one)
864  * @ccnt: how many frames per block (at least one)
865  * @bcnt_rld: used only for A-Synchronized transfers; this specifies
866  *      the value to reload into bcnt when it decrements to zero
867  * @sync_mode: ASYNC or ABSYNC
868  *
869  * See the EDMA3 documentation to understand how to configure and link
870  * transfers using the fields in PaRAM slots.  If you are not doing it
871  * all at once with edma_write_slot(), you will use this routine
872  * plus two calls each for source and destination, setting the initial
873  * address and saying how to index that address.
874  *
875  * An example of an A-Synchronized transfer is a serial link using a
876  * single word shift register.  In that case, @acnt would be equal to
877  * that word size; the serial controller issues a DMA synchronization
878  * event to transfer each word, and memory access by the DMA transfer
879  * controller will be word-at-a-time.
880  *
881  * An example of an AB-Synchronized transfer is a device using a FIFO.
882  * In that case, @acnt equals the FIFO width and @bcnt equals its depth.
883  * The controller with the FIFO issues DMA synchronization events when
884  * the FIFO threshold is reached, and the DMA transfer controller will
885  * transfer one frame to (or from) the FIFO.  It will probably use
886  * efficient burst modes to access memory.
887  */
888 void edma_set_transfer_params(unsigned slot,
889                 u16 acnt, u16 bcnt, u16 ccnt,
890                 u16 bcnt_rld, enum sync_dimension sync_mode)
891 {
892         unsigned ctlr;
893
894         ctlr = EDMA_CTLR(slot);
895         slot = EDMA_CHAN_SLOT(slot);
896
897         if (slot < edma_info[ctlr]->num_slots) {
898                 edma_parm_modify(ctlr, PARM_LINK_BCNTRLD, slot,
899                                 0x0000ffff, bcnt_rld << 16);
900                 if (sync_mode == ASYNC)
901                         edma_parm_and(ctlr, PARM_OPT, slot, ~SYNCDIM);
902                 else
903                         edma_parm_or(ctlr, PARM_OPT, slot, SYNCDIM);
904                 /* Set the acount, bcount, ccount registers */
905                 edma_parm_write(ctlr, PARM_A_B_CNT, slot, (bcnt << 16) | acnt);
906                 edma_parm_write(ctlr, PARM_CCNT, slot, ccnt);
907         }
908 }
909 EXPORT_SYMBOL(edma_set_transfer_params);
910
911 /**
912  * edma_link - link one parameter RAM slot to another
913  * @from: parameter RAM slot originating the link
914  * @to: parameter RAM slot which is the link target
915  *
916  * The originating slot should not be part of any active DMA transfer.
917  */
918 void edma_link(unsigned from, unsigned to)
919 {
920         unsigned ctlr_from, ctlr_to;
921
922         ctlr_from = EDMA_CTLR(from);
923         from = EDMA_CHAN_SLOT(from);
924         ctlr_to = EDMA_CTLR(to);
925         to = EDMA_CHAN_SLOT(to);
926
927         if (from >= edma_info[ctlr_from]->num_slots)
928                 return;
929         if (to >= edma_info[ctlr_to]->num_slots)
930                 return;
931         edma_parm_modify(ctlr_from, PARM_LINK_BCNTRLD, from, 0xffff0000,
932                                 PARM_OFFSET(to));
933 }
934 EXPORT_SYMBOL(edma_link);
935
936 /**
937  * edma_unlink - cut link from one parameter RAM slot
938  * @from: parameter RAM slot originating the link
939  *
940  * The originating slot should not be part of any active DMA transfer.
941  * Its link is set to 0xffff.
942  */
943 void edma_unlink(unsigned from)
944 {
945         unsigned ctlr;
946
947         ctlr = EDMA_CTLR(from);
948         from = EDMA_CHAN_SLOT(from);
949
950         if (from >= edma_info[ctlr]->num_slots)
951                 return;
952         edma_parm_or(ctlr, PARM_LINK_BCNTRLD, from, 0xffff);
953 }
954 EXPORT_SYMBOL(edma_unlink);
955
956 /*-----------------------------------------------------------------------*/
957
958 /* Parameter RAM operations (ii) -- read/write whole parameter sets */
959
960 /**
961  * edma_write_slot - write parameter RAM data for slot
962  * @slot: number of parameter RAM slot being modified
963  * @param: data to be written into parameter RAM slot
964  *
965  * Use this to assign all parameters of a transfer at once.  This
966  * allows more efficient setup of transfers than issuing multiple
967  * calls to set up those parameters in small pieces, and provides
968  * complete control over all transfer options.
969  */
970 void edma_write_slot(unsigned slot, const struct edmacc_param *param)
971 {
972         unsigned ctlr;
973
974         ctlr = EDMA_CTLR(slot);
975         slot = EDMA_CHAN_SLOT(slot);
976
977         if (slot >= edma_info[ctlr]->num_slots)
978                 return;
979         memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(slot), param,
980                         PARM_SIZE);
981 }
982 EXPORT_SYMBOL(edma_write_slot);
983
984 /**
985  * edma_read_slot - read parameter RAM data from slot
986  * @slot: number of parameter RAM slot being copied
987  * @param: where to store copy of parameter RAM data
988  *
989  * Use this to read data from a parameter RAM slot, perhaps to
990  * save them as a template for later reuse.
991  */
992 void edma_read_slot(unsigned slot, struct edmacc_param *param)
993 {
994         unsigned ctlr;
995
996         ctlr = EDMA_CTLR(slot);
997         slot = EDMA_CHAN_SLOT(slot);
998
999         if (slot >= edma_info[ctlr]->num_slots)
1000                 return;
1001         memcpy_fromio(param, edmacc_regs_base[ctlr] + PARM_OFFSET(slot),
1002                         PARM_SIZE);
1003 }
1004 EXPORT_SYMBOL(edma_read_slot);
1005
1006 /*-----------------------------------------------------------------------*/
1007
1008 /* Various EDMA channel control operations */
1009
1010 /**
1011  * edma_pause - pause dma on a channel
1012  * @channel: on which edma_start() has been called
1013  *
1014  * This temporarily disables EDMA hardware events on the specified channel,
1015  * preventing them from triggering new transfers on its behalf
1016  */
1017 void edma_pause(unsigned channel)
1018 {
1019         unsigned ctlr;
1020
1021         ctlr = EDMA_CTLR(channel);
1022         channel = EDMA_CHAN_SLOT(channel);
1023
1024         if (channel < edma_info[ctlr]->num_channels) {
1025                 unsigned int mask = (1 << (channel & 0x1f));
1026
1027                 edma_shadow0_write_array(ctlr, SH_EECR, channel >> 5, mask);
1028         }
1029 }
1030 EXPORT_SYMBOL(edma_pause);
1031
1032 /**
1033  * edma_resume - resumes dma on a paused channel
1034  * @channel: on which edma_pause() has been called
1035  *
1036  * This re-enables EDMA hardware events on the specified channel.
1037  */
1038 void edma_resume(unsigned channel)
1039 {
1040         unsigned ctlr;
1041
1042         ctlr = EDMA_CTLR(channel);
1043         channel = EDMA_CHAN_SLOT(channel);
1044
1045         if (channel < edma_info[ctlr]->num_channels) {
1046                 unsigned int mask = (1 << (channel & 0x1f));
1047
1048                 edma_shadow0_write_array(ctlr, SH_EESR, channel >> 5, mask);
1049         }
1050 }
1051 EXPORT_SYMBOL(edma_resume);
1052
1053 /**
1054  * edma_start - start dma on a channel
1055  * @channel: channel being activated
1056  *
1057  * Channels with event associations will be triggered by their hardware
1058  * events, and channels without such associations will be triggered by
1059  * software.  (At this writing there is no interface for using software
1060  * triggers except with channels that don't support hardware triggers.)
1061  *
1062  * Returns zero on success, else negative errno.
1063  */
1064 int edma_start(unsigned channel)
1065 {
1066         unsigned ctlr;
1067
1068         ctlr = EDMA_CTLR(channel);
1069         channel = EDMA_CHAN_SLOT(channel);
1070
1071         if (channel < edma_info[ctlr]->num_channels) {
1072                 int j = channel >> 5;
1073                 unsigned int mask = (1 << (channel & 0x1f));
1074
1075                 /* EDMA channels without event association */
1076                 if (test_bit(channel, edma_info[ctlr]->edma_noevent)) {
1077                         pr_debug("EDMA: ESR%d %08x\n", j,
1078                                 edma_shadow0_read_array(ctlr, SH_ESR, j));
1079                         edma_shadow0_write_array(ctlr, SH_ESR, j, mask);
1080                         return 0;
1081                 }
1082
1083                 /* EDMA channel with event association */
1084                 pr_debug("EDMA: ER%d %08x\n", j,
1085                         edma_shadow0_read_array(ctlr, SH_ER, j));
1086                 /* Clear any pending error */
1087                 edma_write_array(ctlr, EDMA_EMCR, j, mask);
1088                 /* Clear any SER */
1089                 edma_shadow0_write_array(ctlr, SH_SECR, j, mask);
1090                 edma_shadow0_write_array(ctlr, SH_EESR, j, mask);
1091                 pr_debug("EDMA: EER%d %08x\n", j,
1092                         edma_shadow0_read_array(ctlr, SH_EER, j));
1093                 return 0;
1094         }
1095
1096         return -EINVAL;
1097 }
1098 EXPORT_SYMBOL(edma_start);
1099
1100 /**
1101  * edma_stop - stops dma on the channel passed
1102  * @channel: channel being deactivated
1103  *
1104  * When @lch is a channel, any active transfer is paused and
1105  * all pending hardware events are cleared.  The current transfer
1106  * may not be resumed, and the channel's Parameter RAM should be
1107  * reinitialized before being reused.
1108  */
1109 void edma_stop(unsigned channel)
1110 {
1111         unsigned ctlr;
1112
1113         ctlr = EDMA_CTLR(channel);
1114         channel = EDMA_CHAN_SLOT(channel);
1115
1116         if (channel < edma_info[ctlr]->num_channels) {
1117                 int j = channel >> 5;
1118                 unsigned int mask = (1 << (channel & 0x1f));
1119
1120                 edma_shadow0_write_array(ctlr, SH_EECR, j, mask);
1121                 edma_shadow0_write_array(ctlr, SH_ECR, j, mask);
1122                 edma_shadow0_write_array(ctlr, SH_SECR, j, mask);
1123                 edma_write_array(ctlr, EDMA_EMCR, j, mask);
1124
1125                 pr_debug("EDMA: EER%d %08x\n", j,
1126                                 edma_shadow0_read_array(ctlr, SH_EER, j));
1127
1128                 /* REVISIT:  consider guarding against inappropriate event
1129                  * chaining by overwriting with dummy_paramset.
1130                  */
1131         }
1132 }
1133 EXPORT_SYMBOL(edma_stop);
1134
1135 /******************************************************************************
1136  *
1137  * It cleans ParamEntry qand bring back EDMA to initial state if media has
1138  * been removed before EDMA has finished.It is usedful for removable media.
1139  * Arguments:
1140  *      ch_no     - channel no
1141  *
1142  * Return: zero on success, or corresponding error no on failure
1143  *
1144  * FIXME this should not be needed ... edma_stop() should suffice.
1145  *
1146  *****************************************************************************/
1147
1148 void edma_clean_channel(unsigned channel)
1149 {
1150         unsigned ctlr;
1151
1152         ctlr = EDMA_CTLR(channel);
1153         channel = EDMA_CHAN_SLOT(channel);
1154
1155         if (channel < edma_info[ctlr]->num_channels) {
1156                 int j = (channel >> 5);
1157                 unsigned int mask = 1 << (channel & 0x1f);
1158
1159                 pr_debug("EDMA: EMR%d %08x\n", j,
1160                                 edma_read_array(ctlr, EDMA_EMR, j));
1161                 edma_shadow0_write_array(ctlr, SH_ECR, j, mask);
1162                 /* Clear the corresponding EMR bits */
1163                 edma_write_array(ctlr, EDMA_EMCR, j, mask);
1164                 /* Clear any SER */
1165                 edma_shadow0_write_array(ctlr, SH_SECR, j, mask);
1166                 edma_write(ctlr, EDMA_CCERRCLR, (1 << 16) | 0x3);
1167         }
1168 }
1169 EXPORT_SYMBOL(edma_clean_channel);
1170
1171 /*
1172  * edma_clear_event - clear an outstanding event on the DMA channel
1173  * Arguments:
1174  *      channel - channel number
1175  */
1176 void edma_clear_event(unsigned channel)
1177 {
1178         unsigned ctlr;
1179
1180         ctlr = EDMA_CTLR(channel);
1181         channel = EDMA_CHAN_SLOT(channel);
1182
1183         if (channel >= edma_info[ctlr]->num_channels)
1184                 return;
1185         if (channel < 32)
1186                 edma_write(ctlr, EDMA_ECR, 1 << channel);
1187         else
1188                 edma_write(ctlr, EDMA_ECRH, 1 << (channel - 32));
1189 }
1190 EXPORT_SYMBOL(edma_clear_event);
1191
1192 /*-----------------------------------------------------------------------*/
1193
1194 static int __init edma_probe(struct platform_device *pdev)
1195 {
1196         struct edma_soc_info    *info = pdev->dev.platform_data;
1197         const s8                (*queue_priority_mapping)[2];
1198         const s8                (*queue_tc_mapping)[2];
1199         int                     i, j, found = 0;
1200         int                     status = -1;
1201         const s8                *noevent;
1202         int                     irq[EDMA_MAX_CC] = {0, 0};
1203         int                     err_irq[EDMA_MAX_CC] = {0, 0};
1204         struct resource         *r[EDMA_MAX_CC] = {NULL};
1205         resource_size_t         len[EDMA_MAX_CC];
1206         char                    res_name[10];
1207         char                    irq_name[10];
1208
1209         if (!info)
1210                 return -ENODEV;
1211
1212         for (j = 0; j < EDMA_MAX_CC; j++) {
1213                 sprintf(res_name, "edma_cc%d", j);
1214                 r[j] = platform_get_resource_byname(pdev, IORESOURCE_MEM,
1215                                                 res_name);
1216                 if (!r[j]) {
1217                         if (found)
1218                                 break;
1219                         else
1220                                 return -ENODEV;
1221                 } else
1222                         found = 1;
1223
1224                 len[j] = resource_size(r[j]);
1225
1226                 r[j] = request_mem_region(r[j]->start, len[j],
1227                         dev_name(&pdev->dev));
1228                 if (!r[j]) {
1229                         status = -EBUSY;
1230                         goto fail1;
1231                 }
1232
1233                 edmacc_regs_base[j] = ioremap(r[j]->start, len[j]);
1234                 if (!edmacc_regs_base[j]) {
1235                         status = -EBUSY;
1236                         goto fail1;
1237                 }
1238
1239                 edma_info[j] = kmalloc(sizeof(struct edma), GFP_KERNEL);
1240                 if (!edma_info[j]) {
1241                         status = -ENOMEM;
1242                         goto fail1;
1243                 }
1244                 memset(edma_info[j], 0, sizeof(struct edma));
1245
1246                 edma_info[j]->num_channels = min_t(unsigned, info[j].n_channel,
1247                                                         EDMA_MAX_DMACH);
1248                 edma_info[j]->num_slots = min_t(unsigned, info[j].n_slot,
1249                                                         EDMA_MAX_PARAMENTRY);
1250                 edma_info[j]->num_cc = min_t(unsigned, info[j].n_cc,
1251                                                         EDMA_MAX_CC);
1252
1253                 edma_info[j]->default_queue = info[j].default_queue;
1254                 if (!edma_info[j]->default_queue)
1255                         edma_info[j]->default_queue = EVENTQ_1;
1256
1257                 dev_dbg(&pdev->dev, "DMA REG BASE ADDR=%p\n",
1258                         edmacc_regs_base[j]);
1259
1260                 for (i = 0; i < edma_info[j]->num_slots; i++)
1261                         memcpy_toio(edmacc_regs_base[j] + PARM_OFFSET(i),
1262                                         &dummy_paramset, PARM_SIZE);
1263
1264                 noevent = info[j].noevent;
1265                 if (noevent) {
1266                         while (*noevent != -1)
1267                                 set_bit(*noevent++, edma_info[j]->edma_noevent);
1268                 }
1269
1270                 sprintf(irq_name, "edma%d", j);
1271                 irq[j] = platform_get_irq_byname(pdev, irq_name);
1272                 edma_info[j]->irq_res_start = irq[j];
1273                 status = request_irq(irq[j], dma_irq_handler, 0, "edma",
1274                                         &pdev->dev);
1275                 if (status < 0) {
1276                         dev_dbg(&pdev->dev, "request_irq %d failed --> %d\n",
1277                                 irq[j], status);
1278                         goto fail;
1279                 }
1280
1281                 sprintf(irq_name, "edma%d_err", j);
1282                 err_irq[j] = platform_get_irq_byname(pdev, irq_name);
1283                 edma_info[j]->irq_res_end = err_irq[j];
1284                 status = request_irq(err_irq[j], dma_ccerr_handler, 0,
1285                                         "edma_error", &pdev->dev);
1286                 if (status < 0) {
1287                         dev_dbg(&pdev->dev, "request_irq %d failed --> %d\n",
1288                                 err_irq[j], status);
1289                         goto fail;
1290                 }
1291
1292                 /* Everything lives on transfer controller 1 until otherwise
1293                  * specified. This way, long transfers on the low priority queue
1294                  * started by the codec engine will not cause audio defects.
1295                  */
1296                 for (i = 0; i < edma_info[j]->num_channels; i++)
1297                         map_dmach_queue(j, i, EVENTQ_1);
1298
1299                 queue_tc_mapping = info[j].queue_tc_mapping;
1300                 queue_priority_mapping = info[j].queue_priority_mapping;
1301
1302                 /* Event queue to TC mapping */
1303                 for (i = 0; queue_tc_mapping[i][0] != -1; i++)
1304                         map_queue_tc(j, queue_tc_mapping[i][0],
1305                                         queue_tc_mapping[i][1]);
1306
1307                 /* Event queue priority mapping */
1308                 for (i = 0; queue_priority_mapping[i][0] != -1; i++)
1309                         assign_priority_to_queue(j,
1310                                                 queue_priority_mapping[i][0],
1311                                                 queue_priority_mapping[i][1]);
1312
1313                 /* Map the channel to param entry if channel mapping logic
1314                  * exist
1315                  */
1316                 if (edma_read(j, EDMA_CCCFG) & CHMAP_EXIST)
1317                         map_dmach_param(j);
1318
1319                 for (i = 0; i < info[j].n_region; i++) {
1320                         edma_write_array2(j, EDMA_DRAE, i, 0, 0x0);
1321                         edma_write_array2(j, EDMA_DRAE, i, 1, 0x0);
1322                         edma_write_array(j, EDMA_QRAE, i, 0x0);
1323                 }
1324         }
1325
1326         if (tc_errs_handled) {
1327                 status = request_irq(IRQ_TCERRINT0, dma_tc0err_handler, 0,
1328                                         "edma_tc0", &pdev->dev);
1329                 if (status < 0) {
1330                         dev_dbg(&pdev->dev, "request_irq %d failed --> %d\n",
1331                                 IRQ_TCERRINT0, status);
1332                         return status;
1333                 }
1334                 status = request_irq(IRQ_TCERRINT, dma_tc1err_handler, 0,
1335                                         "edma_tc1", &pdev->dev);
1336                 if (status < 0) {
1337                         dev_dbg(&pdev->dev, "request_irq %d --> %d\n",
1338                                 IRQ_TCERRINT, status);
1339                         return status;
1340                 }
1341         }
1342
1343         return 0;
1344
1345 fail:
1346         for (i = 0; i < EDMA_MAX_CC; i++) {
1347                 if (err_irq[i])
1348                         free_irq(err_irq[i], &pdev->dev);
1349                 if (irq[i])
1350                         free_irq(irq[i], &pdev->dev);
1351         }
1352 fail1:
1353         for (i = 0; i < EDMA_MAX_CC; i++) {
1354                 if (r[i])
1355                         release_mem_region(r[i]->start, len[i]);
1356                 if (edmacc_regs_base[i])
1357                         iounmap(edmacc_regs_base[i]);
1358                 kfree(edma_info[i]);
1359         }
1360         return status;
1361 }
1362
1363
1364 static struct platform_driver edma_driver = {
1365         .driver.name    = "edma",
1366 };
1367
1368 static int __init edma_init(void)
1369 {
1370         return platform_driver_probe(&edma_driver, edma_probe);
1371 }
1372 arch_initcall(edma_init);
1373