e65d6cbf2419fd55d81008c9cbd139eb37a5f698
[safe/jmp/linux-2.6] / Documentation / lguest / lguest.c
1 /*P:100 This is the Launcher code, a simple program which lays out the
2  * "physical" memory for the new Guest by mapping the kernel image and
3  * the virtual devices, then opens /dev/lguest to tell the kernel
4  * about the Guest and control it. :*/
5 #define _LARGEFILE64_SOURCE
6 #define _GNU_SOURCE
7 #include <stdio.h>
8 #include <string.h>
9 #include <unistd.h>
10 #include <err.h>
11 #include <stdint.h>
12 #include <stdlib.h>
13 #include <elf.h>
14 #include <sys/mman.h>
15 #include <sys/param.h>
16 #include <sys/types.h>
17 #include <sys/stat.h>
18 #include <sys/wait.h>
19 #include <fcntl.h>
20 #include <stdbool.h>
21 #include <errno.h>
22 #include <ctype.h>
23 #include <sys/socket.h>
24 #include <sys/ioctl.h>
25 #include <sys/time.h>
26 #include <time.h>
27 #include <netinet/in.h>
28 #include <net/if.h>
29 #include <linux/sockios.h>
30 #include <linux/if_tun.h>
31 #include <sys/uio.h>
32 #include <termios.h>
33 #include <getopt.h>
34 #include <zlib.h>
35 #include <assert.h>
36 #include <sched.h>
37 #include <limits.h>
38 #include <stddef.h>
39 #include <signal.h>
40 #include "linux/lguest_launcher.h"
41 #include "linux/virtio_config.h"
42 #include "linux/virtio_net.h"
43 #include "linux/virtio_blk.h"
44 #include "linux/virtio_console.h"
45 #include "linux/virtio_rng.h"
46 #include "linux/virtio_ring.h"
47 #include "asm/bootparam.h"
48 /*L:110 We can ignore the 39 include files we need for this program, but I do
49  * want to draw attention to the use of kernel-style types.
50  *
51  * As Linus said, "C is a Spartan language, and so should your naming be."  I
52  * like these abbreviations, so we define them here.  Note that u64 is always
53  * unsigned long long, which works on all Linux systems: this means that we can
54  * use %llu in printf for any u64. */
55 typedef unsigned long long u64;
56 typedef uint32_t u32;
57 typedef uint16_t u16;
58 typedef uint8_t u8;
59 /*:*/
60
61 #define PAGE_PRESENT 0x7        /* Present, RW, Execute */
62 #define NET_PEERNUM 1
63 #define BRIDGE_PFX "bridge:"
64 #ifndef SIOCBRADDIF
65 #define SIOCBRADDIF     0x89a2          /* add interface to bridge      */
66 #endif
67 /* We can have up to 256 pages for devices. */
68 #define DEVICE_PAGES 256
69 /* This will occupy 3 pages: it must be a power of 2. */
70 #define VIRTQUEUE_NUM 256
71
72 /*L:120 verbose is both a global flag and a macro.  The C preprocessor allows
73  * this, and although I wouldn't recommend it, it works quite nicely here. */
74 static bool verbose;
75 #define verbose(args...) \
76         do { if (verbose) printf(args); } while(0)
77 /*:*/
78
79 /* File descriptors for the Waker. */
80 struct {
81         int pipe[2];
82         int lguest_fd;
83 } waker_fds;
84
85 /* The pointer to the start of guest memory. */
86 static void *guest_base;
87 /* The maximum guest physical address allowed, and maximum possible. */
88 static unsigned long guest_limit, guest_max;
89 /* The pipe for signal hander to write to. */
90 static int timeoutpipe[2];
91 static unsigned int timeout_usec = 500;
92
93 /* a per-cpu variable indicating whose vcpu is currently running */
94 static unsigned int __thread cpu_id;
95
96 /* This is our list of devices. */
97 struct device_list
98 {
99         /* Summary information about the devices in our list: ready to pass to
100          * select() to ask which need servicing.*/
101         fd_set infds;
102         int max_infd;
103
104         /* Counter to assign interrupt numbers. */
105         unsigned int next_irq;
106
107         /* Counter to print out convenient device numbers. */
108         unsigned int device_num;
109
110         /* The descriptor page for the devices. */
111         u8 *descpage;
112
113         /* A single linked list of devices. */
114         struct device *dev;
115         /* And a pointer to the last device for easy append and also for
116          * configuration appending. */
117         struct device *lastdev;
118 };
119
120 /* The list of Guest devices, based on command line arguments. */
121 static struct device_list devices;
122
123 /* The device structure describes a single device. */
124 struct device
125 {
126         /* The linked-list pointer. */
127         struct device *next;
128
129         /* The device's descriptor, as mapped into the Guest. */
130         struct lguest_device_desc *desc;
131
132         /* We can't trust desc values once Guest has booted: we use these. */
133         unsigned int feature_len;
134         unsigned int num_vq;
135
136         /* The name of this device, for --verbose. */
137         const char *name;
138
139         /* If handle_input is set, it wants to be called when this file
140          * descriptor is ready. */
141         int fd;
142         bool (*handle_input)(int fd, struct device *me);
143
144         /* Any queues attached to this device */
145         struct virtqueue *vq;
146
147         /* Handle status being finalized (ie. feature bits stable). */
148         void (*ready)(struct device *me);
149
150         /* Device-specific data. */
151         void *priv;
152 };
153
154 /* The virtqueue structure describes a queue attached to a device. */
155 struct virtqueue
156 {
157         struct virtqueue *next;
158
159         /* Which device owns me. */
160         struct device *dev;
161
162         /* The configuration for this queue. */
163         struct lguest_vqconfig config;
164
165         /* The actual ring of buffers. */
166         struct vring vring;
167
168         /* Last available index we saw. */
169         u16 last_avail_idx;
170
171         /* The routine to call when the Guest pings us, or timeout. */
172         void (*handle_output)(int fd, struct virtqueue *me, bool timeout);
173
174         /* Outstanding buffers */
175         unsigned int inflight;
176
177         /* Is this blocked awaiting a timer? */
178         bool blocked;
179 };
180
181 /* Remember the arguments to the program so we can "reboot" */
182 static char **main_args;
183
184 /* Since guest is UP and we don't run at the same time, we don't need barriers.
185  * But I include them in the code in case others copy it. */
186 #define wmb()
187
188 /* Convert an iovec element to the given type.
189  *
190  * This is a fairly ugly trick: we need to know the size of the type and
191  * alignment requirement to check the pointer is kosher.  It's also nice to
192  * have the name of the type in case we report failure.
193  *
194  * Typing those three things all the time is cumbersome and error prone, so we
195  * have a macro which sets them all up and passes to the real function. */
196 #define convert(iov, type) \
197         ((type *)_convert((iov), sizeof(type), __alignof__(type), #type))
198
199 static void *_convert(struct iovec *iov, size_t size, size_t align,
200                       const char *name)
201 {
202         if (iov->iov_len != size)
203                 errx(1, "Bad iovec size %zu for %s", iov->iov_len, name);
204         if ((unsigned long)iov->iov_base % align != 0)
205                 errx(1, "Bad alignment %p for %s", iov->iov_base, name);
206         return iov->iov_base;
207 }
208
209 /* Wrapper for the last available index.  Makes it easier to change. */
210 #define lg_last_avail(vq)       ((vq)->last_avail_idx)
211
212 /* The virtio configuration space is defined to be little-endian.  x86 is
213  * little-endian too, but it's nice to be explicit so we have these helpers. */
214 #define cpu_to_le16(v16) (v16)
215 #define cpu_to_le32(v32) (v32)
216 #define cpu_to_le64(v64) (v64)
217 #define le16_to_cpu(v16) (v16)
218 #define le32_to_cpu(v32) (v32)
219 #define le64_to_cpu(v64) (v64)
220
221 /* Is this iovec empty? */
222 static bool iov_empty(const struct iovec iov[], unsigned int num_iov)
223 {
224         unsigned int i;
225
226         for (i = 0; i < num_iov; i++)
227                 if (iov[i].iov_len)
228                         return false;
229         return true;
230 }
231
232 /* Take len bytes from the front of this iovec. */
233 static void iov_consume(struct iovec iov[], unsigned num_iov, unsigned len)
234 {
235         unsigned int i;
236
237         for (i = 0; i < num_iov; i++) {
238                 unsigned int used;
239
240                 used = iov[i].iov_len < len ? iov[i].iov_len : len;
241                 iov[i].iov_base += used;
242                 iov[i].iov_len -= used;
243                 len -= used;
244         }
245         assert(len == 0);
246 }
247
248 /* The device virtqueue descriptors are followed by feature bitmasks. */
249 static u8 *get_feature_bits(struct device *dev)
250 {
251         return (u8 *)(dev->desc + 1)
252                 + dev->num_vq * sizeof(struct lguest_vqconfig);
253 }
254
255 /*L:100 The Launcher code itself takes us out into userspace, that scary place
256  * where pointers run wild and free!  Unfortunately, like most userspace
257  * programs, it's quite boring (which is why everyone likes to hack on the
258  * kernel!).  Perhaps if you make up an Lguest Drinking Game at this point, it
259  * will get you through this section.  Or, maybe not.
260  *
261  * The Launcher sets up a big chunk of memory to be the Guest's "physical"
262  * memory and stores it in "guest_base".  In other words, Guest physical ==
263  * Launcher virtual with an offset.
264  *
265  * This can be tough to get your head around, but usually it just means that we
266  * use these trivial conversion functions when the Guest gives us it's
267  * "physical" addresses: */
268 static void *from_guest_phys(unsigned long addr)
269 {
270         return guest_base + addr;
271 }
272
273 static unsigned long to_guest_phys(const void *addr)
274 {
275         return (addr - guest_base);
276 }
277
278 /*L:130
279  * Loading the Kernel.
280  *
281  * We start with couple of simple helper routines.  open_or_die() avoids
282  * error-checking code cluttering the callers: */
283 static int open_or_die(const char *name, int flags)
284 {
285         int fd = open(name, flags);
286         if (fd < 0)
287                 err(1, "Failed to open %s", name);
288         return fd;
289 }
290
291 /* map_zeroed_pages() takes a number of pages. */
292 static void *map_zeroed_pages(unsigned int num)
293 {
294         int fd = open_or_die("/dev/zero", O_RDONLY);
295         void *addr;
296
297         /* We use a private mapping (ie. if we write to the page, it will be
298          * copied). */
299         addr = mmap(NULL, getpagesize() * num,
300                     PROT_READ|PROT_WRITE|PROT_EXEC, MAP_PRIVATE, fd, 0);
301         if (addr == MAP_FAILED)
302                 err(1, "Mmaping %u pages of /dev/zero", num);
303         close(fd);
304
305         return addr;
306 }
307
308 /* Get some more pages for a device. */
309 static void *get_pages(unsigned int num)
310 {
311         void *addr = from_guest_phys(guest_limit);
312
313         guest_limit += num * getpagesize();
314         if (guest_limit > guest_max)
315                 errx(1, "Not enough memory for devices");
316         return addr;
317 }
318
319 /* This routine is used to load the kernel or initrd.  It tries mmap, but if
320  * that fails (Plan 9's kernel file isn't nicely aligned on page boundaries),
321  * it falls back to reading the memory in. */
322 static void map_at(int fd, void *addr, unsigned long offset, unsigned long len)
323 {
324         ssize_t r;
325
326         /* We map writable even though for some segments are marked read-only.
327          * The kernel really wants to be writable: it patches its own
328          * instructions.
329          *
330          * MAP_PRIVATE means that the page won't be copied until a write is
331          * done to it.  This allows us to share untouched memory between
332          * Guests. */
333         if (mmap(addr, len, PROT_READ|PROT_WRITE|PROT_EXEC,
334                  MAP_FIXED|MAP_PRIVATE, fd, offset) != MAP_FAILED)
335                 return;
336
337         /* pread does a seek and a read in one shot: saves a few lines. */
338         r = pread(fd, addr, len, offset);
339         if (r != len)
340                 err(1, "Reading offset %lu len %lu gave %zi", offset, len, r);
341 }
342
343 /* This routine takes an open vmlinux image, which is in ELF, and maps it into
344  * the Guest memory.  ELF = Embedded Linking Format, which is the format used
345  * by all modern binaries on Linux including the kernel.
346  *
347  * The ELF headers give *two* addresses: a physical address, and a virtual
348  * address.  We use the physical address; the Guest will map itself to the
349  * virtual address.
350  *
351  * We return the starting address. */
352 static unsigned long map_elf(int elf_fd, const Elf32_Ehdr *ehdr)
353 {
354         Elf32_Phdr phdr[ehdr->e_phnum];
355         unsigned int i;
356
357         /* Sanity checks on the main ELF header: an x86 executable with a
358          * reasonable number of correctly-sized program headers. */
359         if (ehdr->e_type != ET_EXEC
360             || ehdr->e_machine != EM_386
361             || ehdr->e_phentsize != sizeof(Elf32_Phdr)
362             || ehdr->e_phnum < 1 || ehdr->e_phnum > 65536U/sizeof(Elf32_Phdr))
363                 errx(1, "Malformed elf header");
364
365         /* An ELF executable contains an ELF header and a number of "program"
366          * headers which indicate which parts ("segments") of the program to
367          * load where. */
368
369         /* We read in all the program headers at once: */
370         if (lseek(elf_fd, ehdr->e_phoff, SEEK_SET) < 0)
371                 err(1, "Seeking to program headers");
372         if (read(elf_fd, phdr, sizeof(phdr)) != sizeof(phdr))
373                 err(1, "Reading program headers");
374
375         /* Try all the headers: there are usually only three.  A read-only one,
376          * a read-write one, and a "note" section which we don't load. */
377         for (i = 0; i < ehdr->e_phnum; i++) {
378                 /* If this isn't a loadable segment, we ignore it */
379                 if (phdr[i].p_type != PT_LOAD)
380                         continue;
381
382                 verbose("Section %i: size %i addr %p\n",
383                         i, phdr[i].p_memsz, (void *)phdr[i].p_paddr);
384
385                 /* We map this section of the file at its physical address. */
386                 map_at(elf_fd, from_guest_phys(phdr[i].p_paddr),
387                        phdr[i].p_offset, phdr[i].p_filesz);
388         }
389
390         /* The entry point is given in the ELF header. */
391         return ehdr->e_entry;
392 }
393
394 /*L:150 A bzImage, unlike an ELF file, is not meant to be loaded.  You're
395  * supposed to jump into it and it will unpack itself.  We used to have to
396  * perform some hairy magic because the unpacking code scared me.
397  *
398  * Fortunately, Jeremy Fitzhardinge convinced me it wasn't that hard and wrote
399  * a small patch to jump over the tricky bits in the Guest, so now we just read
400  * the funky header so we know where in the file to load, and away we go! */
401 static unsigned long load_bzimage(int fd)
402 {
403         struct boot_params boot;
404         int r;
405         /* Modern bzImages get loaded at 1M. */
406         void *p = from_guest_phys(0x100000);
407
408         /* Go back to the start of the file and read the header.  It should be
409          * a Linux boot header (see Documentation/x86/i386/boot.txt) */
410         lseek(fd, 0, SEEK_SET);
411         read(fd, &boot, sizeof(boot));
412
413         /* Inside the setup_hdr, we expect the magic "HdrS" */
414         if (memcmp(&boot.hdr.header, "HdrS", 4) != 0)
415                 errx(1, "This doesn't look like a bzImage to me");
416
417         /* Skip over the extra sectors of the header. */
418         lseek(fd, (boot.hdr.setup_sects+1) * 512, SEEK_SET);
419
420         /* Now read everything into memory. in nice big chunks. */
421         while ((r = read(fd, p, 65536)) > 0)
422                 p += r;
423
424         /* Finally, code32_start tells us where to enter the kernel. */
425         return boot.hdr.code32_start;
426 }
427
428 /*L:140 Loading the kernel is easy when it's a "vmlinux", but most kernels
429  * come wrapped up in the self-decompressing "bzImage" format.  With a little
430  * work, we can load those, too. */
431 static unsigned long load_kernel(int fd)
432 {
433         Elf32_Ehdr hdr;
434
435         /* Read in the first few bytes. */
436         if (read(fd, &hdr, sizeof(hdr)) != sizeof(hdr))
437                 err(1, "Reading kernel");
438
439         /* If it's an ELF file, it starts with "\177ELF" */
440         if (memcmp(hdr.e_ident, ELFMAG, SELFMAG) == 0)
441                 return map_elf(fd, &hdr);
442
443         /* Otherwise we assume it's a bzImage, and try to load it. */
444         return load_bzimage(fd);
445 }
446
447 /* This is a trivial little helper to align pages.  Andi Kleen hated it because
448  * it calls getpagesize() twice: "it's dumb code."
449  *
450  * Kernel guys get really het up about optimization, even when it's not
451  * necessary.  I leave this code as a reaction against that. */
452 static inline unsigned long page_align(unsigned long addr)
453 {
454         /* Add upwards and truncate downwards. */
455         return ((addr + getpagesize()-1) & ~(getpagesize()-1));
456 }
457
458 /*L:180 An "initial ram disk" is a disk image loaded into memory along with
459  * the kernel which the kernel can use to boot from without needing any
460  * drivers.  Most distributions now use this as standard: the initrd contains
461  * the code to load the appropriate driver modules for the current machine.
462  *
463  * Importantly, James Morris works for RedHat, and Fedora uses initrds for its
464  * kernels.  He sent me this (and tells me when I break it). */
465 static unsigned long load_initrd(const char *name, unsigned long mem)
466 {
467         int ifd;
468         struct stat st;
469         unsigned long len;
470
471         ifd = open_or_die(name, O_RDONLY);
472         /* fstat() is needed to get the file size. */
473         if (fstat(ifd, &st) < 0)
474                 err(1, "fstat() on initrd '%s'", name);
475
476         /* We map the initrd at the top of memory, but mmap wants it to be
477          * page-aligned, so we round the size up for that. */
478         len = page_align(st.st_size);
479         map_at(ifd, from_guest_phys(mem - len), 0, st.st_size);
480         /* Once a file is mapped, you can close the file descriptor.  It's a
481          * little odd, but quite useful. */
482         close(ifd);
483         verbose("mapped initrd %s size=%lu @ %p\n", name, len, (void*)mem-len);
484
485         /* We return the initrd size. */
486         return len;
487 }
488 /*:*/
489
490 /* Simple routine to roll all the commandline arguments together with spaces
491  * between them. */
492 static void concat(char *dst, char *args[])
493 {
494         unsigned int i, len = 0;
495
496         for (i = 0; args[i]; i++) {
497                 if (i) {
498                         strcat(dst+len, " ");
499                         len++;
500                 }
501                 strcpy(dst+len, args[i]);
502                 len += strlen(args[i]);
503         }
504         /* In case it's empty. */
505         dst[len] = '\0';
506 }
507
508 /*L:185 This is where we actually tell the kernel to initialize the Guest.  We
509  * saw the arguments it expects when we looked at initialize() in lguest_user.c:
510  * the base of Guest "physical" memory, the top physical page to allow and the
511  * entry point for the Guest. */
512 static int tell_kernel(unsigned long start)
513 {
514         unsigned long args[] = { LHREQ_INITIALIZE,
515                                  (unsigned long)guest_base,
516                                  guest_limit / getpagesize(), start };
517         int fd;
518
519         verbose("Guest: %p - %p (%#lx)\n",
520                 guest_base, guest_base + guest_limit, guest_limit);
521         fd = open_or_die("/dev/lguest", O_RDWR);
522         if (write(fd, args, sizeof(args)) < 0)
523                 err(1, "Writing to /dev/lguest");
524
525         /* We return the /dev/lguest file descriptor to control this Guest */
526         return fd;
527 }
528 /*:*/
529
530 static void add_device_fd(int fd)
531 {
532         FD_SET(fd, &devices.infds);
533         if (fd > devices.max_infd)
534                 devices.max_infd = fd;
535 }
536
537 /*L:200
538  * The Waker.
539  *
540  * With console, block and network devices, we can have lots of input which we
541  * need to process.  We could try to tell the kernel what file descriptors to
542  * watch, but handing a file descriptor mask through to the kernel is fairly
543  * icky.
544  *
545  * Instead, we clone off a thread which watches the file descriptors and writes
546  * the LHREQ_BREAK command to the /dev/lguest file descriptor to tell the Host
547  * stop running the Guest.  This causes the Launcher to return from the
548  * /dev/lguest read with -EAGAIN, where it will write to /dev/lguest to reset
549  * the LHREQ_BREAK and wake us up again.
550  *
551  * This, of course, is merely a different *kind* of icky.
552  *
553  * Given my well-known antipathy to threads, I'd prefer to use processes.  But
554  * it's easier to share Guest memory with threads, and trivial to share the
555  * devices.infds as the Launcher changes it.
556  */
557 static int waker(void *unused)
558 {
559         /* Close the write end of the pipe: only the Launcher has it open. */
560         close(waker_fds.pipe[1]);
561
562         for (;;) {
563                 fd_set rfds = devices.infds;
564                 unsigned long args[] = { LHREQ_BREAK, 1 };
565                 unsigned int maxfd = devices.max_infd;
566
567                 /* We also listen to the pipe from the Launcher. */
568                 FD_SET(waker_fds.pipe[0], &rfds);
569                 if (waker_fds.pipe[0] > maxfd)
570                         maxfd = waker_fds.pipe[0];
571
572                 /* Wait until input is ready from one of the devices. */
573                 select(maxfd+1, &rfds, NULL, NULL, NULL);
574
575                 /* Message from Launcher? */
576                 if (FD_ISSET(waker_fds.pipe[0], &rfds)) {
577                         char c;
578                         /* If this fails, then assume Launcher has exited.
579                          * Don't do anything on exit: we're just a thread! */
580                         if (read(waker_fds.pipe[0], &c, 1) != 1)
581                                 _exit(0);
582                         continue;
583                 }
584
585                 /* Send LHREQ_BREAK command to snap the Launcher out of it. */
586                 pwrite(waker_fds.lguest_fd, args, sizeof(args), cpu_id);
587         }
588         return 0;
589 }
590
591 /* This routine just sets up a pipe to the Waker process. */
592 static void setup_waker(int lguest_fd)
593 {
594         /* This pipe is closed when Launcher dies, telling Waker. */
595         if (pipe(waker_fds.pipe) != 0)
596                 err(1, "Creating pipe for Waker");
597
598         /* Waker also needs to know the lguest fd */
599         waker_fds.lguest_fd = lguest_fd;
600
601         if (clone(waker, malloc(4096) + 4096, CLONE_VM | SIGCHLD, NULL) == -1)
602                 err(1, "Creating Waker");
603 }
604
605 /*
606  * Device Handling.
607  *
608  * When the Guest gives us a buffer, it sends an array of addresses and sizes.
609  * We need to make sure it's not trying to reach into the Launcher itself, so
610  * we have a convenient routine which checks it and exits with an error message
611  * if something funny is going on:
612  */
613 static void *_check_pointer(unsigned long addr, unsigned int size,
614                             unsigned int line)
615 {
616         /* We have to separately check addr and addr+size, because size could
617          * be huge and addr + size might wrap around. */
618         if (addr >= guest_limit || addr + size >= guest_limit)
619                 errx(1, "%s:%i: Invalid address %#lx", __FILE__, line, addr);
620         /* We return a pointer for the caller's convenience, now we know it's
621          * safe to use. */
622         return from_guest_phys(addr);
623 }
624 /* A macro which transparently hands the line number to the real function. */
625 #define check_pointer(addr,size) _check_pointer(addr, size, __LINE__)
626
627 /* Each buffer in the virtqueues is actually a chain of descriptors.  This
628  * function returns the next descriptor in the chain, or vq->vring.num if we're
629  * at the end. */
630 static unsigned next_desc(struct virtqueue *vq, unsigned int i)
631 {
632         unsigned int next;
633
634         /* If this descriptor says it doesn't chain, we're done. */
635         if (!(vq->vring.desc[i].flags & VRING_DESC_F_NEXT))
636                 return vq->vring.num;
637
638         /* Check they're not leading us off end of descriptors. */
639         next = vq->vring.desc[i].next;
640         /* Make sure compiler knows to grab that: we don't want it changing! */
641         wmb();
642
643         if (next >= vq->vring.num)
644                 errx(1, "Desc next is %u", next);
645
646         return next;
647 }
648
649 /* This looks in the virtqueue and for the first available buffer, and converts
650  * it to an iovec for convenient access.  Since descriptors consist of some
651  * number of output then some number of input descriptors, it's actually two
652  * iovecs, but we pack them into one and note how many of each there were.
653  *
654  * This function returns the descriptor number found, or vq->vring.num (which
655  * is never a valid descriptor number) if none was found. */
656 static unsigned get_vq_desc(struct virtqueue *vq,
657                             struct iovec iov[],
658                             unsigned int *out_num, unsigned int *in_num)
659 {
660         unsigned int i, head;
661         u16 last_avail;
662
663         /* Check it isn't doing very strange things with descriptor numbers. */
664         last_avail = lg_last_avail(vq);
665         if ((u16)(vq->vring.avail->idx - last_avail) > vq->vring.num)
666                 errx(1, "Guest moved used index from %u to %u",
667                      last_avail, vq->vring.avail->idx);
668
669         /* If there's nothing new since last we looked, return invalid. */
670         if (vq->vring.avail->idx == last_avail)
671                 return vq->vring.num;
672
673         /* Grab the next descriptor number they're advertising, and increment
674          * the index we've seen. */
675         head = vq->vring.avail->ring[last_avail % vq->vring.num];
676         lg_last_avail(vq)++;
677
678         /* If their number is silly, that's a fatal mistake. */
679         if (head >= vq->vring.num)
680                 errx(1, "Guest says index %u is available", head);
681
682         /* When we start there are none of either input nor output. */
683         *out_num = *in_num = 0;
684
685         i = head;
686         do {
687                 /* Grab the first descriptor, and check it's OK. */
688                 iov[*out_num + *in_num].iov_len = vq->vring.desc[i].len;
689                 iov[*out_num + *in_num].iov_base
690                         = check_pointer(vq->vring.desc[i].addr,
691                                         vq->vring.desc[i].len);
692                 /* If this is an input descriptor, increment that count. */
693                 if (vq->vring.desc[i].flags & VRING_DESC_F_WRITE)
694                         (*in_num)++;
695                 else {
696                         /* If it's an output descriptor, they're all supposed
697                          * to come before any input descriptors. */
698                         if (*in_num)
699                                 errx(1, "Descriptor has out after in");
700                         (*out_num)++;
701                 }
702
703                 /* If we've got too many, that implies a descriptor loop. */
704                 if (*out_num + *in_num > vq->vring.num)
705                         errx(1, "Looped descriptor");
706         } while ((i = next_desc(vq, i)) != vq->vring.num);
707
708         vq->inflight++;
709         return head;
710 }
711
712 /* After we've used one of their buffers, we tell them about it.  We'll then
713  * want to send them an interrupt, using trigger_irq(). */
714 static void add_used(struct virtqueue *vq, unsigned int head, int len)
715 {
716         struct vring_used_elem *used;
717
718         /* The virtqueue contains a ring of used buffers.  Get a pointer to the
719          * next entry in that used ring. */
720         used = &vq->vring.used->ring[vq->vring.used->idx % vq->vring.num];
721         used->id = head;
722         used->len = len;
723         /* Make sure buffer is written before we update index. */
724         wmb();
725         vq->vring.used->idx++;
726         vq->inflight--;
727 }
728
729 /* This actually sends the interrupt for this virtqueue */
730 static void trigger_irq(int fd, struct virtqueue *vq)
731 {
732         unsigned long buf[] = { LHREQ_IRQ, vq->config.irq };
733
734         /* If they don't want an interrupt, don't send one, unless empty. */
735         if ((vq->vring.avail->flags & VRING_AVAIL_F_NO_INTERRUPT)
736             && vq->inflight)
737                 return;
738
739         /* Send the Guest an interrupt tell them we used something up. */
740         if (write(fd, buf, sizeof(buf)) != 0)
741                 err(1, "Triggering irq %i", vq->config.irq);
742 }
743
744 /* And here's the combo meal deal.  Supersize me! */
745 static void add_used_and_trigger(int fd, struct virtqueue *vq,
746                                  unsigned int head, int len)
747 {
748         add_used(vq, head, len);
749         trigger_irq(fd, vq);
750 }
751
752 /*
753  * The Console
754  *
755  * Here is the input terminal setting we save, and the routine to restore them
756  * on exit so the user gets their terminal back. */
757 static struct termios orig_term;
758 static void restore_term(void)
759 {
760         tcsetattr(STDIN_FILENO, TCSANOW, &orig_term);
761 }
762
763 /* We associate some data with the console for our exit hack. */
764 struct console_abort
765 {
766         /* How many times have they hit ^C? */
767         int count;
768         /* When did they start? */
769         struct timeval start;
770 };
771
772 /* This is the routine which handles console input (ie. stdin). */
773 static bool handle_console_input(int fd, struct device *dev)
774 {
775         int len;
776         unsigned int head, in_num, out_num;
777         struct iovec iov[dev->vq->vring.num];
778         struct console_abort *abort = dev->priv;
779
780         /* First we need a console buffer from the Guests's input virtqueue. */
781         head = get_vq_desc(dev->vq, iov, &out_num, &in_num);
782
783         /* If they're not ready for input, stop listening to this file
784          * descriptor.  We'll start again once they add an input buffer. */
785         if (head == dev->vq->vring.num)
786                 return false;
787
788         if (out_num)
789                 errx(1, "Output buffers in console in queue?");
790
791         /* This is why we convert to iovecs: the readv() call uses them, and so
792          * it reads straight into the Guest's buffer. */
793         len = readv(dev->fd, iov, in_num);
794         if (len <= 0) {
795                 /* This implies that the console is closed, is /dev/null, or
796                  * something went terribly wrong. */
797                 warnx("Failed to get console input, ignoring console.");
798                 /* Put the input terminal back. */
799                 restore_term();
800                 /* Remove callback from input vq, so it doesn't restart us. */
801                 dev->vq->handle_output = NULL;
802                 /* Stop listening to this fd: don't call us again. */
803                 return false;
804         }
805
806         /* Tell the Guest about the new input. */
807         add_used_and_trigger(fd, dev->vq, head, len);
808
809         /* Three ^C within one second?  Exit.
810          *
811          * This is such a hack, but works surprisingly well.  Each ^C has to be
812          * in a buffer by itself, so they can't be too fast.  But we check that
813          * we get three within about a second, so they can't be too slow. */
814         if (len == 1 && ((char *)iov[0].iov_base)[0] == 3) {
815                 if (!abort->count++)
816                         gettimeofday(&abort->start, NULL);
817                 else if (abort->count == 3) {
818                         struct timeval now;
819                         gettimeofday(&now, NULL);
820                         if (now.tv_sec <= abort->start.tv_sec+1) {
821                                 unsigned long args[] = { LHREQ_BREAK, 0 };
822                                 /* Close the fd so Waker will know it has to
823                                  * exit. */
824                                 close(waker_fds.pipe[1]);
825                                 /* Just in case Waker is blocked in BREAK, send
826                                  * unbreak now. */
827                                 write(fd, args, sizeof(args));
828                                 exit(2);
829                         }
830                         abort->count = 0;
831                 }
832         } else
833                 /* Any other key resets the abort counter. */
834                 abort->count = 0;
835
836         /* Everything went OK! */
837         return true;
838 }
839
840 /* Handling output for console is simple: we just get all the output buffers
841  * and write them to stdout. */
842 static void handle_console_output(int fd, struct virtqueue *vq, bool timeout)
843 {
844         unsigned int head, out, in;
845         int len;
846         struct iovec iov[vq->vring.num];
847
848         /* Keep getting output buffers from the Guest until we run out. */
849         while ((head = get_vq_desc(vq, iov, &out, &in)) != vq->vring.num) {
850                 if (in)
851                         errx(1, "Input buffers in output queue?");
852                 len = writev(STDOUT_FILENO, iov, out);
853                 add_used_and_trigger(fd, vq, head, len);
854         }
855 }
856
857 /* This is called when we no longer want to hear about Guest changes to a
858  * virtqueue.  This is more efficient in high-traffic cases, but it means we
859  * have to set a timer to check if any more changes have occurred. */
860 static void block_vq(struct virtqueue *vq)
861 {
862         struct itimerval itm;
863
864         vq->vring.used->flags |= VRING_USED_F_NO_NOTIFY;
865         vq->blocked = true;
866
867         itm.it_interval.tv_sec = 0;
868         itm.it_interval.tv_usec = 0;
869         itm.it_value.tv_sec = 0;
870         itm.it_value.tv_usec = timeout_usec;
871
872         setitimer(ITIMER_REAL, &itm, NULL);
873 }
874
875 /*
876  * The Network
877  *
878  * Handling output for network is also simple: we get all the output buffers
879  * and write them (ignoring the first element) to this device's file descriptor
880  * (/dev/net/tun).
881  */
882 static void handle_net_output(int fd, struct virtqueue *vq, bool timeout)
883 {
884         unsigned int head, out, in, num = 0;
885         int len;
886         struct iovec iov[vq->vring.num];
887         static int last_timeout_num;
888
889         /* Keep getting output buffers from the Guest until we run out. */
890         while ((head = get_vq_desc(vq, iov, &out, &in)) != vq->vring.num) {
891                 if (in)
892                         errx(1, "Input buffers in output queue?");
893                 len = writev(vq->dev->fd, iov, out);
894                 if (len < 0)
895                         err(1, "Writing network packet to tun");
896                 add_used_and_trigger(fd, vq, head, len);
897                 num++;
898         }
899
900         /* Block further kicks and set up a timer if we saw anything. */
901         if (!timeout && num)
902                 block_vq(vq);
903
904         /* We never quite know how long should we wait before we check the
905          * queue again for more packets.  We start at 500 microseconds, and if
906          * we get fewer packets than last time, we assume we made the timeout
907          * too small and increase it by 10 microseconds.  Otherwise, we drop it
908          * by one microsecond every time.  It seems to work well enough. */
909         if (timeout) {
910                 if (num < last_timeout_num)
911                         timeout_usec += 10;
912                 else if (timeout_usec > 1)
913                         timeout_usec--;
914                 last_timeout_num = num;
915         }
916 }
917
918 /* This is where we handle a packet coming in from the tun device to our
919  * Guest. */
920 static bool handle_tun_input(int fd, struct device *dev)
921 {
922         unsigned int head, in_num, out_num;
923         int len;
924         struct iovec iov[dev->vq->vring.num];
925
926         /* First we need a network buffer from the Guests's recv virtqueue. */
927         head = get_vq_desc(dev->vq, iov, &out_num, &in_num);
928         if (head == dev->vq->vring.num) {
929                 /* Now, it's expected that if we try to send a packet too
930                  * early, the Guest won't be ready yet.  Wait until the device
931                  * status says it's ready. */
932                 /* FIXME: Actually want DRIVER_ACTIVE here. */
933
934                 /* Now tell it we want to know if new things appear. */
935                 dev->vq->vring.used->flags &= ~VRING_USED_F_NO_NOTIFY;
936                 wmb();
937
938                 /* We'll turn this back on if input buffers are registered. */
939                 return false;
940         } else if (out_num)
941                 errx(1, "Output buffers in network recv queue?");
942
943         /* Read the packet from the device directly into the Guest's buffer. */
944         len = readv(dev->fd, iov, in_num);
945         if (len <= 0)
946                 err(1, "reading network");
947
948         /* Tell the Guest about the new packet. */
949         add_used_and_trigger(fd, dev->vq, head, len);
950
951         verbose("tun input packet len %i [%02x %02x] (%s)\n", len,
952                 ((u8 *)iov[1].iov_base)[0], ((u8 *)iov[1].iov_base)[1],
953                 head != dev->vq->vring.num ? "sent" : "discarded");
954
955         /* All good. */
956         return true;
957 }
958
959 /*L:215 This is the callback attached to the network and console input
960  * virtqueues: it ensures we try again, in case we stopped console or net
961  * delivery because Guest didn't have any buffers. */
962 static void enable_fd(int fd, struct virtqueue *vq, bool timeout)
963 {
964         add_device_fd(vq->dev->fd);
965         /* Snap the Waker out of its select loop. */
966         write(waker_fds.pipe[1], "", 1);
967 }
968
969 static void net_enable_fd(int fd, struct virtqueue *vq, bool timeout)
970 {
971         /* We don't need to know again when Guest refills receive buffer. */
972         vq->vring.used->flags |= VRING_USED_F_NO_NOTIFY;
973         enable_fd(fd, vq, timeout);
974 }
975
976 /* When the Guest tells us they updated the status field, we handle it. */
977 static void update_device_status(struct device *dev)
978 {
979         struct virtqueue *vq;
980
981         /* This is a reset. */
982         if (dev->desc->status == 0) {
983                 verbose("Resetting device %s\n", dev->name);
984
985                 /* Clear any features they've acked. */
986                 memset(get_feature_bits(dev) + dev->feature_len, 0,
987                        dev->feature_len);
988
989                 /* Zero out the virtqueues. */
990                 for (vq = dev->vq; vq; vq = vq->next) {
991                         memset(vq->vring.desc, 0,
992                                vring_size(vq->config.num, LGUEST_VRING_ALIGN));
993                         lg_last_avail(vq) = 0;
994                 }
995         } else if (dev->desc->status & VIRTIO_CONFIG_S_FAILED) {
996                 warnx("Device %s configuration FAILED", dev->name);
997         } else if (dev->desc->status & VIRTIO_CONFIG_S_DRIVER_OK) {
998                 unsigned int i;
999
1000                 verbose("Device %s OK: offered", dev->name);
1001                 for (i = 0; i < dev->feature_len; i++)
1002                         verbose(" %02x", get_feature_bits(dev)[i]);
1003                 verbose(", accepted");
1004                 for (i = 0; i < dev->feature_len; i++)
1005                         verbose(" %02x", get_feature_bits(dev)
1006                                 [dev->feature_len+i]);
1007
1008                 if (dev->ready)
1009                         dev->ready(dev);
1010         }
1011 }
1012
1013 /* This is the generic routine we call when the Guest uses LHCALL_NOTIFY. */
1014 static void handle_output(int fd, unsigned long addr)
1015 {
1016         struct device *i;
1017         struct virtqueue *vq;
1018
1019         /* Check each device and virtqueue. */
1020         for (i = devices.dev; i; i = i->next) {
1021                 /* Notifications to device descriptors update device status. */
1022                 if (from_guest_phys(addr) == i->desc) {
1023                         update_device_status(i);
1024                         return;
1025                 }
1026
1027                 /* Notifications to virtqueues mean output has occurred. */
1028                 for (vq = i->vq; vq; vq = vq->next) {
1029                         if (vq->config.pfn != addr/getpagesize())
1030                                 continue;
1031
1032                         /* Guest should acknowledge (and set features!)  before
1033                          * using the device. */
1034                         if (i->desc->status == 0) {
1035                                 warnx("%s gave early output", i->name);
1036                                 return;
1037                         }
1038
1039                         if (strcmp(vq->dev->name, "console") != 0)
1040                                 verbose("Output to %s\n", vq->dev->name);
1041                         if (vq->handle_output)
1042                                 vq->handle_output(fd, vq, false);
1043                         return;
1044                 }
1045         }
1046
1047         /* Early console write is done using notify on a nul-terminated string
1048          * in Guest memory. */
1049         if (addr >= guest_limit)
1050                 errx(1, "Bad NOTIFY %#lx", addr);
1051
1052         write(STDOUT_FILENO, from_guest_phys(addr),
1053               strnlen(from_guest_phys(addr), guest_limit - addr));
1054 }
1055
1056 static void handle_timeout(int fd)
1057 {
1058         char buf[32];
1059         struct device *i;
1060         struct virtqueue *vq;
1061
1062         /* Clear the pipe */
1063         read(timeoutpipe[0], buf, sizeof(buf));
1064
1065         /* Check each device and virtqueue: flush blocked ones. */
1066         for (i = devices.dev; i; i = i->next) {
1067                 for (vq = i->vq; vq; vq = vq->next) {
1068                         if (!vq->blocked)
1069                                 continue;
1070
1071                         vq->vring.used->flags &= ~VRING_USED_F_NO_NOTIFY;
1072                         vq->blocked = false;
1073                         if (vq->handle_output)
1074                                 vq->handle_output(fd, vq, true);
1075                 }
1076         }
1077 }
1078
1079 /* This is called when the Waker wakes us up: check for incoming file
1080  * descriptors. */
1081 static void handle_input(int fd)
1082 {
1083         /* select() wants a zeroed timeval to mean "don't wait". */
1084         struct timeval poll = { .tv_sec = 0, .tv_usec = 0 };
1085
1086         for (;;) {
1087                 struct device *i;
1088                 fd_set fds = devices.infds;
1089                 int num;
1090
1091                 num = select(devices.max_infd+1, &fds, NULL, NULL, &poll);
1092                 /* Could get interrupted */
1093                 if (num < 0)
1094                         continue;
1095                 /* If nothing is ready, we're done. */
1096                 if (num == 0)
1097                         break;
1098
1099                 /* Otherwise, call the device(s) which have readable file
1100                  * descriptors and a method of handling them.  */
1101                 for (i = devices.dev; i; i = i->next) {
1102                         if (i->handle_input && FD_ISSET(i->fd, &fds)) {
1103                                 if (i->handle_input(fd, i))
1104                                         continue;
1105
1106                                 /* If handle_input() returns false, it means we
1107                                  * should no longer service it.  Networking and
1108                                  * console do this when there's no input
1109                                  * buffers to deliver into.  Console also uses
1110                                  * it when it discovers that stdin is closed. */
1111                                 FD_CLR(i->fd, &devices.infds);
1112                         }
1113                 }
1114
1115                 /* Is this the timeout fd? */
1116                 if (FD_ISSET(timeoutpipe[0], &fds))
1117                         handle_timeout(fd);
1118         }
1119 }
1120
1121 /*L:190
1122  * Device Setup
1123  *
1124  * All devices need a descriptor so the Guest knows it exists, and a "struct
1125  * device" so the Launcher can keep track of it.  We have common helper
1126  * routines to allocate and manage them.
1127  */
1128
1129 /* The layout of the device page is a "struct lguest_device_desc" followed by a
1130  * number of virtqueue descriptors, then two sets of feature bits, then an
1131  * array of configuration bytes.  This routine returns the configuration
1132  * pointer. */
1133 static u8 *device_config(const struct device *dev)
1134 {
1135         return (void *)(dev->desc + 1)
1136                 + dev->num_vq * sizeof(struct lguest_vqconfig)
1137                 + dev->feature_len * 2;
1138 }
1139
1140 /* This routine allocates a new "struct lguest_device_desc" from descriptor
1141  * table page just above the Guest's normal memory.  It returns a pointer to
1142  * that descriptor. */
1143 static struct lguest_device_desc *new_dev_desc(u16 type)
1144 {
1145         struct lguest_device_desc d = { .type = type };
1146         void *p;
1147
1148         /* Figure out where the next device config is, based on the last one. */
1149         if (devices.lastdev)
1150                 p = device_config(devices.lastdev)
1151                         + devices.lastdev->desc->config_len;
1152         else
1153                 p = devices.descpage;
1154
1155         /* We only have one page for all the descriptors. */
1156         if (p + sizeof(d) > (void *)devices.descpage + getpagesize())
1157                 errx(1, "Too many devices");
1158
1159         /* p might not be aligned, so we memcpy in. */
1160         return memcpy(p, &d, sizeof(d));
1161 }
1162
1163 /* Each device descriptor is followed by the description of its virtqueues.  We
1164  * specify how many descriptors the virtqueue is to have. */
1165 static void add_virtqueue(struct device *dev, unsigned int num_descs,
1166                           void (*handle_output)(int, struct virtqueue *, bool))
1167 {
1168         unsigned int pages;
1169         struct virtqueue **i, *vq = malloc(sizeof(*vq));
1170         void *p;
1171
1172         /* First we need some memory for this virtqueue. */
1173         pages = (vring_size(num_descs, LGUEST_VRING_ALIGN) + getpagesize() - 1)
1174                 / getpagesize();
1175         p = get_pages(pages);
1176
1177         /* Initialize the virtqueue */
1178         vq->next = NULL;
1179         vq->last_avail_idx = 0;
1180         vq->dev = dev;
1181         vq->inflight = 0;
1182         vq->blocked = false;
1183
1184         /* Initialize the configuration. */
1185         vq->config.num = num_descs;
1186         vq->config.irq = devices.next_irq++;
1187         vq->config.pfn = to_guest_phys(p) / getpagesize();
1188
1189         /* Initialize the vring. */
1190         vring_init(&vq->vring, num_descs, p, LGUEST_VRING_ALIGN);
1191
1192         /* Append virtqueue to this device's descriptor.  We use
1193          * device_config() to get the end of the device's current virtqueues;
1194          * we check that we haven't added any config or feature information
1195          * yet, otherwise we'd be overwriting them. */
1196         assert(dev->desc->config_len == 0 && dev->desc->feature_len == 0);
1197         memcpy(device_config(dev), &vq->config, sizeof(vq->config));
1198         dev->num_vq++;
1199         dev->desc->num_vq++;
1200
1201         verbose("Virtqueue page %#lx\n", to_guest_phys(p));
1202
1203         /* Add to tail of list, so dev->vq is first vq, dev->vq->next is
1204          * second.  */
1205         for (i = &dev->vq; *i; i = &(*i)->next);
1206         *i = vq;
1207
1208         /* Set the routine to call when the Guest does something to this
1209          * virtqueue. */
1210         vq->handle_output = handle_output;
1211
1212         /* As an optimization, set the advisory "Don't Notify Me" flag if we
1213          * don't have a handler */
1214         if (!handle_output)
1215                 vq->vring.used->flags = VRING_USED_F_NO_NOTIFY;
1216 }
1217
1218 /* The first half of the feature bitmask is for us to advertise features.  The
1219  * second half is for the Guest to accept features. */
1220 static void add_feature(struct device *dev, unsigned bit)
1221 {
1222         u8 *features = get_feature_bits(dev);
1223
1224         /* We can't extend the feature bits once we've added config bytes */
1225         if (dev->desc->feature_len <= bit / CHAR_BIT) {
1226                 assert(dev->desc->config_len == 0);
1227                 dev->feature_len = dev->desc->feature_len = (bit/CHAR_BIT) + 1;
1228         }
1229
1230         features[bit / CHAR_BIT] |= (1 << (bit % CHAR_BIT));
1231 }
1232
1233 /* This routine sets the configuration fields for an existing device's
1234  * descriptor.  It only works for the last device, but that's OK because that's
1235  * how we use it. */
1236 static void set_config(struct device *dev, unsigned len, const void *conf)
1237 {
1238         /* Check we haven't overflowed our single page. */
1239         if (device_config(dev) + len > devices.descpage + getpagesize())
1240                 errx(1, "Too many devices");
1241
1242         /* Copy in the config information, and store the length. */
1243         memcpy(device_config(dev), conf, len);
1244         dev->desc->config_len = len;
1245 }
1246
1247 /* This routine does all the creation and setup of a new device, including
1248  * calling new_dev_desc() to allocate the descriptor and device memory.
1249  *
1250  * See what I mean about userspace being boring? */
1251 static struct device *new_device(const char *name, u16 type, int fd,
1252                                  bool (*handle_input)(int, struct device *))
1253 {
1254         struct device *dev = malloc(sizeof(*dev));
1255
1256         /* Now we populate the fields one at a time. */
1257         dev->fd = fd;
1258         /* If we have an input handler for this file descriptor, then we add it
1259          * to the device_list's fdset and maxfd. */
1260         if (handle_input)
1261                 add_device_fd(dev->fd);
1262         dev->desc = new_dev_desc(type);
1263         dev->handle_input = handle_input;
1264         dev->name = name;
1265         dev->vq = NULL;
1266         dev->ready = NULL;
1267         dev->feature_len = 0;
1268         dev->num_vq = 0;
1269
1270         /* Append to device list.  Prepending to a single-linked list is
1271          * easier, but the user expects the devices to be arranged on the bus
1272          * in command-line order.  The first network device on the command line
1273          * is eth0, the first block device /dev/vda, etc. */
1274         if (devices.lastdev)
1275                 devices.lastdev->next = dev;
1276         else
1277                 devices.dev = dev;
1278         devices.lastdev = dev;
1279
1280         return dev;
1281 }
1282
1283 /* Our first setup routine is the console.  It's a fairly simple device, but
1284  * UNIX tty handling makes it uglier than it could be. */
1285 static void setup_console(void)
1286 {
1287         struct device *dev;
1288
1289         /* If we can save the initial standard input settings... */
1290         if (tcgetattr(STDIN_FILENO, &orig_term) == 0) {
1291                 struct termios term = orig_term;
1292                 /* Then we turn off echo, line buffering and ^C etc.  We want a
1293                  * raw input stream to the Guest. */
1294                 term.c_lflag &= ~(ISIG|ICANON|ECHO);
1295                 tcsetattr(STDIN_FILENO, TCSANOW, &term);
1296                 /* If we exit gracefully, the original settings will be
1297                  * restored so the user can see what they're typing. */
1298                 atexit(restore_term);
1299         }
1300
1301         dev = new_device("console", VIRTIO_ID_CONSOLE,
1302                          STDIN_FILENO, handle_console_input);
1303         /* We store the console state in dev->priv, and initialize it. */
1304         dev->priv = malloc(sizeof(struct console_abort));
1305         ((struct console_abort *)dev->priv)->count = 0;
1306
1307         /* The console needs two virtqueues: the input then the output.  When
1308          * they put something the input queue, we make sure we're listening to
1309          * stdin.  When they put something in the output queue, we write it to
1310          * stdout. */
1311         add_virtqueue(dev, VIRTQUEUE_NUM, enable_fd);
1312         add_virtqueue(dev, VIRTQUEUE_NUM, handle_console_output);
1313
1314         verbose("device %u: console\n", devices.device_num++);
1315 }
1316 /*:*/
1317
1318 static void timeout_alarm(int sig)
1319 {
1320         write(timeoutpipe[1], "", 1);
1321 }
1322
1323 static void setup_timeout(void)
1324 {
1325         if (pipe(timeoutpipe) != 0)
1326                 err(1, "Creating timeout pipe");
1327
1328         if (fcntl(timeoutpipe[1], F_SETFL,
1329                   fcntl(timeoutpipe[1], F_GETFL) | O_NONBLOCK) != 0)
1330                 err(1, "Making timeout pipe nonblocking");
1331
1332         add_device_fd(timeoutpipe[0]);
1333         signal(SIGALRM, timeout_alarm);
1334 }
1335
1336 /*M:010 Inter-guest networking is an interesting area.  Simplest is to have a
1337  * --sharenet=<name> option which opens or creates a named pipe.  This can be
1338  * used to send packets to another guest in a 1:1 manner.
1339  *
1340  * More sopisticated is to use one of the tools developed for project like UML
1341  * to do networking.
1342  *
1343  * Faster is to do virtio bonding in kernel.  Doing this 1:1 would be
1344  * completely generic ("here's my vring, attach to your vring") and would work
1345  * for any traffic.  Of course, namespace and permissions issues need to be
1346  * dealt with.  A more sophisticated "multi-channel" virtio_net.c could hide
1347  * multiple inter-guest channels behind one interface, although it would
1348  * require some manner of hotplugging new virtio channels.
1349  *
1350  * Finally, we could implement a virtio network switch in the kernel. :*/
1351
1352 static u32 str2ip(const char *ipaddr)
1353 {
1354         unsigned int b[4];
1355
1356         if (sscanf(ipaddr, "%u.%u.%u.%u", &b[0], &b[1], &b[2], &b[3]) != 4)
1357                 errx(1, "Failed to parse IP address '%s'", ipaddr);
1358         return (b[0] << 24) | (b[1] << 16) | (b[2] << 8) | b[3];
1359 }
1360
1361 static void str2mac(const char *macaddr, unsigned char mac[6])
1362 {
1363         unsigned int m[6];
1364         if (sscanf(macaddr, "%02x:%02x:%02x:%02x:%02x:%02x",
1365                    &m[0], &m[1], &m[2], &m[3], &m[4], &m[5]) != 6)
1366                 errx(1, "Failed to parse mac address '%s'", macaddr);
1367         mac[0] = m[0];
1368         mac[1] = m[1];
1369         mac[2] = m[2];
1370         mac[3] = m[3];
1371         mac[4] = m[4];
1372         mac[5] = m[5];
1373 }
1374
1375 /* This code is "adapted" from libbridge: it attaches the Host end of the
1376  * network device to the bridge device specified by the command line.
1377  *
1378  * This is yet another James Morris contribution (I'm an IP-level guy, so I
1379  * dislike bridging), and I just try not to break it. */
1380 static void add_to_bridge(int fd, const char *if_name, const char *br_name)
1381 {
1382         int ifidx;
1383         struct ifreq ifr;
1384
1385         if (!*br_name)
1386                 errx(1, "must specify bridge name");
1387
1388         ifidx = if_nametoindex(if_name);
1389         if (!ifidx)
1390                 errx(1, "interface %s does not exist!", if_name);
1391
1392         strncpy(ifr.ifr_name, br_name, IFNAMSIZ);
1393         ifr.ifr_name[IFNAMSIZ-1] = '\0';
1394         ifr.ifr_ifindex = ifidx;
1395         if (ioctl(fd, SIOCBRADDIF, &ifr) < 0)
1396                 err(1, "can't add %s to bridge %s", if_name, br_name);
1397 }
1398
1399 /* This sets up the Host end of the network device with an IP address, brings
1400  * it up so packets will flow, the copies the MAC address into the hwaddr
1401  * pointer. */
1402 static void configure_device(int fd, const char *tapif, u32 ipaddr)
1403 {
1404         struct ifreq ifr;
1405         struct sockaddr_in *sin = (struct sockaddr_in *)&ifr.ifr_addr;
1406
1407         memset(&ifr, 0, sizeof(ifr));
1408         strcpy(ifr.ifr_name, tapif);
1409
1410         /* Don't read these incantations.  Just cut & paste them like I did! */
1411         sin->sin_family = AF_INET;
1412         sin->sin_addr.s_addr = htonl(ipaddr);
1413         if (ioctl(fd, SIOCSIFADDR, &ifr) != 0)
1414                 err(1, "Setting %s interface address", tapif);
1415         ifr.ifr_flags = IFF_UP;
1416         if (ioctl(fd, SIOCSIFFLAGS, &ifr) != 0)
1417                 err(1, "Bringing interface %s up", tapif);
1418 }
1419
1420 static int get_tun_device(char tapif[IFNAMSIZ])
1421 {
1422         struct ifreq ifr;
1423         int netfd;
1424
1425         /* Start with this zeroed.  Messy but sure. */
1426         memset(&ifr, 0, sizeof(ifr));
1427
1428         /* We open the /dev/net/tun device and tell it we want a tap device.  A
1429          * tap device is like a tun device, only somehow different.  To tell
1430          * the truth, I completely blundered my way through this code, but it
1431          * works now! */
1432         netfd = open_or_die("/dev/net/tun", O_RDWR);
1433         ifr.ifr_flags = IFF_TAP | IFF_NO_PI | IFF_VNET_HDR;
1434         strcpy(ifr.ifr_name, "tap%d");
1435         if (ioctl(netfd, TUNSETIFF, &ifr) != 0)
1436                 err(1, "configuring /dev/net/tun");
1437
1438         if (ioctl(netfd, TUNSETOFFLOAD,
1439                   TUN_F_CSUM|TUN_F_TSO4|TUN_F_TSO6|TUN_F_TSO_ECN) != 0)
1440                 err(1, "Could not set features for tun device");
1441
1442         /* We don't need checksums calculated for packets coming in this
1443          * device: trust us! */
1444         ioctl(netfd, TUNSETNOCSUM, 1);
1445
1446         memcpy(tapif, ifr.ifr_name, IFNAMSIZ);
1447         return netfd;
1448 }
1449
1450 /*L:195 Our network is a Host<->Guest network.  This can either use bridging or
1451  * routing, but the principle is the same: it uses the "tun" device to inject
1452  * packets into the Host as if they came in from a normal network card.  We
1453  * just shunt packets between the Guest and the tun device. */
1454 static void setup_tun_net(char *arg)
1455 {
1456         struct device *dev;
1457         int netfd, ipfd;
1458         u32 ip = INADDR_ANY;
1459         bool bridging = false;
1460         char tapif[IFNAMSIZ], *p;
1461         struct virtio_net_config conf;
1462
1463         netfd = get_tun_device(tapif);
1464
1465         /* First we create a new network device. */
1466         dev = new_device("net", VIRTIO_ID_NET, netfd, handle_tun_input);
1467
1468         /* Network devices need a receive and a send queue, just like
1469          * console. */
1470         add_virtqueue(dev, VIRTQUEUE_NUM, net_enable_fd);
1471         add_virtqueue(dev, VIRTQUEUE_NUM, handle_net_output);
1472
1473         /* We need a socket to perform the magic network ioctls to bring up the
1474          * tap interface, connect to the bridge etc.  Any socket will do! */
1475         ipfd = socket(PF_INET, SOCK_DGRAM, IPPROTO_IP);
1476         if (ipfd < 0)
1477                 err(1, "opening IP socket");
1478
1479         /* If the command line was --tunnet=bridge:<name> do bridging. */
1480         if (!strncmp(BRIDGE_PFX, arg, strlen(BRIDGE_PFX))) {
1481                 arg += strlen(BRIDGE_PFX);
1482                 bridging = true;
1483         }
1484
1485         /* A mac address may follow the bridge name or IP address */
1486         p = strchr(arg, ':');
1487         if (p) {
1488                 str2mac(p+1, conf.mac);
1489                 add_feature(dev, VIRTIO_NET_F_MAC);
1490                 *p = '\0';
1491         }
1492
1493         /* arg is now either an IP address or a bridge name */
1494         if (bridging)
1495                 add_to_bridge(ipfd, tapif, arg);
1496         else
1497                 ip = str2ip(arg);
1498
1499         /* Set up the tun device. */
1500         configure_device(ipfd, tapif, ip);
1501
1502         add_feature(dev, VIRTIO_F_NOTIFY_ON_EMPTY);
1503         /* Expect Guest to handle everything except UFO */
1504         add_feature(dev, VIRTIO_NET_F_CSUM);
1505         add_feature(dev, VIRTIO_NET_F_GUEST_CSUM);
1506         add_feature(dev, VIRTIO_NET_F_GUEST_TSO4);
1507         add_feature(dev, VIRTIO_NET_F_GUEST_TSO6);
1508         add_feature(dev, VIRTIO_NET_F_GUEST_ECN);
1509         add_feature(dev, VIRTIO_NET_F_HOST_TSO4);
1510         add_feature(dev, VIRTIO_NET_F_HOST_TSO6);
1511         add_feature(dev, VIRTIO_NET_F_HOST_ECN);
1512         set_config(dev, sizeof(conf), &conf);
1513
1514         /* We don't need the socket any more; setup is done. */
1515         close(ipfd);
1516
1517         devices.device_num++;
1518
1519         if (bridging)
1520                 verbose("device %u: tun %s attached to bridge: %s\n",
1521                         devices.device_num, tapif, arg);
1522         else
1523                 verbose("device %u: tun %s: %s\n",
1524                         devices.device_num, tapif, arg);
1525 }
1526
1527 /* Our block (disk) device should be really simple: the Guest asks for a block
1528  * number and we read or write that position in the file.  Unfortunately, that
1529  * was amazingly slow: the Guest waits until the read is finished before
1530  * running anything else, even if it could have been doing useful work.
1531  *
1532  * We could use async I/O, except it's reputed to suck so hard that characters
1533  * actually go missing from your code when you try to use it.
1534  *
1535  * So we farm the I/O out to thread, and communicate with it via a pipe. */
1536
1537 /* This hangs off device->priv. */
1538 struct vblk_info
1539 {
1540         /* The size of the file. */
1541         off64_t len;
1542
1543         /* The file descriptor for the file. */
1544         int fd;
1545
1546         /* IO thread listens on this file descriptor [0]. */
1547         int workpipe[2];
1548
1549         /* IO thread writes to this file descriptor to mark it done, then
1550          * Launcher triggers interrupt to Guest. */
1551         int done_fd;
1552 };
1553
1554 /*L:210
1555  * The Disk
1556  *
1557  * Remember that the block device is handled by a separate I/O thread.  We head
1558  * straight into the core of that thread here:
1559  */
1560 static bool service_io(struct device *dev)
1561 {
1562         struct vblk_info *vblk = dev->priv;
1563         unsigned int head, out_num, in_num, wlen;
1564         int ret;
1565         u8 *in;
1566         struct virtio_blk_outhdr *out;
1567         struct iovec iov[dev->vq->vring.num];
1568         off64_t off;
1569
1570         /* See if there's a request waiting.  If not, nothing to do. */
1571         head = get_vq_desc(dev->vq, iov, &out_num, &in_num);
1572         if (head == dev->vq->vring.num)
1573                 return false;
1574
1575         /* Every block request should contain at least one output buffer
1576          * (detailing the location on disk and the type of request) and one
1577          * input buffer (to hold the result). */
1578         if (out_num == 0 || in_num == 0)
1579                 errx(1, "Bad virtblk cmd %u out=%u in=%u",
1580                      head, out_num, in_num);
1581
1582         out = convert(&iov[0], struct virtio_blk_outhdr);
1583         in = convert(&iov[out_num+in_num-1], u8);
1584         off = out->sector * 512;
1585
1586         /* The block device implements "barriers", where the Guest indicates
1587          * that it wants all previous writes to occur before this write.  We
1588          * don't have a way of asking our kernel to do a barrier, so we just
1589          * synchronize all the data in the file.  Pretty poor, no? */
1590         if (out->type & VIRTIO_BLK_T_BARRIER)
1591                 fdatasync(vblk->fd);
1592
1593         /* In general the virtio block driver is allowed to try SCSI commands.
1594          * It'd be nice if we supported eject, for example, but we don't. */
1595         if (out->type & VIRTIO_BLK_T_SCSI_CMD) {
1596                 fprintf(stderr, "Scsi commands unsupported\n");
1597                 *in = VIRTIO_BLK_S_UNSUPP;
1598                 wlen = sizeof(*in);
1599         } else if (out->type & VIRTIO_BLK_T_OUT) {
1600                 /* Write */
1601
1602                 /* Move to the right location in the block file.  This can fail
1603                  * if they try to write past end. */
1604                 if (lseek64(vblk->fd, off, SEEK_SET) != off)
1605                         err(1, "Bad seek to sector %llu", out->sector);
1606
1607                 ret = writev(vblk->fd, iov+1, out_num-1);
1608                 verbose("WRITE to sector %llu: %i\n", out->sector, ret);
1609
1610                 /* Grr... Now we know how long the descriptor they sent was, we
1611                  * make sure they didn't try to write over the end of the block
1612                  * file (possibly extending it). */
1613                 if (ret > 0 && off + ret > vblk->len) {
1614                         /* Trim it back to the correct length */
1615                         ftruncate64(vblk->fd, vblk->len);
1616                         /* Die, bad Guest, die. */
1617                         errx(1, "Write past end %llu+%u", off, ret);
1618                 }
1619                 wlen = sizeof(*in);
1620                 *in = (ret >= 0 ? VIRTIO_BLK_S_OK : VIRTIO_BLK_S_IOERR);
1621         } else {
1622                 /* Read */
1623
1624                 /* Move to the right location in the block file.  This can fail
1625                  * if they try to read past end. */
1626                 if (lseek64(vblk->fd, off, SEEK_SET) != off)
1627                         err(1, "Bad seek to sector %llu", out->sector);
1628
1629                 ret = readv(vblk->fd, iov+1, in_num-1);
1630                 verbose("READ from sector %llu: %i\n", out->sector, ret);
1631                 if (ret >= 0) {
1632                         wlen = sizeof(*in) + ret;
1633                         *in = VIRTIO_BLK_S_OK;
1634                 } else {
1635                         wlen = sizeof(*in);
1636                         *in = VIRTIO_BLK_S_IOERR;
1637                 }
1638         }
1639
1640         /* OK, so we noted that it was pretty poor to use an fdatasync as a
1641          * barrier.  But Christoph Hellwig points out that we need a sync
1642          * *afterwards* as well: "Barriers specify no reordering to the front
1643          * or the back."  And Jens Axboe confirmed it, so here we are: */
1644         if (out->type & VIRTIO_BLK_T_BARRIER)
1645                 fdatasync(vblk->fd);
1646
1647         /* We can't trigger an IRQ, because we're not the Launcher.  It does
1648          * that when we tell it we're done. */
1649         add_used(dev->vq, head, wlen);
1650         return true;
1651 }
1652
1653 /* This is the thread which actually services the I/O. */
1654 static int io_thread(void *_dev)
1655 {
1656         struct device *dev = _dev;
1657         struct vblk_info *vblk = dev->priv;
1658         char c;
1659
1660         /* Close other side of workpipe so we get 0 read when main dies. */
1661         close(vblk->workpipe[1]);
1662         /* Close the other side of the done_fd pipe. */
1663         close(dev->fd);
1664
1665         /* When this read fails, it means Launcher died, so we follow. */
1666         while (read(vblk->workpipe[0], &c, 1) == 1) {
1667                 /* We acknowledge each request immediately to reduce latency,
1668                  * rather than waiting until we've done them all.  I haven't
1669                  * measured to see if it makes any difference.
1670                  *
1671                  * That would be an interesting test, wouldn't it?  You could
1672                  * also try having more than one I/O thread. */
1673                 while (service_io(dev))
1674                         write(vblk->done_fd, &c, 1);
1675         }
1676         return 0;
1677 }
1678
1679 /* Now we've seen the I/O thread, we return to the Launcher to see what happens
1680  * when that thread tells us it's completed some I/O. */
1681 static bool handle_io_finish(int fd, struct device *dev)
1682 {
1683         char c;
1684
1685         /* If the I/O thread died, presumably it printed the error, so we
1686          * simply exit. */
1687         if (read(dev->fd, &c, 1) != 1)
1688                 exit(1);
1689
1690         /* It did some work, so trigger the irq. */
1691         trigger_irq(fd, dev->vq);
1692         return true;
1693 }
1694
1695 /* When the Guest submits some I/O, we just need to wake the I/O thread. */
1696 static void handle_virtblk_output(int fd, struct virtqueue *vq, bool timeout)
1697 {
1698         struct vblk_info *vblk = vq->dev->priv;
1699         char c = 0;
1700
1701         /* Wake up I/O thread and tell it to go to work! */
1702         if (write(vblk->workpipe[1], &c, 1) != 1)
1703                 /* Presumably it indicated why it died. */
1704                 exit(1);
1705 }
1706
1707 /*L:198 This actually sets up a virtual block device. */
1708 static void setup_block_file(const char *filename)
1709 {
1710         int p[2];
1711         struct device *dev;
1712         struct vblk_info *vblk;
1713         void *stack;
1714         struct virtio_blk_config conf;
1715
1716         /* This is the pipe the I/O thread will use to tell us I/O is done. */
1717         pipe(p);
1718
1719         /* The device responds to return from I/O thread. */
1720         dev = new_device("block", VIRTIO_ID_BLOCK, p[0], handle_io_finish);
1721
1722         /* The device has one virtqueue, where the Guest places requests. */
1723         add_virtqueue(dev, VIRTQUEUE_NUM, handle_virtblk_output);
1724
1725         /* Allocate the room for our own bookkeeping */
1726         vblk = dev->priv = malloc(sizeof(*vblk));
1727
1728         /* First we open the file and store the length. */
1729         vblk->fd = open_or_die(filename, O_RDWR|O_LARGEFILE);
1730         vblk->len = lseek64(vblk->fd, 0, SEEK_END);
1731
1732         /* We support barriers. */
1733         add_feature(dev, VIRTIO_BLK_F_BARRIER);
1734
1735         /* Tell Guest how many sectors this device has. */
1736         conf.capacity = cpu_to_le64(vblk->len / 512);
1737
1738         /* Tell Guest not to put in too many descriptors at once: two are used
1739          * for the in and out elements. */
1740         add_feature(dev, VIRTIO_BLK_F_SEG_MAX);
1741         conf.seg_max = cpu_to_le32(VIRTQUEUE_NUM - 2);
1742
1743         set_config(dev, sizeof(conf), &conf);
1744
1745         /* The I/O thread writes to this end of the pipe when done. */
1746         vblk->done_fd = p[1];
1747
1748         /* This is the second pipe, which is how we tell the I/O thread about
1749          * more work. */
1750         pipe(vblk->workpipe);
1751
1752         /* Create stack for thread and run it.  Since stack grows upwards, we
1753          * point the stack pointer to the end of this region. */
1754         stack = malloc(32768);
1755         /* SIGCHLD - We dont "wait" for our cloned thread, so prevent it from
1756          * becoming a zombie. */
1757         if (clone(io_thread, stack + 32768, CLONE_VM | SIGCHLD, dev) == -1)
1758                 err(1, "Creating clone");
1759
1760         /* We don't need to keep the I/O thread's end of the pipes open. */
1761         close(vblk->done_fd);
1762         close(vblk->workpipe[0]);
1763
1764         verbose("device %u: virtblock %llu sectors\n",
1765                 devices.device_num, le64_to_cpu(conf.capacity));
1766 }
1767
1768 /* Our random number generator device reads from /dev/random into the Guest's
1769  * input buffers.  The usual case is that the Guest doesn't want random numbers
1770  * and so has no buffers although /dev/random is still readable, whereas
1771  * console is the reverse.
1772  *
1773  * The same logic applies, however. */
1774 static bool handle_rng_input(int fd, struct device *dev)
1775 {
1776         int len;
1777         unsigned int head, in_num, out_num, totlen = 0;
1778         struct iovec iov[dev->vq->vring.num];
1779
1780         /* First we need a buffer from the Guests's virtqueue. */
1781         head = get_vq_desc(dev->vq, iov, &out_num, &in_num);
1782
1783         /* If they're not ready for input, stop listening to this file
1784          * descriptor.  We'll start again once they add an input buffer. */
1785         if (head == dev->vq->vring.num)
1786                 return false;
1787
1788         if (out_num)
1789                 errx(1, "Output buffers in rng?");
1790
1791         /* This is why we convert to iovecs: the readv() call uses them, and so
1792          * it reads straight into the Guest's buffer.  We loop to make sure we
1793          * fill it. */
1794         while (!iov_empty(iov, in_num)) {
1795                 len = readv(dev->fd, iov, in_num);
1796                 if (len <= 0)
1797                         err(1, "Read from /dev/random gave %i", len);
1798                 iov_consume(iov, in_num, len);
1799                 totlen += len;
1800         }
1801
1802         /* Tell the Guest about the new input. */
1803         add_used_and_trigger(fd, dev->vq, head, totlen);
1804
1805         /* Everything went OK! */
1806         return true;
1807 }
1808
1809 /* And this creates a "hardware" random number device for the Guest. */
1810 static void setup_rng(void)
1811 {
1812         struct device *dev;
1813         int fd;
1814
1815         fd = open_or_die("/dev/random", O_RDONLY);
1816
1817         /* The device responds to return from I/O thread. */
1818         dev = new_device("rng", VIRTIO_ID_RNG, fd, handle_rng_input);
1819
1820         /* The device has one virtqueue, where the Guest places inbufs. */
1821         add_virtqueue(dev, VIRTQUEUE_NUM, enable_fd);
1822
1823         verbose("device %u: rng\n", devices.device_num++);
1824 }
1825 /* That's the end of device setup. */
1826
1827 /*L:230 Reboot is pretty easy: clean up and exec() the Launcher afresh. */
1828 static void __attribute__((noreturn)) restart_guest(void)
1829 {
1830         unsigned int i;
1831
1832         /* Since we don't track all open fds, we simply close everything beyond
1833          * stderr. */
1834         for (i = 3; i < FD_SETSIZE; i++)
1835                 close(i);
1836
1837         /* The exec automatically gets rid of the I/O and Waker threads. */
1838         execv(main_args[0], main_args);
1839         err(1, "Could not exec %s", main_args[0]);
1840 }
1841
1842 /*L:220 Finally we reach the core of the Launcher which runs the Guest, serves
1843  * its input and output, and finally, lays it to rest. */
1844 static void __attribute__((noreturn)) run_guest(int lguest_fd)
1845 {
1846         for (;;) {
1847                 unsigned long args[] = { LHREQ_BREAK, 0 };
1848                 unsigned long notify_addr;
1849                 int readval;
1850
1851                 /* We read from the /dev/lguest device to run the Guest. */
1852                 readval = pread(lguest_fd, &notify_addr,
1853                                 sizeof(notify_addr), cpu_id);
1854
1855                 /* One unsigned long means the Guest did HCALL_NOTIFY */
1856                 if (readval == sizeof(notify_addr)) {
1857                         verbose("Notify on address %#lx\n", notify_addr);
1858                         handle_output(lguest_fd, notify_addr);
1859                         continue;
1860                 /* ENOENT means the Guest died.  Reading tells us why. */
1861                 } else if (errno == ENOENT) {
1862                         char reason[1024] = { 0 };
1863                         pread(lguest_fd, reason, sizeof(reason)-1, cpu_id);
1864                         errx(1, "%s", reason);
1865                 /* ERESTART means that we need to reboot the guest */
1866                 } else if (errno == ERESTART) {
1867                         restart_guest();
1868                 /* EAGAIN means a signal (timeout).
1869                  * Anything else means a bug or incompatible change. */
1870                 } else if (errno != EAGAIN)
1871                         err(1, "Running guest failed");
1872
1873                 /* Only service input on thread for CPU 0. */
1874                 if (cpu_id != 0)
1875                         continue;
1876
1877                 /* Service input, then unset the BREAK to release the Waker. */
1878                 handle_input(lguest_fd);
1879                 if (pwrite(lguest_fd, args, sizeof(args), cpu_id) < 0)
1880                         err(1, "Resetting break");
1881         }
1882 }
1883 /*L:240
1884  * This is the end of the Launcher.  The good news: we are over halfway
1885  * through!  The bad news: the most fiendish part of the code still lies ahead
1886  * of us.
1887  *
1888  * Are you ready?  Take a deep breath and join me in the core of the Host, in
1889  * "make Host".
1890  :*/
1891
1892 static struct option opts[] = {
1893         { "verbose", 0, NULL, 'v' },
1894         { "tunnet", 1, NULL, 't' },
1895         { "block", 1, NULL, 'b' },
1896         { "rng", 0, NULL, 'r' },
1897         { "initrd", 1, NULL, 'i' },
1898         { NULL },
1899 };
1900 static void usage(void)
1901 {
1902         errx(1, "Usage: lguest [--verbose] "
1903              "[--tunnet=(<ipaddr>:<macaddr>|bridge:<bridgename>:<macaddr>)\n"
1904              "|--block=<filename>|--initrd=<filename>]...\n"
1905              "<mem-in-mb> vmlinux [args...]");
1906 }
1907
1908 /*L:105 The main routine is where the real work begins: */
1909 int main(int argc, char *argv[])
1910 {
1911         /* Memory, top-level pagetable, code startpoint and size of the
1912          * (optional) initrd. */
1913         unsigned long mem = 0, start, initrd_size = 0;
1914         /* Two temporaries and the /dev/lguest file descriptor. */
1915         int i, c, lguest_fd;
1916         /* The boot information for the Guest. */
1917         struct boot_params *boot;
1918         /* If they specify an initrd file to load. */
1919         const char *initrd_name = NULL;
1920
1921         /* Save the args: we "reboot" by execing ourselves again. */
1922         main_args = argv;
1923         /* We don't "wait" for the children, so prevent them from becoming
1924          * zombies. */
1925         signal(SIGCHLD, SIG_IGN);
1926
1927         /* First we initialize the device list.  Since console and network
1928          * device receive input from a file descriptor, we keep an fdset
1929          * (infds) and the maximum fd number (max_infd) with the head of the
1930          * list.  We also keep a pointer to the last device.  Finally, we keep
1931          * the next interrupt number to use for devices (1: remember that 0 is
1932          * used by the timer). */
1933         FD_ZERO(&devices.infds);
1934         devices.max_infd = -1;
1935         devices.lastdev = NULL;
1936         devices.next_irq = 1;
1937
1938         cpu_id = 0;
1939         /* We need to know how much memory so we can set up the device
1940          * descriptor and memory pages for the devices as we parse the command
1941          * line.  So we quickly look through the arguments to find the amount
1942          * of memory now. */
1943         for (i = 1; i < argc; i++) {
1944                 if (argv[i][0] != '-') {
1945                         mem = atoi(argv[i]) * 1024 * 1024;
1946                         /* We start by mapping anonymous pages over all of
1947                          * guest-physical memory range.  This fills it with 0,
1948                          * and ensures that the Guest won't be killed when it
1949                          * tries to access it. */
1950                         guest_base = map_zeroed_pages(mem / getpagesize()
1951                                                       + DEVICE_PAGES);
1952                         guest_limit = mem;
1953                         guest_max = mem + DEVICE_PAGES*getpagesize();
1954                         devices.descpage = get_pages(1);
1955                         break;
1956                 }
1957         }
1958
1959         /* The options are fairly straight-forward */
1960         while ((c = getopt_long(argc, argv, "v", opts, NULL)) != EOF) {
1961                 switch (c) {
1962                 case 'v':
1963                         verbose = true;
1964                         break;
1965                 case 't':
1966                         setup_tun_net(optarg);
1967                         break;
1968                 case 'b':
1969                         setup_block_file(optarg);
1970                         break;
1971                 case 'r':
1972                         setup_rng();
1973                         break;
1974                 case 'i':
1975                         initrd_name = optarg;
1976                         break;
1977                 default:
1978                         warnx("Unknown argument %s", argv[optind]);
1979                         usage();
1980                 }
1981         }
1982         /* After the other arguments we expect memory and kernel image name,
1983          * followed by command line arguments for the kernel. */
1984         if (optind + 2 > argc)
1985                 usage();
1986
1987         verbose("Guest base is at %p\n", guest_base);
1988
1989         /* We always have a console device */
1990         setup_console();
1991
1992         /* We can timeout waiting for Guest network transmit. */
1993         setup_timeout();
1994
1995         /* Now we load the kernel */
1996         start = load_kernel(open_or_die(argv[optind+1], O_RDONLY));
1997
1998         /* Boot information is stashed at physical address 0 */
1999         boot = from_guest_phys(0);
2000
2001         /* Map the initrd image if requested (at top of physical memory) */
2002         if (initrd_name) {
2003                 initrd_size = load_initrd(initrd_name, mem);
2004                 /* These are the location in the Linux boot header where the
2005                  * start and size of the initrd are expected to be found. */
2006                 boot->hdr.ramdisk_image = mem - initrd_size;
2007                 boot->hdr.ramdisk_size = initrd_size;
2008                 /* The bootloader type 0xFF means "unknown"; that's OK. */
2009                 boot->hdr.type_of_loader = 0xFF;
2010         }
2011
2012         /* The Linux boot header contains an "E820" memory map: ours is a
2013          * simple, single region. */
2014         boot->e820_entries = 1;
2015         boot->e820_map[0] = ((struct e820entry) { 0, mem, E820_RAM });
2016         /* The boot header contains a command line pointer: we put the command
2017          * line after the boot header. */
2018         boot->hdr.cmd_line_ptr = to_guest_phys(boot + 1);
2019         /* We use a simple helper to copy the arguments separated by spaces. */
2020         concat((char *)(boot + 1), argv+optind+2);
2021
2022         /* Boot protocol version: 2.07 supports the fields for lguest. */
2023         boot->hdr.version = 0x207;
2024
2025         /* The hardware_subarch value of "1" tells the Guest it's an lguest. */
2026         boot->hdr.hardware_subarch = 1;
2027
2028         /* Tell the entry path not to try to reload segment registers. */
2029         boot->hdr.loadflags |= KEEP_SEGMENTS;
2030
2031         /* We tell the kernel to initialize the Guest: this returns the open
2032          * /dev/lguest file descriptor. */
2033         lguest_fd = tell_kernel(start);
2034
2035         /* We clone off a thread, which wakes the Launcher whenever one of the
2036          * input file descriptors needs attention.  We call this the Waker, and
2037          * we'll cover it in a moment. */
2038         setup_waker(lguest_fd);
2039
2040         /* Finally, run the Guest.  This doesn't return. */
2041         run_guest(lguest_fd);
2042 }
2043 /*:*/
2044
2045 /*M:999
2046  * Mastery is done: you now know everything I do.
2047  *
2048  * But surely you have seen code, features and bugs in your wanderings which
2049  * you now yearn to attack?  That is the real game, and I look forward to you
2050  * patching and forking lguest into the Your-Name-Here-visor.
2051  *
2052  * Farewell, and good coding!
2053  * Rusty Russell.
2054  */