[PATCH] w83781d: Document the alarm and beep bits
[safe/jmp/linux-2.6] / Documentation / hwmon / w83781d
1 Kernel driver w83781d
2 =====================
3
4 Supported chips:
5   * Winbond W83781D
6     Prefix: 'w83781d'
7     Addresses scanned: I2C 0x20 - 0x2f, ISA 0x290 (8 I/O ports)
8     Datasheet: http://www.winbond-usa.com/products/winbond_products/pdfs/PCIC/w83781d.pdf
9   * Winbond W83782D
10     Prefix: 'w83782d'
11     Addresses scanned: I2C 0x20 - 0x2f, ISA 0x290 (8 I/O ports)
12     Datasheet: http://www.winbond.com/PDF/sheet/w83782d.pdf
13   * Winbond W83783S
14     Prefix: 'w83783s'
15     Addresses scanned: I2C 0x2d
16     Datasheet: http://www.winbond-usa.com/products/winbond_products/pdfs/PCIC/w83783s.pdf
17   * Winbond W83627HF
18     Prefix: 'w83627hf'
19     Addresses scanned: I2C 0x20 - 0x2f, ISA 0x290 (8 I/O ports)
20     Datasheet: http://www.winbond.com/PDF/sheet/w83627hf.pdf
21   * Asus AS99127F
22     Prefix: 'as99127f'
23     Addresses scanned: I2C 0x28 - 0x2f
24     Datasheet: Unavailable from Asus
25
26 Authors:
27         Frodo Looijaard <frodol@dds.nl>,
28         Philip Edelbrock <phil@netroedge.com>,
29         Mark Studebaker <mdsxyz123@yahoo.com>
30
31 Module parameters
32 -----------------
33
34 * init int
35   (default 1)
36   Use 'init=0' to bypass initializing the chip.
37   Try this if your computer crashes when you load the module.
38
39 force_subclients=bus,caddr,saddr,saddr
40   This is used to force the i2c addresses for subclients of
41   a certain chip. Typical usage is `force_subclients=0,0x2d,0x4a,0x4b'
42   to force the subclients of chip 0x2d on bus 0 to i2c addresses
43   0x4a and 0x4b. This parameter is useful for certain Tyan boards.
44
45 Description
46 -----------
47
48 This driver implements support for the Winbond W83781D, W83782D, W83783S,
49 W83627HF chips, and the Asus AS99127F chips. We will refer to them
50 collectively as W8378* chips.
51
52 There is quite some difference between these chips, but they are similar
53 enough that it was sensible to put them together in one driver.
54 The W83627HF chip is assumed to be identical to the ISA W83782D.
55 The Asus chips are similar to an I2C-only W83782D.
56
57 Chip        #vin    #fanin  #pwm    #temp   wchipid vendid  i2c     ISA
58 as99127f    7       3       0       3       0x31    0x12c3  yes     no
59 as99127f rev.2 (type_name = as99127f)       0x31    0x5ca3  yes     no
60 w83781d     7       3       0       3       0x10-1  0x5ca3  yes     yes
61 w83627hf    9       3       2       3       0x21    0x5ca3  yes     yes(LPC)
62 w83782d     9       3       2-4     3       0x30    0x5ca3  yes     yes
63 w83783s     5-6     3       2       1-2     0x40    0x5ca3  yes     no
64
65 Detection of these chips can sometimes be foiled because they can be in
66 an internal state that allows no clean access. If you know the address
67 of the chip, use a 'force' parameter; this will put them into a more
68 well-behaved state first.
69
70 The W8378* implements temperature sensors (three on the W83781D and W83782D,
71 two on the W83783S), three fan rotation speed sensors, voltage sensors
72 (seven on the W83781D, nine on the W83782D and six on the W83783S), VID
73 lines, alarms with beep warnings, and some miscellaneous stuff.
74
75 Temperatures are measured in degrees Celsius. There is always one main
76 temperature sensor, and one (W83783S) or two (W83781D and W83782D) other
77 sensors. An alarm is triggered for the main sensor once when the
78 Overtemperature Shutdown limit is crossed; it is triggered again as soon as
79 it drops below the Hysteresis value. A more useful behavior
80 can be found by setting the Hysteresis value to +127 degrees Celsius; in
81 this case, alarms are issued during all the time when the actual temperature
82 is above the Overtemperature Shutdown value. The driver sets the
83 hysteresis value for temp1 to 127 at initialization.
84
85 For the other temperature sensor(s), an alarm is triggered when the
86 temperature gets higher then the Overtemperature Shutdown value; it stays
87 on until the temperature falls below the Hysteresis value. But on the
88 W83781D, there is only one alarm that functions for both other sensors!
89 Temperatures are guaranteed within a range of -55 to +125 degrees. The
90 main temperature sensors has a resolution of 1 degree; the other sensor(s)
91 of 0.5 degree.
92
93 Fan rotation speeds are reported in RPM (rotations per minute). An alarm is
94 triggered if the rotation speed has dropped below a programmable limit. Fan
95 readings can be divided by a programmable divider (1, 2, 4 or 8 for the
96 W83781D; 1, 2, 4, 8, 16, 32, 64 or 128 for the others) to give
97 the readings more range or accuracy. Not all RPM values can accurately
98 be represented, so some rounding is done. With a divider of 2, the lowest
99 representable value is around 2600 RPM.
100
101 Voltage sensors (also known as IN sensors) report their values in volts.
102 An alarm is triggered if the voltage has crossed a programmable minimum
103 or maximum limit. Note that minimum in this case always means 'closest to
104 zero'; this is important for negative voltage measurements. All voltage
105 inputs can measure voltages between 0 and 4.08 volts, with a resolution
106 of 0.016 volt.
107
108 The VID lines encode the core voltage value: the voltage level your processor
109 should work with. This is hardcoded by the mainboard and/or processor itself.
110 It is a value in volts. When it is unconnected, you will often find the
111 value 3.50 V here.
112
113 The W83782D and W83783S temperature conversion machine understands about
114 several kinds of temperature probes. You can program the so-called
115 beta value in the sensor files. '1' is the PII/Celeron diode, '2' is the
116 TN3904 transistor, and 3435 the default thermistor value. Other values
117 are (not yet) supported.
118
119 In addition to the alarms described above, there is a CHAS alarm on the
120 chips which triggers if your computer case is open.
121
122 When an alarm goes off, you can be warned by a beeping signal through
123 your computer speaker. It is possible to enable all beeping globally,
124 or only the beeping for some alarms.
125
126 Individual alarm and beep bits:
127
128 0x000001: in0
129 0x000002: in1
130 0x000004: in2
131 0x000008: in3
132 0x000010: temp1
133 0x000020: temp2 (+temp3 on W83781D)
134 0x000040: fan1
135 0x000080: fan2
136 0x000100: in4
137 0x000200: in5
138 0x000400: in6
139 0x000800: fan3
140 0x001000: chassis
141 0x002000: temp3 (W83782D and W83627HF only)
142 0x010000: in7 (W83782D and W83627HF only)
143 0x020000: in8 (W83782D and W83627HF only)
144
145 If an alarm triggers, it will remain triggered until the hardware register
146 is read at least once. This means that the cause for the alarm may
147 already have disappeared! Note that in the current implementation, all
148 hardware registers are read whenever any data is read (unless it is less
149 than 1.5 seconds since the last update). This means that you can easily
150 miss once-only alarms.
151
152 The chips only update values each 1.5 seconds; reading them more often
153 will do no harm, but will return 'old' values.
154
155 AS99127F PROBLEMS
156 -----------------
157 The as99127f support was developed without the benefit of a datasheet.
158 In most cases it is treated as a w83781d (although revision 2 of the
159 AS99127F looks more like a w83782d).
160 This support will be BETA until a datasheet is released.
161 One user has reported problems with fans stopping
162 occasionally.
163
164 Note that the individual beep bits are inverted from the other chips.
165 The driver now takes care of this so that user-space applications
166 don't have to know about it.
167
168 Known problems:
169         - Problems with diode/thermistor settings (supported?)
170         - One user reports fans stopping under high server load.
171         - Revision 2 seems to have 2 PWM registers but we don't know
172           how to handle them. More details below.
173
174 These will not be fixed unless we get a datasheet.
175 If you have problems, please lobby Asus to release a datasheet.
176 Unfortunately several others have without success.
177 Please do not send mail to us asking for better as99127f support.
178 We have done the best we can without a datasheet.
179 Please do not send mail to the author or the sensors group asking for
180 a datasheet or ideas on how to convince Asus. We can't help.
181
182
183 NOTES:
184 -----
185   783s has no in1 so that in[2-6] are compatible with the 781d/782d.
186
187   783s pin is programmable for -5V or temp1; defaults to -5V,
188        no control in driver so temp1 doesn't work.
189
190   782d and 783s datasheets differ on which is pwm1 and which is pwm2.
191        We chose to follow 782d.
192
193   782d and 783s pin is programmable for fan3 input or pwm2 output;
194        defaults to fan3 input.
195        If pwm2 is enabled (with echo 255 1 > pwm2), then
196        fan3 will report 0.
197
198   782d has pwm1-2 for ISA, pwm1-4 for i2c. (pwm3-4 share pins with
199        the ISA pins)
200
201 Data sheet updates:
202 ------------------
203         - PWM clock registers:
204
205                 000: master /  512
206                 001: master / 1024
207                 010: master / 2048
208                 011: master / 4096
209                 100: master / 8192
210
211
212 Answers from Winbond tech support
213 ---------------------------------
214 >
215 > 1) In the W83781D data sheet section 7.2 last paragraph, it talks about
216 >    reprogramming the R-T table if the Beta of the thermistor is not
217 >    3435K. The R-T table is described briefly in section 8.20.
218 >    What formulas do I use to program a new R-T table for a given Beta?
219 >
220         We are sorry that the calculation for R-T table value is
221 confidential. If you have another Beta value of thermistor, we can help
222 to calculate the R-T table for you. But you should give us real R-T
223 Table which can be gotten by thermistor vendor. Therefore we will calculate
224 them and obtain 32-byte data, and you can fill the 32-byte data to the
225 register in Bank0.CR51 of W83781D.
226
227
228 > 2) In the W83782D data sheet, it mentions that pins 38, 39, and 40 are
229 >    programmable to be either thermistor or Pentium II diode inputs.
230 >    How do I program them for diode inputs? I can't find any register
231 >    to program these to be diode inputs.
232  --> You may program Bank0 CR[5Dh] and CR[59h] registers.
233
234         CR[5Dh]                 bit 1(VTIN1)    bit 2(VTIN2)   bit 3(VTIN3)
235
236         thermistor                0              0              0
237         diode                     1              1              1
238
239
240 (error) CR[59h]                 bit 4(VTIN1)    bit 2(VTIN2)   bit 3(VTIN3)
241 (right) CR[59h]                 bit 4(VTIN1)    bit 5(VTIN2)   bit 6(VTIN3)
242
243         PII thermal diode         1              1              1
244         2N3904  diode             0              0              0
245
246
247 Asus Clones
248 -----------
249
250 We have no datasheets for the Asus clones (AS99127F and ASB100 Bach).
251 Here are some very useful information that were given to us by Alex Van
252 Kaam about how to detect these chips, and how to read their values. He
253 also gives advice for another Asus chipset, the Mozart-2 (which we
254 don't support yet). Thanks Alex!
255 I reworded some parts and added personal comments.
256
257 # Detection:
258
259 AS99127F rev.1, AS99127F rev.2 and ASB100:
260 - I2C address range: 0x29 - 0x2F
261 - If register 0x58 holds 0x31 then we have an Asus (either ASB100 or
262   AS99127F)
263 - Which one depends on register 0x4F (manufacturer ID):
264   0x06 or 0x94: ASB100
265   0x12 or 0xC3: AS99127F rev.1
266   0x5C or 0xA3: AS99127F rev.2
267   Note that 0x5CA3 is Winbond's ID (WEC), which let us think Asus get their
268   AS99127F rev.2 direct from Winbond. The other codes mean ATT and DVC,
269   respectively. ATT could stand for Asustek something (although it would be
270   very badly chosen IMHO), I don't know what DVC could stand for. Maybe
271   these codes simply aren't meant to be decoded that way.
272
273 Mozart-2:
274 - I2C address: 0x77
275 - If register 0x58 holds 0x56 or 0x10 then we have a Mozart-2
276 - Of the Mozart there are 3 types:
277   0x58=0x56, 0x4E=0x94, 0x4F=0x36: Asus ASM58 Mozart-2
278   0x58=0x56, 0x4E=0x94, 0x4F=0x06: Asus AS2K129R Mozart-2
279   0x58=0x10, 0x4E=0x5C, 0x4F=0xA3: Asus ??? Mozart-2
280   You can handle all 3 the exact same way :)
281
282 # Temperature sensors:
283
284 ASB100:
285 - sensor 1: register 0x27
286 - sensor 2 & 3 are the 2 LM75's on the SMBus
287 - sensor 4: register 0x17
288 Remark: I noticed that on Intel boards sensor 2 is used for the CPU
289   and 4 is ignored/stuck, on AMD boards sensor 4 is the CPU and sensor 2 is
290   either ignored or a socket temperature.
291
292 AS99127F (rev.1 and 2 alike):
293 - sensor 1: register 0x27
294 - sensor 2 & 3 are the 2 LM75's on the SMBus
295 Remark: Register 0x5b is suspected to be temperature type selector. Bit 1
296   would control temp1, bit 3 temp2 and bit 5 temp3.
297
298 Mozart-2:
299 - sensor 1: register 0x27
300 - sensor 2: register 0x13
301
302 # Fan sensors:
303
304 ASB100, AS99127F (rev.1 and 2 alike):
305 - 3 fans, identical to the W83781D
306
307 Mozart-2:
308 - 2 fans only, 1350000/RPM/div
309 - fan 1: register 0x28,  divisor on register 0xA1 (bits 4-5)
310 - fan 2: register 0x29,  divisor on register 0xA1 (bits 6-7)
311
312 # Voltages:
313
314 This is where there is a difference between AS99127F rev.1 and 2.
315 Remark: The difference is similar to the difference between
316   W83781D and W83782D.
317
318 ASB100:
319 in0=r(0x20)*0.016
320 in1=r(0x21)*0.016
321 in2=r(0x22)*0.016
322 in3=r(0x23)*0.016*1.68
323 in4=r(0x24)*0.016*3.8
324 in5=r(0x25)*(-0.016)*3.97
325 in6=r(0x26)*(-0.016)*1.666
326
327 AS99127F rev.1:
328 in0=r(0x20)*0.016
329 in1=r(0x21)*0.016
330 in2=r(0x22)*0.016
331 in3=r(0x23)*0.016*1.68
332 in4=r(0x24)*0.016*3.8
333 in5=r(0x25)*(-0.016)*3.97
334 in6=r(0x26)*(-0.016)*1.503
335
336 AS99127F rev.2:
337 in0=r(0x20)*0.016
338 in1=r(0x21)*0.016
339 in2=r(0x22)*0.016
340 in3=r(0x23)*0.016*1.68
341 in4=r(0x24)*0.016*3.8
342 in5=(r(0x25)*0.016-3.6)*5.14+3.6
343 in6=(r(0x26)*0.016-3.6)*3.14+3.6
344
345 Mozart-2:
346 in0=r(0x20)*0.016
347 in1=255
348 in2=r(0x22)*0.016
349 in3=r(0x23)*0.016*1.68
350 in4=r(0x24)*0.016*4
351 in5=255
352 in6=255
353
354
355 # PWM
356
357 Additional info about PWM on the AS99127F (may apply to other Asus
358 chips as well) by Jean Delvare as of 2004-04-09:
359
360 AS99127F revision 2 seems to have two PWM registers at 0x59 and 0x5A,
361 and a temperature sensor type selector at 0x5B (which basically means
362 that they swapped registers 0x59 and 0x5B when you compare with Winbond
363 chips).
364 Revision 1 of the chip also has the temperature sensor type selector at
365 0x5B, but PWM registers have no effect.
366
367 We don't know exactly how the temperature sensor type selection works.
368 Looks like bits 1-0 are for temp1, bits 3-2 for temp2 and bits 5-4 for
369 temp3, although it is possible that only the most significant bit matters
370 each time. So far, values other than 0 always broke the readings.
371
372 PWM registers seem to be split in two parts: bit 7 is a mode selector,
373 while the other bits seem to define a value or threshold.
374
375 When bit 7 is clear, bits 6-0 seem to hold a threshold value. If the value
376 is below a given limit, the fan runs at low speed. If the value is above
377 the limit, the fan runs at full speed. We have no clue as to what the limit
378 represents. Note that there seem to be some inertia in this mode, speed
379 changes may need some time to trigger. Also, an hysteresis mechanism is
380 suspected since walking through all the values increasingly and then
381 decreasingly led to slightly different limits.
382
383 When bit 7 is set, bits 3-0 seem to hold a threshold value, while bits 6-4
384 would not be significant. If the value is below a given limit, the fan runs
385 at full speed, while if it is above the limit it runs at low speed (so this
386 is the contrary of the other mode, in a way). Here again, we don't know
387 what the limit is supposed to represent.
388
389 One remarkable thing is that the fans would only have two or three
390 different speeds (transitional states left apart), not a whole range as
391 you usually get with PWM.
392
393 As a conclusion, you can write 0x00 or 0x8F to the PWM registers to make
394 fans run at low speed, and 0x7F or 0x80 to make them run at full speed.
395
396 Please contact us if you can figure out how it is supposed to work. As
397 long as we don't know more, the w83781d driver doesn't handle PWM on
398 AS99127F chips at all.
399
400 Additional info about PWM on the AS99127F rev.1 by Hector Martin:
401
402 I've been fiddling around with the (in)famous 0x59 register and
403 found out the following values do work as a form of coarse pwm:
404
405 0x80 - seems to turn fans off after some time(1-2 minutes)... might be
406 some form of auto-fan-control based on temp? hmm (Qfan? this mobo is an
407 old ASUS, it isn't marketed as Qfan. Maybe some beta pre-attemp at Qfan
408 that was dropped at the BIOS)
409 0x81 - off
410 0x82 - slightly "on-ner" than off, but my fans do not get to move. I can
411 hear the high-pitched PWM sound that motors give off at too-low-pwm.
412 0x83 - now they do move. Estimate about 70% speed or so.
413 0x84-0x8f - full on
414
415 Changing the high nibble doesn't seem to do much except the high bit
416 (0x80) must be set for PWM to work, else the current pwm doesn't seem to
417 change.
418
419 My mobo is an ASUS A7V266-E. This behavior is similar to what I got
420 with speedfan under Windows, where 0-15% would be off, 15-2x% (can't
421 remember the exact value) would be 70% and higher would be full on.